Institut für Quantenoptik Universität Hannover Welfengarten 1 D-30167 Hannover







### T. Schulte, S. Drenkelforth, <u>W. Ertmer</u> K. Sacha, J. Zakrzewski und <u>M. Lewenstein</u>

Kioloa 2006



# **Correlation functions**

1st order correlation function:

$$g^{(1)}(\mathbf{r}_1,\mathbf{r}_2) = \frac{\langle \hat{\psi}^{\dagger}(\mathbf{r}_1)\hat{\psi}(\mathbf{r}_2)\rangle}{\sqrt{\langle \hat{\psi}^{\dagger}(\mathbf{r}_1)\hat{\psi}(\mathbf{r}_1)\rangle \langle \hat{\psi}^{\dagger}(\mathbf{r}_2)\hat{\psi}(\mathbf{r}_2)\rangle}}$$

 $\longrightarrow \langle I(x) \rangle$ 

Contrast:



2nd order correlation function:

$$g^{(2)}(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{4}) = \frac{\langle \hat{\psi}^{\dagger}(\mathbf{r}_{1})\hat{\psi}^{\dagger}(\mathbf{r}_{2})\hat{\psi}(\mathbf{r}_{3})\hat{\psi}(\mathbf{r}_{4})\rangle}{\sqrt{\prod_{i=1}^{4}\langle \hat{\psi}^{\dagger}(\mathbf{r}_{i})\hat{\psi}(\mathbf{r}_{i})\rangle}}$$
$$\longrightarrow \langle I(x_{1})I(x_{2})\rangle$$

Intensity correlations:





## Measurement technique



The normalised intensity correlation function can be measured !



#### **Hanbury-Brown Twiss**



Measurement of intensity correlations

transverse coherence length



Advantage: insensitive to atmospheric fluctuations

#### Interferometric scheme



#### Measurement of intensity correlations in one output port

= measurement of the spatial second order correlation function of the original condensate !



#### coherence length

Advantage: insensitive to global phase shifts



# Measurement of a general g<sup>(2)</sup>

#### Interferometric scheme



Measurement of intensity correlations in one output port

= measurement of the second order correlation function of the original condensate ! Normalised correlation function:

$$\gamma_{f}^{(2)}(x_{1}, x_{2}, \Delta x) = \frac{\left\langle \left(\hat{I}_{1} - \left\langle \hat{I}_{1} \right\rangle\right) \left(\hat{I}_{2} - \left\langle \hat{I}_{2} \right\rangle\right) \right\rangle}{\sqrt{\left\langle \left(\hat{I}_{1} - \left\langle \hat{I}_{1} \right\rangle\right)^{2} \right\rangle \left\langle \left(\hat{I}_{2} - \left\langle \hat{I}_{2} \right\rangle\right)^{2} \right\rangle}}$$

$$= \cos[\kappa(x_1 - x_2)] \exp\left[-\frac{\delta_L^2}{2}f^{(2)}(x_1, x_2, \Delta x)\right]$$
$$= \cos[\kappa(x_1 - x_2)] g^{(2)}(x_1, x_2, \Delta x)$$

$$g^{(2)}(x_{1}, x_{2}, x_{3}, x_{4}) = \exp\left[\frac{-L}{2L_{\phi}}f^{(2)}(x_{1}, x_{2}, x_{3}, x_{4})\right]$$



# correlation function g<sup>(2)</sup>



#### Measurement of the general second order correlation function.

D. Hellweg, L. Cacciapuoti, M. Kottke, T. Schulte, K. Sengstock, W.Ertmer, J. Arlt, Phys. Rev. Lett. **91**, 10406 (2003).



# **Motivation**

#### • disorder is present in various systems



Suppression of superfluidity of <sup>4</sup>He in porous media with disorder.

drastic (non-perturbative) effects on physical properties ( e.g. transport, optical )

$$\begin{split} H(\lambda) = H_0 + \lambda V(\overline{r}) & \text{non-pertubative} \\ \forall \lambda : \lambda \neq 0 & \text{if } V(\overline{r}) & \text{is random / disordered} \end{split}$$

 $\Rightarrow$  Effect of <u>controllable</u> disorder on dynamics of quantum many-particle-systems?



# Disorder types



Mixtures



Empty sites



Surfaces, alloys



Lattice disorder



![](_page_8_Picture_0.jpeg)

Disordered Lattice Gas: Localization

#### Non-interacting particles in 1D lattices :

- inhibition of transport , vanishing SF
- associated with localized states

![](_page_8_Figure_5.jpeg)

B. Damski, J. Zakrzewski, L. Santos, P. Zoller and M Lewenstein; Phys. Rev. Lett. 91 8 (2003)

#### Anderson model :

$$i\hbar\dot{a}_{j} = E_{j}a_{j} + \sum_{k\neq j}J_{jk}a_{k}$$

![](_page_8_Figure_9.jpeg)

![](_page_9_Picture_0.jpeg)

# **Disorder and Interactions**

![](_page_9_Figure_2.jpeg)

#### Can there be an Anderson Localization regime ?

![](_page_10_Picture_0.jpeg)

It strongly enhances the existence of localized states !

![](_page_10_Figure_3.jpeg)

Wave function :

 $\psi(r) = \varphi(r) \exp\left(\frac{-|r-r_0|}{\xi}\right)$ 

ξ localization length

Anderson Localization is characterized by:

- vanishing superfluid fraction
- localization of atoms due to interference
- gapless excitation spectrum

![](_page_11_Picture_0.jpeg)

#### **Disorder : Experimental realisation**

![](_page_11_Picture_2.jpeg)

this work:

T. Schulte et al. Phys. Rev. Lett. 95, 170411 (2005), cond-mat/0507453.

#### similar investigations:

J. E. Lye et al. Phys. Rev. Lett. 95, 070401 (2005) C. Fort et al. Phys. Rev. Lett. 95, 170410 (2005)

D. Clément et al. Phys. Rev. Lett. 95, 170409 (2005)

![](_page_12_Picture_0.jpeg)

#### **Disorder : Experimental realisation**

#### Disorder potential :

Wavelength : 825 nm Waist : ~ 480 µm Theo. modulation depth : ~ 3 E<sub>Rec</sub>

Smallest structure : ~ 7 µm

Modulations over cloud size :  $\sim 20$ 

![](_page_12_Figure_6.jpeg)

Image of total beam profile

Intensity modulations

over cloud size

![](_page_12_Picture_8.jpeg)

![](_page_12_Figure_9.jpeg)

Fourier analysis of profile

![](_page_12_Figure_11.jpeg)

![](_page_13_Picture_0.jpeg)

#### Absorption images :

TOF = 20.4 ms Modulation depth 0.2  $E_{rec}$ 

#### Numerical simulation :

TOF = 20.4 ms Modulation depth 0.2 E<sub>rec</sub>

![](_page_13_Figure_6.jpeg)

![](_page_13_Figure_7.jpeg)

0.02 30 0.03 . ∰ 0.025 0.02 0.02 9 0.015 0.015 0 0.01 0.01 0.005 -50 100-50 x [oscillator units] x [oscillator units]

N = 5 10<sup>4</sup>

$$N = 2.6 \ 10^4$$

#### Parameters adjusted for proper TF - radius

![](_page_14_Picture_0.jpeg)

#### Numerical simulation : 1D GPE

![](_page_14_Figure_3.jpeg)

![](_page_15_Picture_0.jpeg)

#### Experimental challenge

![](_page_15_Figure_2.jpeg)

#### **1D optical lattice:**

Wavelength  $\lambda = 825$  nm Waist  $\omega \sim 140 \ \mu m$ theo. lattice depth :  $\sim 100 \ E_{Rec}$ 

Occupied lattice sites  $\langle N \rangle \sim 200$ Atoms per site  $N/200 \sim 50 \dots 500$ 

--. --1 . . --. .

![](_page_16_Picture_0.jpeg)

#### Disorder + Lattice : First results

![](_page_16_Picture_2.jpeg)

#### Modulation depth 0.09 $E_{rec}$

![](_page_16_Figure_4.jpeg)

#### atomic density in MT + disorder + lattice

#### atomic density after 20.4 ms TOF

![](_page_17_Picture_0.jpeg)

![](_page_17_Figure_1.jpeg)

Modification of density profile:

- Pronounced fringes
- Axial expansion of ground state
- no Anderson-localized regime

![](_page_17_Figure_6.jpeg)

Experimental results

Experimental parameters:

$$v_z$$
 = 14 Hz;  $v_{rad}$  = 200 Hz

$$N_{BEC} \sim 1.5 - 8.10^4$$

#### axial width after 20.4 ms TOF :

![](_page_17_Figure_12.jpeg)

# Experimental difficulties in detecting AL-regime

![](_page_18_Figure_1.jpeg)

![](_page_19_Picture_0.jpeg)

#### Phase diagram for ultra-cold gases

#### ANDERSON LOCALISATION

- 1. Long-range phase coherence
- 2. High number fluctuations
- 3. gapless excitation spectrum

#### SUPERFLUID PHASE

- 1. Long-range phase coherence
- 2. High number fluctuations
- 3. continuous excitation spectrum

![](_page_19_Figure_10.jpeg)

(R. Roth and K. Burnett, PRA **68**, 023604 (2003))

#### BOSE-GLASS PHASE

- 1. No phase coherence
- 2. Low number fluctuations
- 3. continuous excitation spectrum

#### MOTT INSULATOR PHASE

- 1. No phase coherence
- 2. Zero number fluctuations
- 3. discrete excitation spectrum

![](_page_20_Picture_0.jpeg)

# **Disorder without Interactions**

Simulation using small scale disorder without interactions to find localization regime.

**g=0** 

![](_page_20_Figure_4.jpeg)

a) Speckle pattern.

b) Pseudorandom potential 1060nm + 960nm

![](_page_20_Figure_7.jpeg)

![](_page_21_Picture_0.jpeg)

## Simulation using small scale disorder to find localization regime

![](_page_21_Figure_3.jpeg)

Smoothing of the potential due to interactions!

![](_page_21_Figure_5.jpeg)

#### Is there localization?

![](_page_22_Picture_0.jpeg)

#### Theoretical analysis of interaction-dependence

![](_page_22_Figure_2.jpeg)

Are there experimentally reasonable parameters to observe the AL-regime?

![](_page_23_Picture_0.jpeg)

# **Disorder and Interactions**

![](_page_23_Figure_2.jpeg)

#### Can there be an Anderson Localization regime ?

![](_page_24_Picture_0.jpeg)

# Theoretical analysis of interaction-dependence

![](_page_24_Figure_2.jpeg)

Are there experimentally reasonable parameters to observe the AL-regime?

 $v_z$  = 4 Hz;  $v_{rad}$  = 40 Hz g = 256 Free (but limited) parameters:

- Lowering interaction-strength *g* by Feshbach-resonance
- Variation of trap frequencies

![](_page_24_Figure_8.jpeg)

![](_page_25_Picture_0.jpeg)

#### Disordered Lattice Gas: Localization

# **Towards Anderson localization :**

![](_page_25_Figure_3.jpeg)

![](_page_25_Figure_4.jpeg)

![](_page_25_Figure_5.jpeg)

a) g = 0.5 b) g = 8 c) g = 256

![](_page_26_Picture_0.jpeg)

#### Disordered Lattice Gas: Localization

# **Towards Anderson localization :**

![](_page_26_Figure_3.jpeg)

![](_page_26_Figure_4.jpeg)

![](_page_26_Figure_5.jpeg)

a) g = 0.5b) g = 8c) g = 256  $\rightarrow$  Corresponding 3D trap :  $f_o = 40 \text{Hz}, f_z = 4 \text{Hz}, \text{ N} = 10.000$ 

![](_page_27_Picture_0.jpeg)

#### Anderson Localization :

- decrease mean density
- work at small U/J
- use appropriate disorder potential
- 2 incommensurate super lattices e.g. @ 1040 nm + 980 nm

![](_page_27_Figure_7.jpeg)

#### ...towards Bose Glass :

- high mean density
- work at large U/J
- find appropriate disorder potential
  - 2 incommensurate super lattices
    e.g. @ 1040 nm + 980 nm

![](_page_28_Picture_0.jpeg)

#### Rb BEC team in Hannover

![](_page_28_Picture_2.jpeg)

in close collaboration with: K. Sacha, J. Zakrzewski und M. Lewenstein, L. Santos

former members: D. Hellweg, L. Cacciapuoti

# A quantum degenerate Boson (<sup>87</sup>Rb) and Fermion (<sup>40</sup>K) - mixture

![](_page_29_Figure_1.jpeg)

100

150

200

50

![](_page_29_Figure_2.jpeg)

100

150

200

BEC (TOF 10 ms) ~7 $\times$ 10<sup>5</sup> atoms T < 200 nK T/T<sub>C</sub> < 0.3 QDF (TOF 2 ms) ~1.5 $\times$ 10<sup>5</sup> atoms

T/T<sub>F</sub> < 0.3

new in Hannover:

# UV light-induced atom desorption (LIAD) for large rubidium and potassium MOTs

see poster by C. Klempt

![](_page_30_Picture_2.jpeg)

#### LIAD intensity dependence

C. Klempt, T. van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arlt, Phys. Rev. A 73, 013410 (2006)

Number of atoms in a Rb MOT for various LIAD wavelengths