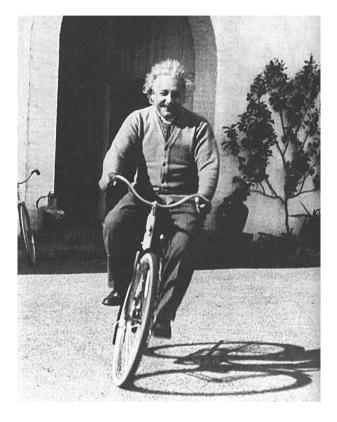
Quantum-Atom Optics: Present and Future

P. D. Drummond,

Australian Centre for Quantum Atom Optics

February 8, 2006

Quantum-Atom Optics Past, Present, Future - www.acqao.org


Quantum Optics: the 2005 Nobel Prize in Physics

The Royal Swedish Academy of Sciences awarded one half of the Nobel Prize in Physics for 2005 to

Roy J. Glauber

• for his contribution to the quantum theory of optical coherence

Roy at ETH

Postdoctoral Work: Glauber followed **EINSTEIN'S** footsteps, working at: Institute for Advanced Study (Princeton, USA) Swiss Federal Polytechnic Institute (ETH, Zurich) Caltech (USA)

Roy and Wolfgang Pauli

Wolfgang PAULI

inventor of the 'exclusion principle' liked to tease his postdocs.
He is laughing at Roy who is
trying to photograph him while Pauli kicks a soccer ball
at the camera.

Roy at Harvard

LYMAN/JEFFERSON LABS

where Glauber has worked for 53 years, since joining Harvard in 1952, with full tenure from 1955

Glauber's correlation function

Define the *n*-th order correlation function:

$$G_{\mu_1...\mu_{2n}}^{(n)}(x_1,.x_{2n}) = \langle E_{\mu_1}^{(-)}(x_1)..E_{\mu_n}^{(-)}(x_n)E_{\mu_{n+1}}^{(+)}(x_{n+1})..E_{\mu_{2n}}^{(+)}(x_{2n})\rangle$$

For symmetric arguments, $G^{(n)}(x_1 \dots x_n, x_n \dots x_1)$ is:

• the rate of counting *n* photons at locations $x_1 \dots x_n$, where $x = (\mathbf{r}, t)$.

Coherence

Define the *n*-th order **normalized** correlation function:

$$g_{\mu_1\dots\mu_{2n}}^{(n)}(x_1\dots x_{2n}) = \frac{G_{\mu_1\dots\mu_{2n}}^{(n)}(x_1\dots x_{2n})}{\prod_{j=1}^{2n}\sqrt{G_{\mu_1,\mu_j}^{(1)}(x_j,x_j)}}$$

First order coherence: $\left|g_{\mu_1\mu_2}^{(1)}(x_1,x_2)\right| = 1$

Second order coherence:
$$\left|g_{\mu_1\dots\mu_4}^{(2)}(x_1\dots x_4)\right| = 1$$

Quantum-Atom Optics Past, Present, Future - www.acqao.org

Lasers and Lightbulbs?

Roy's coherence theory answered the question: is there a **FUNDAMENTAL** difference between lasers and lightbulbs??

- Is it because the laser has a narrow spectrum?
- NO you can filter light to have a narrow spectrum!
- What is the difference?

PHOTON ARRIVAL TIMES

- Photons from a lightbulb BUNCH together.
- They are CORRELATED
- Photons from a laser arrive independently.
- They are UNCORRELATED

Lasers and Coherence

Lightbulbs:

✓ Might have first order coherence -

✗ but NEVER second order

Lasers: can have coherence to ALL orders (if perfect)

Where did this lead?

Photon antibunching: Photons that never arrive together: suppressed intensity noise (Mandel, Walls)

Bell inequalities: Optical demonstrations of the Bell inequality (Bell, Aspect et al)

Quantum Squeezing: Reduced fluctuations in one quadrature, increased in another (Slusher, Gardiner)

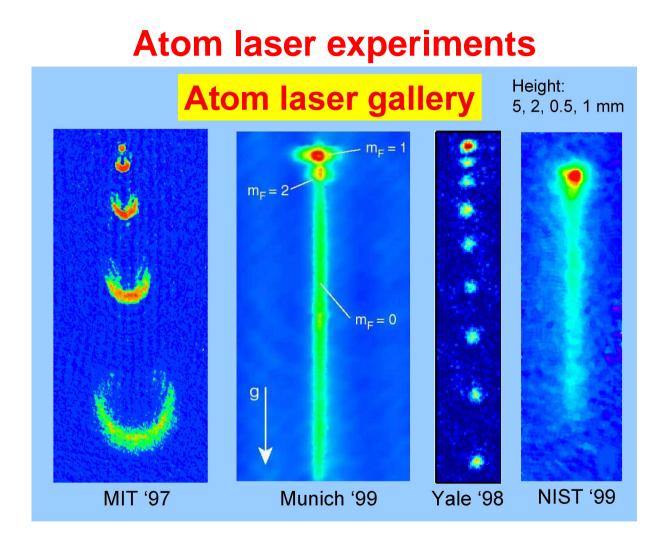
EPR correlations: Optical demonstrations of the Einstein-Podolsky-Rosen paradox (Reid, Kimble)

What are coherent states?

These are idealized states which are coherent to all orders! If \hat{a} is a field operator, then:

 $\hat{a} | \alpha \rangle = \alpha | \alpha \rangle$

- Coherent states are a **complete mathematical basis**
- Also can have SU(N) coherent states for spins

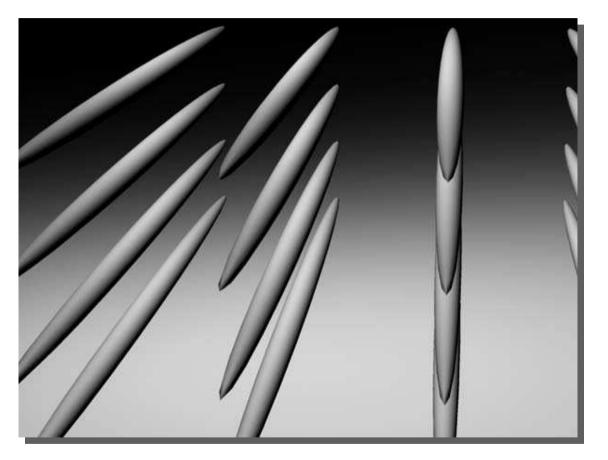

Glauber-Sudarshan P-representation

- Coherent states can be used to construct quantum operator representations
- $\hat{\rho} = \int P(\alpha) |\alpha\rangle \langle \alpha | d^2 \alpha$
- Glauber's P-representation used to treat quantum noise in lasers
- Restricted to classical states ($g^{(2)}(0) \ge 1$)

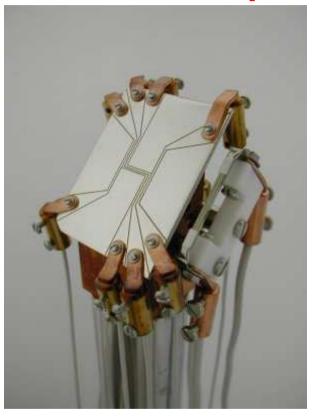
QUANTUM-ATOM OPTICS: PRESENT

Out of the last TEN Nobel prizes awarded to physicists

- ✓ THREE: low-temperature physics, many-body theory
- ✔ TWO: Ultra-cold atoms, BEC
- ✓ ONE: Computational physics/chemistry
- ✓ ONE: Quantum Optics/ Laser Spectroscopy
- ✓ SCIENCE (Top Ten breakthroughs in 2004): ultracold fermions


Current experiments: Quantum Optics

- Quantum noise limited lasers to 1kHz
- Sqeezed/entangled beams with up 10dB squeezing
- Laser frequency stability to 1 part in 10^{15} Hz
- Demonstration of EPR (non-causal)
- Bell inequality tests (efficiency loopholes)
- Spin/light entanglement demonstration


Current experiments: Atom Optics

- Cold BEC and Fermi gases to 1nK
- Dimensional control in optical lattics
- Nonlinear coupling, via four-wave mixing
- BEC-BCS crossover, via molecule formation
- Correlated atom *emission* measured by light scattering
- Correlated atom *detection* using MCP technology

Atoms on lattices

Atoms on chips

Current Theory: Quantum Optics

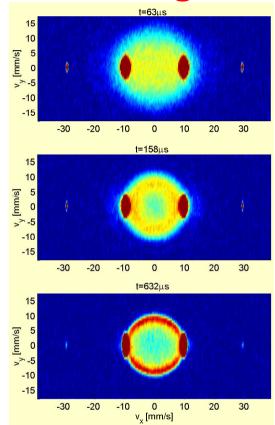
Many good techniques, weak interactions

- Direct calculations for small photon number
- Can linearize in some cases
- Truncated Wigner (semiclassical) OK for large photon number
- First-principles phase-space methods (positive-P) very successful

Positive P-representation

• Extends Glauber's P-representation to *non-classical* states

$$\hat{\rho} = \int P(\alpha, \beta) \frac{|\alpha\rangle \langle \beta|}{\langle \beta| \alpha \rangle} d^2 \alpha d^2 \beta$$


- Used for first principles quantum dynamical simulations
- Led to predictions of quantum squeezing in solitons

Current Theory: Atom Optics

More challenging, stronger interactions

- Mean-field and classical field approximations common
- Perturbation theory for ground states: but excited states difficult
- Aproximate semiclassical has sampling error and other problems
- Monte-Carlo good in some cases at thermal equilibrium
- Positive-P useful, but only for short times

Largest Hilbert Space Ever Simulated

- BEC Four-wave mixing
- 10⁵ Rubidium atoms
- Total of 2×10^6 modes
- Experiment: Ketterle, MIT
- Theory: Drummond, Deuar, UQ (+P)

QUANTUM-ATOM OPTICS: FUTURE

- Lower temperatures: what is the current limit?
- More atomic/molecular species: can we cool every isotope?
- Light-atom entanglement: how strongly entangled?
- Spinor atoms on optical lattices
- Fermions in engineered environments
- Progress towards true 'SCHROEDINGER CATS'

Theoretical Challenges

- Does the 2D Fermi-Hubbard model have superconductivity?
- Ground state of strongly interacting Fermi gas?
- How does a BEC interact with an optical cavity?
- Quantum ground state of spinor gas in a lattice?
- Excited states of Bose gases: are they bosonic/fermionic?
- First-principles time-domain quantum simulations?

Complexity Issues

- many-body problems become exponentially complex.
- consider *n* atoms distributed among *m* modes
- Each mode can have one or all atoms; take $n \simeq m \simeq 500,000$:
- Number N_s of quantum states is ENORMOUS:

 $N_s = 2^{2n} = 10^{100,000}$

Classical phase-space

Wigner and Glauber used a classical-like phase-space or quasiprobability description. Here, for M = LD modes, and a maximum of N particles/mode

Usual QM: $\longrightarrow N^M$ (complex) coordinates

Wigner, Glauber: $QM \longrightarrow M$ coordinates

Problem: the Wigner function has negative values and obeys a complicated differential equation. The Glauber-Sudarshan is negative or singular for non-classical states.

Quantum phase-space representations Expand the density matrix $\hat{\rho}$, using operators $\widehat{\Lambda}(\vec{\lambda})$:

$$\widehat{\rho} = \int P(\overrightarrow{\lambda}) \widehat{\Lambda}(\overrightarrow{\lambda}) d\overrightarrow{\lambda}$$

Quantum dynamics \rightarrow Trajectories in $\overrightarrow{\lambda}$.

Different basis choice $\widehat{\Lambda}(\overrightarrow{\lambda}) \rightarrow$ different representation

More than one $P(\overrightarrow{\lambda})$ is possible \rightarrow different stochastic gauges

THE BIG QUESTIONS IN QUANTUM-ATOM OPTICS

- ✓ Is there a coldest temperature we can reach?
- Can we prove the existence of 'Schroedinger Cat' states?
- ✓ Are there fermionic excitations in 2D or 3D Bose gases?
- Does gravity play a role in quantum decoherence?
- ✓ Is there an 'Infodynamics' of quantum entanglement?
- Can we solve quantum complexity with digital computers?