Interactions between cold Rydberg atoms.

Matthieu Viteau

Thibault Vogt

Nassim Zahzam

Marcel Mudrich

Daniel Comparat

Pierre Pillet

Motivation

- Stark control of the dipole-dipole interaction
- Coherence dynamics of dipolar Rydberg gas
- Electric control of the dipole blockade
- Conclusion and Outlook

Why Rydberg atoms ?

Why COLD Rydberg atoms ?

Cold Rydberg sample: Intermediate state between atoms, solid, plasma

Rydberg atoms - Interest and applications

Quantum Information: dipole blockade

Phase gate for atoms

Jaksch et al. PRL 85 2208

... mesoscopic ensemble of atoms

Lukin et al. PRL 87 037901

No double excitation = dipole blockade No Force

Phase Gate $|0\rangle \otimes |0\rangle \rightarrow +|0\rangle \otimes |0\rangle$ $|0\rangle \otimes |1\rangle \rightarrow |0\rangle \otimes |1\rangle$ $|1\rangle \otimes |0\rangle \rightarrow |1\rangle \otimes |0\rangle$ $|1\rangle \otimes |1\rangle \rightarrow |1\rangle \otimes |1\rangle$ 1) π pulse atom A
 2) 2π pulse atom B
 3) π pulse atom A

- Stark control of the dipole-dipole interaction
- Coherence dynamics of dipolar Rydberg gas
- Electric control of the dipole blockade
- Conclusion and Outlook

Dipole interactions for a quantum computer ?

Coherent superposition

 $|+\rangle \propto |np,np\rangle + |ns,(n+1)s\rangle$ $|-\rangle \propto |np,np\rangle - |ns,(n+1)s\rangle$

Resonant dipole-dipole interaction

- \rightarrow Strong, ~C₃/R³
- \rightarrow Tunable with electric field

- Stark control of the dipole-dipole interaction
- Coherence dynamics of dipolar Rydberg gas
 Phys. Rev. Lett. 95, 233002 (2005)
- Electric control of the dipole blockade
- Conclusion and Outlook

Depumping (high resolution) spectroscopy Laser pulsé (excitation) $25p + 25p \leftrightarrow 26s + 25s$ d'ionisatior np - Δt_p Laser Ti:Sa @~790 nm with \mathcal{E}_{res} = 44,03 V/cm Laser pulsé @ 514.5 nm Pulse Ti:Sa 75 (dépompage) $\tau = 56.5 \text{ ns}$ <u>Depumping of p</u> $\Delta t = 1 \mu s$ 6*p*_{3/2} <u>states only</u>

But Rydberg s signal decrease !

_asers MOT @ 852 nm

65

''Coherent'' oscillation between s and p

 $|\psi\rangle \propto |25p,25p\rangle \pm |25s,26s\rangle$

s signal shifted from p signal ?

Coherence destroyed by attractive forces!

• $V_{dd (measure)} \sim 15 \text{ MHz} \gg V_{th} \sim 0.5 \text{ MHz} \Rightarrow \text{N Body effects}$

Dipole-Dipole Excitation and Ionization in an Ultracold Gas of Rydberg Atoms# Colliding atomic pair distribution in an ultralong-range Rydberg potential

Wenhui Li et al., Phys. Rev. Lett. 94, 173001 (2005)

L. G. Marcassa et al., Phys. Rev. A 71, 054701 (2005)

Decoherence due to many body effects (migration)

- Resonant energy transfert :
 - $p + p \rightarrow s + s'$ (T)
- Excitation migration :

Always resonant $+ s \rightarrow s + b$

S

(M**)**

- \Rightarrow Reaction product migrates
- \Rightarrow Decoherence in ~1 μ s

- Stark control of the dipole-dipole interaction
- Coherence dynamics of dipolar Rydberg gas
- Dipole blockade
- Conclusion and Outlook

Dipole blockade - Saturation of excitation

 $(5S \rightarrow 5P, 780 \text{ nm}) + (5P \rightarrow nD, 480 \text{ nm}) 100 \text{ ns } CW$

Dipole blockade - Spectral broadening

Watch the ions !!!!

Very few ions can broaden the transition and match a "blockade" effect !!

→Narrow-band spectroscopy is very sensitive to ions !
→Rydbergs as probe for weak fields

- Stark control of the dipole-dipole interaction
- Coherence dynamics of dipolar Rydberg gas
- Electric control of the dipole blockade
- Conclusion and Outlook

Power control of dipole blockade

Saturation and broadening of Rydberg number at resonance

High resolution CW spectroscopy

- Motivation
- Stark control of the dipole-dipole interaction
- Coherence dynamics of dipolar Rydberg gas
- Electric control of the dipole blockade
- Conclusion and Outlook

- Coherence study for ultracold Rydberg sample
- •Dipolar force play a major role: Frozen Rydberg gas VS dipole gas
 - Coherence << 1 µs for (attractive) |-> state
 - Coherence for ~ 1 µs for |+> state
 - Decoherence due to migration
- Watch out for ions when doing Rydberg spectroscopy !
- Evidence for Resonant Dipole blockade (C_3/R^3)

•Broadening and blockade controlled by electric field

Futur

• Quantum gate with only 2 atoms ?

High resolution CW spectroscopy

