# A Hybrid Phase-Space Representation for BEC Simulations

Scott Hoffmann

Peter Drummond, Joel Corney and Murray Olsen

ARC Centre of Excellence for Quantum-Atom Optics, The University of Queensland

February 9, 2006





# **The Hybrid Scheme**

#### **Problem:**

- ★ quantum mechanics of a Bose-Einstein condensate
- \* atoms in a trap, scattering from each other via a pairwise s-wave interaction
- $\star$  prediction of correlation function  $g^{(2)}$

Method (Phase-space method, stochastic simulation):

- ★ Use Wigner for highly occupied modes
- ★ Use Positive P for lightly occupied modes

This representation (of a density matrix) is included in the class of **Gaussian representations** (Corney and Drummond)

#### **Stochastic Phase-Space Methods**

From the evolution of the density matrix

$$i\frac{\partial\rho}{\partial t} = [H,\rho]$$

we derive the evolution of a "quasiprobability", a function on coherent state phase space

$$\frac{\partial Q(\vec{\alpha})}{\partial t} = -\sum_{i} V_i(\vec{\alpha}) \frac{\partial Q}{\partial \alpha_i} + \frac{1}{2} \sum_{ij} D_{ij}(\vec{\alpha}) \frac{\partial}{\partial \alpha_i} \frac{\partial}{\partial \alpha_j} Q(\vec{\alpha}) + \dots$$

## **Stochastic Phase-Space Methods (cont.)**

Calculation of expectation values:

Wigner: $\int d^2 \alpha W(\alpha) |\alpha|^2 = \langle a^{\dagger} a \rangle + \frac{1}{2}$ Positive P: $\int \int d^2 \alpha d^2 \beta P(\alpha, \beta^*) \beta^* \alpha = \langle a^{\dagger} a \rangle$ 

**Stochastic differential equations** to model the evolution of  $Q(\vec{\alpha})$ :

★ finite sample of trajectories governed by drift and diffusion

\* ensemble averages of trajectory variables estimate the desired integrals

#### To be able to do this:

\* must have **derivatives** no higher than **2nd order** 

★ must have a **diffusion matrix** that is **positive semidefinite** (all eigenvalues  $\geq 0$ )

# **Features of The Wigner Representation**

\* The quasiprobability,  $W(\alpha)$ , is **not** guaranteed to be **positive** everywhere

\* However, it is positive for a **coherent state** initial condition

\* TRUNCATION of derivatives higher than 2nd order

- → May be justified for highly occupied modes
- → What starts positive stays positive, if diffusion matrix is positive semidefinite
- → Therefore stochastic simulation is possible
- ★ Truncation removes physics: find disagreements with other methods and with experiment

#### **Features of the Positive P Representation**

- \* Implicit definition of quasiprobability,  $P(\alpha, \beta^*)$ : **not unique**
- \* Can always choose initial  $P(\alpha, \beta^*)$  everywhere positive
- ★ With Hamiltonians of interest, only get 2nd order derivatives
- ★ Diffusion matrices are always positive semidefinite
- ★ Therefore a stochastic simulation is possible
- ★ Sampling error may become large after a short simulation time
  - → due to modes that develop wide distributions in phase space

# **Expectations for the Hybrid Method**

**PRO:** Should be like using the Wigner representation for highly occupied modes - eg, a condensed mode

**PRO:** Treats nearly unoccupied modes using a normally ordered +P method: so there are no ultraviolet divergences in `virtual' particles

## **Preliminary Results**

★ Ketterle four-wave mixing experiment in an optical lattice

★ Three different modes:  $2a \rightarrow b + c$ 

$$H = \omega_a a^{\dagger} a + \omega_b b^{\dagger} b + \omega_c c^{\dagger} c + i \chi \{ b^{\dagger} c^{\dagger} a^2 - (a^{\dagger})^2 b c \}$$

\* Agreement between Wigner, Positive P and Hybrid (for short simulation times)



# **Possible Experiments to be Simulated**

Individual particle detection and colliding BECs

- ★ Aspect metastable He
- ★ ANU metastable He
- ★ Ketterle four-wave mixing: full 3D simulation

# **Conclusions**

- ★ A new phase-space representation
- ☆ Possible ways to improve on Wigner and Positive P methods
- $\star$  Seeking a general method for a wide range of BEC calculations.