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What bothers an experimentalist:

Signal to Noise Ratio

We need su�cient SNR for just
measuring:

g (2)(∆R)

We would eventually like to measure:

g (2)(R,∆R)

Indeed, bunching is non-gaussian
close to condensation threshold, yet
means out by integrating.
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The Signal to Noise Ratio

Estimation:
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Note:

the temperature dependance, that is in T−3/2.

the dependance on the atoms number.



The Signal to Noise Ratio

Bunching height:

Depends on the Size/Resolution:
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Worse case: d � l
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α /2dα

Best case: d � l
(corr)
α then g (2) − 1 = 1

Temperature dependance:
Can potentially add another T dependance to SNR.

Time dependance:
The longer the time of �ight, the longer the correlation length.
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The metastable Helium experiment:

Experimental setup:

Creation of a cold He*
cloud (in ∼ 1′)

Cut o� the trap at t = 0

⇓
308ms of free fall

3D Detection (x , y and t)
of individual atoms.



The detector : MCPs + delay-lines:

Basic idea:

Micro-channel plates (MCPs)

8 cm diametre

1 He∗ detected ρ ∼ 108 electrons

Detection e�ciency ∼ 25%

MCP + delay-lines + electronics

pixel size = 200µm

spatial resolution = 250µm RMS

time resolution = 1ns RMS

electronical limitations: CFD +
TDC (400 ps of resolution)
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The detector : MCPs + delay-lines:

Basic idea:

Detection

TDC = CTNM4 (R.
Sellem, DTPI platform
CNRS/Paris-Sud)

Detection system ⇔
camera of 400× 400
pixels at 1 GHz

⇒ no optical equivalent

Micro-channel plates (MCPs)

8 cm diametre

1 He∗ detected ρ ∼ 108 electrons

Detection e�ciency ∼ 25%

MCP + delay-lines + electronics

pixel size = 200µm

spatial resolution = 250µm RMS

time resolution = 1ns RMS

electronical limitations: CFD +
TDC (400 ps of resolution)



3D Reconstruction of the Detected Cloud:

Real 3D detecteur

→ x , y and t for each
atom detected.

Only detector that does
real 3D on a BEC

Use :

Detection of a small
condensate
Local measurements,
etc...

Macroscopique detection
of a BEC (50 cents AU$
coin !)
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SNR considerations at 1µK:

axis x: ωx = 50Hz√
2 ∗ dx(= 250µm)� lx(= 30µm)

axis y: ωy = 1.2kHz√
2 ∗ dy (= 250µm)� ly (= 600µm)

axis z: ωz = 1.2kHz√
2 ∗ dz(= 4nm) ≪ lz(= 600µm)

Bunching height:

g (2)(0)− 1 becomes a function of l
(corr)
x /2dx

SNR ∝ t

SNR ∝ T−2
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Thermal clouds raw results:

Procedure:

Save Time of
Flights (ToF)

Histogram in 3D all
the di�erences
between 2 atoms

We average the
histogram over all
ToFs

typ. 6000 atomes
detected/ToF and
1500
ToFs/Temperature

Mean Flow
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Thermal clouds raw results:

Left Colomn:
g (2) function of z (time)

Right Colomn:
bunching amplitude in the
detector plane xy

Bunching !!

Observe the anisotropy

Correlation length changes
with Temperature (source
size)

M. Schellekens & al, Science 310, 648 (2005)



Results comply to perfect gas theory:

Detector of limited resolution (500 µm and 1 ns)
→ bunching height ∼ 1.06 instead of 2.
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Case of the Bose-Einstein Condensate:

Flat correlation function !

Like a laser

Similar results in the team of T. Esslinger : PRL 95, 090404
(2005)
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Some Limitations:

Saturation of the TDC

The TDC saturates at 700k
particules/second (this
corresponds to
14Mbytes/second).

Solution: new TDC

We have had made a new TDC
by ISITech: 10M
particules/second. Received
last week.

Inhomogenous Detection E�ciency

Detection E�ciency vs x and y:

Solution: Doesn't matter
for HBT

Normalisation procedure:

ΣCorr(Tof )

Corr(ΣTof )



Saturation of MCP:

The MCP saturates at high local �ows:

BEC = very high local Flow
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Saturation of MCP:

Cold Gas

30 4 30 830 029 6 312 316

30 4 30 830 029 6 312 316

Local saturation rate:
∼ 300kparticules/s/cm2

Could be solved with some
more Euros.



Resolution:

Resolution = 250µm � 100µm at 400ps TDC resolution.

We can get better TDC resolution: new has 275ps.

Better understand the CFD: minimize jitter issues

Currently in the process of estimating the "ultimate" resolution.



Conclusion:

We managed to resolve the HBT e�ect in nearly 3 dimensions:

We measured the bunching height.

We measured the bunching width.

We saw no bunching for a BEC.

The HBT experiment was at the limit of the detector possibilities:

Improvements can be made on �ow detection.

Improvement could be made on resolution.

Detection inhomogeneity is still to be understood.



What we are working towards:

Detector improvements:
⇒ could allow local g (2) measurement.

HBT for fermions in cooperation with W. Vassen's team:
⇒ experiment to be realized with the bosonic-fermionic
mixture of W. Vassen (VU Amsterdam).

Detection of correlated atom pairs through collisions:
⇒ 4 Wave Mixing.



Thank you for your time!
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