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In particle and condensed matter physics the use of anti-commuting Grassmann variables in
treating fermion systems via path integral methods is a well-established approach [1]. Quantum-
atom optics deals with systems such as atoms, quantised electromagnetic fields, and ultra-cold
atomic gases - both fermionic and bosonic. Phase space methods (where the quantum density
operator is represented by a quasi-distribution function of variables that replace the annihilation
and creation operators), constitute one of the major approaches [2]. However, in spite of the
seminal work by Cahill and Glauber [3] and a few applications [4, 5, 6], the use of phase space
methods in quantum-atom optics to treat fermionic systems by representing (anti-commuting)
fermionic annihilation and creation operators by Grassmann variables [3] is rather rare. This is
particularly the case for multi-atom bosonic and fermionic systems, where many quantum modes
are often involved. Generalisations of phase space distribution functions of phase space vari-
ables for a few modes to phase space distribution functionals of field functions (which represent
the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being
developed for large systems [7].

To illustrate the applicability of the Grassmann variable approach to quantum-atom optics, it is
shown that one of the most fundamental models in quantum optics and quantum physics can
be treated via a Grassmann distribution function approach. The Jaynes-Cummings model of
a two-level atom (TLA) in a single mode cavity involves the interaction of two simple quantum
systems - one fermionic (the TLA), the other bosonic (the cavity mode). Phase space methods
using a distribution function involving c-number variables (for the cavity mode) and Grassmann
variables (for the two level atom) have been used to treat this model [8]. The Grassmann distri-
bution function is equivalent to six c-number functions of the bosonic variables. Bosonic phase
space integrals involving these functions determine the experimental quantities. A Fokker-Planck
equation involving both left and right Grassmann differentiation has been obtained for the Grass-
mann distribution function. Equivalent coupled equations for the six c-number functions have
been found. This feature that the final equations only involve c-numbers will also apply to more
complex fermion systems.
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