Quantum interference between two single photons emitted by two single trapped atoms

Gaétan Messin

Groupe d'Optique Quantique,
Institut d'Optique, Orsay, France
http://www.iota.u-psud.fr/~grangier/

$\xrightarrow[y]{c}$

TRAPPING

A SINGLE ATOM

IN A DIPOLE TRAP

Schlosser et al., Nature 411, 1024 (2001)

TRAPPING SINGLE ATOMS IN AN OPTICAL TWEEZERS

Schlosser et al., PRL 89, 023005 (2002)

DETECTING A SINGLE ATOM

Avalanche photodiode $1 \quad$ CCD camera time (sec) \square

Fluorescence light induced by the MOT beams (780 nm)

Schlosser et al., Nature 411, 1024 (2001)

MOT \& dipole trap

- Dipole trap beam
(810 nm)

SINGLE PHOTONS

FROM

A SINGLE ATOM

Darquié et al, Science 309, 454 (2005)

THE IDEA

In principle $=$ Fourier limited by the 6 MHz linewidth of the transition

IS IT REALLY A SINGLE PHOTON SOURCE ?

A single photon source IS NOT just an attenuated source of «classical » light

Probability to detect 2 photons during $\Delta t=(\Phi \Delta t)^{2} / 2 \neq 0$

Second-order correlation $\mathcal{G}^{(2)}(\dagger, \dagger+\tau)=\langle I(t+\tau) I(t)\rangle \propto N_{\text {coincidences }}(\tau)$

Start - stop configuration: measure the \# of coincidences for different delays τ

ANTIBUNCHING

4 - hour acquisition (4×10^{6} photons)
Resolution 1 ns , bining $\times 4$
No background correction
Antibunching
Time between 2 pulses

HOW GOOD A SINGLE - PHOTON SOURCE IS IT?

Area around $0 /$ Area under a peak $=p(2) / p(1)^{2} / 2$
\Rightarrow Probability to emit 2 photons during a pulse, $p(2)=0.018$ (50 \times better than an attenuated light)

QUANTUM INTERFERENCE

BETWEEN TWO SINGLE PHOTONS

EMITTED BY INDEPENDENT ATOMS

Beugnon et al., to appear in Nature (2006)

TWO-PHOTON INTERFERENCES ("COALESCENCE")

Hong, Ou, Mandel Phys. Rev. Lett. 59, 2044 (1987): parametric downconversion

Motivation: CONDITIONAL ENTANGLEMENT

... towards a 2-qubit gate

2 identical atoms emit indistinguishable photons

Atom-photon entanglement Blinov, Nature 428, 153 (2004)

$\left|1_{A}, \sigma_{+}\right\rangle+\left|2_{A}, \sigma_{-}\right\rangle$

$\left|1_{B}, \sigma_{+}\right\rangle+\left|2_{B}, \sigma_{-}\right\rangle$

Weinfürter (2005)

Two-photon interference
$+$
Double-clic detection
\Rightarrow entanglement swapping
A double-clic prepares: $\left|1_{A}, 2_{B}\right\rangle+\left|1_{B}, 2_{A}\right\rangle$

ANOTHER KIND OF MOTIVATION...

Theory of two-photon interference
H. Fearn and R. Loudon

Departmont of Phywisk Essexx Unaveraty, Coinbester CO4 3SQ, Erghond
Recetved September 18, 1938 aceepted Desomber 14, 1938

1. INTRODUCTION

Fundamental properties of the Base-Einstein statistics can bestudied experimentally with the aid of a beam splitter and
a two-photon llight source. Thus, with the notation illus. trated in Fig. 1, the photon outputs in arms 3 and 4 can be messured for input states in which a pair of photoms enters the beam splitter through the same e^{13} input arm 1 or through different ${ }^{34}$ arrms, with ose photon in each of the inputs 1 and hat of independent particles when they arrive in the same arm but that the quantum-mechanical interferebce effiects, haracteristic of Bose-Einstein statisties, he two photons arrive in different arms.
tribation on the basis of a simple sinected output photoo discrete input and output quantization, \rightarrow and the results areshown in Table 1 . Here x and t are the complex reflection nd transmission cceefficients of the besm spilitter; the calumns corrospond to the three posible inpur $\left.8 t a t e)_{n} i_{1}, n_{2}\right)$,
and the rows correspond to the probabilities $P\left(n_{n}, n_{4}\right.$ for the three possible output stattes. The coefficients of a lossless loam splitter satisfy
$|t|^{2}+|t|^{2}=1, \quad z t^{*}+x t^{*}=0$
probability distribationa in Table 1 are thes armalized. It is seen that the output probablity has the binomial form characteristic of classical particles when the input photons are in the ssme arm (second avd fourth colamns). Astrikingly different output probability is obtained column), with twiee the classical probabality for output photons in the same arm and a probability for one photon in ach output arm that anishes in the case of a soo bein splitter with $|\lambda|=|\ell|$
The single discreto mode theary mentioned above binceabie of describing time-dependent cocrelations between the input photons, and the aim of the present paper is a more complete description of two-photon interference effects by means of a contivuous-mode theory for various types of ligh ource. The most elementary source has only two atoms, photons with arbiltrary time separation. Although the twoatom source is not practical in terms of realistic experiments,
consideration of the interference effects produced with its miltted photons clarifies the role of the Bose-Einstein statistics, particularly in regard to the distinction between the results obtained for both plotons in the same arm and th results obtained for each photon in a different arm. metric downconverter or on atomic cascade emission. With suitably low levels of excitation, the emissions from both of these sources consist of highly correlated photon pairs, with a relatively low correlation between the photons emitted in different pair events, as was first thown experimentally by
Burnham avd Weinterg' and by Clauser.10 Corsideration of the two-photon interference ohservable with parametric and atomic-cassade sources further clarifies the physical satures of these effects. We treat the parametric coscillator in an optical cavity, in both its degenerate end nondegense
ate modes of operation, together with an incoberently driven three-level atomic cascude and evaluate their potentials a light sources for two-photon interference experiments. The experiments performed to date ${ }^{1-1}$ have used paramet. in dontrast to the cevily space as 1 ight sources, for which carces, theory ${ }^{1118}$ and experiment ${ }^{13}$ indicate negligible time separations between the two photons in an emitte psir. Tbe detailed theorectical descriptions ${ }^{2,14}$ of the interference effects in these experiments must include the filter that are used to limit the optical (andwidthe . The light
souress treated below, on the other hand, have bandwidthe that are limited by their intrinsic properties, and there is no need to include the effects of external filtera.

2. TWO-ATOM LIGHT SOURCE

In this section we derive the characteristics of the tro-photon state emitted by a pair of stoms excited at arbitrary times. Such a scurce is unrealistic in terms of prastica experiments, snd the calculation below is somewhat artif
cial, but tbe results help in understanding the natures of the two-photon interference effects.
from an atom of transition frequency u_{1} and decay rate ${ }^{27}$ pat into its excited state at time t_{4}. The single-photo electric-Field mastrix eloment at distance x from the atom is ${ }^{3}$

2. TWO-ATOM LIGHT SOURCE

In this section we derive the characteristics of the two-photon state emitted by a pair of atoms excited at arbitrary times. Such a source is unrealistic in terms of practical experiments, and the calculation below is somewhat artificial, but the results help in understanding the natures of the two-photon interference effects.

TRAPPING TWO ATOMS

Use two independent optical tweezers

- Detect the presence of two atoms
- Start sequences of excitation (about 9000 pulses)
- Empty the two traps
- Wait until two other atoms are trapped (~ 300 ms)

EXPERIMENTAL SETUP

THE 50/50 BEAMSPLITTER

$\lambda / 2$ axis // cubes axis

$\lambda / 2$ axis at $22,5^{\circ}$ of cubes axis A

"50/50 BEAMSPLITTER CONFIGURATION"

Each photon comes from a different atom (single photon source)

Not to be confused with single atom antibuching

WHAT IF THE TWO PHOTONS DO NOT INTERFERE?

$\lambda / 2$ axis @ $22,5^{\circ}$ and NO interference

A coincidence half of the time

Comes from the single photon nature of the source

QUANTUM INTERFERENCES
Ratio $=A_{\text {interf }} / A_{\text {cal }}<1 / 2$

What's next?

Improve the spatial overlap by coupling into singlemode fibers (losses...?)

Further cooling of the atoms (Raman cooling)
Raman transition to encode the qubit and read out the coherences

Currently : 1 interfering event every 2 / 3 seconds. \Rightarrow conditionnal entanglement?

We need to adapt the entanglement schemes to the Rb level structure (time bin...)

The single atom project

Philippe Grangier

Gaétan Messin

Antoine Browaeys

Jérôme
Beugnon

Benoît
Darquié

Matt Jones

Jos Dingjan

Harold Marion

Yvan Sortais

More details...

VARYING THE SPATIAL OVERLAP

VARYING THE SPATIAL OVERLAP

Ratio $=A_{\text {interf }} / A_{\text {cal }}$

VARYING THE SPATIAL OVERLAP

Ratio $=\frac{A_{\text {interf }}}{A_{\text {cal }}}=\int \varepsilon_{1}^{*}(r) \varepsilon_{2}(r) d^{3} r$

Field amplitude overlap $\approx 80 \%$

AROUND ZERO DELAY

THE ATOMS MOVE IN THEIR TRAP ...

$$
\mathrm{T}=60 \mu \mathrm{~K}
$$

Beat note between the two photons at $\Delta \omega$

Averaging the beatnotes over the lightshifts distribution
\Rightarrow broadening + taking into account the heating during the emission

WHAT IF THE ATOMS DID NOT MOVE?

and what if the overlap were perfect?

MUTUAL COHERENCE OF THE SOURCES?

The mutual temporal coherence is limited by

- linewidth of the transition: $6 \mathrm{MHz}\left(\mathrm{T}_{1}\right)$
- motion of the atoms in the trap \Rightarrow inhomogeneous broadening ($\mathrm{T}_{2}{ }^{*}$)

$$
\mathrm{T}=180 \mathrm{mK} \Rightarrow \Delta v=2 \mathrm{MHz}
$$

Depends on the number of excitations, and cooling duty cycle
Contrarily to solid state system, no homogeneous broadening (T_{2}, dephasing during T_{1})

Source suitable for QIP as two atoms can be true «identical » single-photon sources

