Optical Clocks at PTB

Outline

Introduction to optical clocks

An optical frequency standard with Ca atoms

Improved reference cavity

Yb⁺ Ion Clock

Sr optical lattice clock

Optical frequency measurements

European–Australian Workshop on Quantum-Atom Optics, February 2006

Physikalisch-Technische Bundesanstalt

Principle of Clocks

Why better clocks ?

Generation of more stable time scales secondary representations of the second future better definition of the second

Tests of fundamental theories:

General Relativity

Cosmology

Constance of fundamental constants

Navigation Deep-space navigation Pioneer anomaly

Pioneer Anomaly

Laser Cooling of Calcium

first stage:

• T \approx 3 mK

second stage: quench-cooling:

• T \approx 10 μK

T. Binnewies et al., PRL 87, 123002-1 (2001)

Ca: Clock transition and cooling

PB

Cold and Ultracold Atom Interferences

PB

Optical frequency measurement of calcium

Uncertainty - Stability

v

 v_0

good clock: small uncertainty high stability

time

small uncertainty low stability

high stability low uncertainty

Allan Variance:
$$\sigma_y(\tau)^2 = \frac{1}{{v_0}^2} \left\langle \left(\overline{v_i} - \overline{v_{i+1}} \right)^2 \right\rangle$$
 with $\overline{v_i} = \frac{1}{\tau} \int_{t_i}^{t_i + \tau} v(t) dt$

Stability

Quantum Projection Noise Limit: After the interrogation the number of excited atoms N_e is measured i.e. the quantum state

$$\left|\psi\right\rangle = c_{g}\left|g\right\rangle + c_{e}\left|e\right\rangle$$

is projected to either the state $|e\rangle$ or $|g\rangle$.

$$\langle N_e \rangle = N_0 p_e$$
 $\sigma^2_{N_e} = N_0 p_e (1 - p_e)$
 $\sigma_y(\tau) \propto \frac{\Delta v}{v} \sqrt{\frac{T_C}{N_c \tau}}$ T_C : cycle time

Itano et al., PRA **47**,3554 (1993)

 $\nu_0 \ \sqrt{N_0 \tau}$

6·10⁵ Cs atoms, v = 9.2 GHz, $\Delta v = 1$ Hz : $\sigma_y(\tau) \sim 4 \cdot 10^{-14} \tau^{-1/2}$ Single Yb ion, $\lambda = 436$ nm, $\Delta v = 3.1$ Hz: $\sigma_y(\tau) \sim 5 \cdot 10^{-15} \tau^{-1/2}$ 10⁷ Ca atoms, $\lambda = 657$ nm, $\Delta v = 400$ Hz: $\sigma_v(\tau) \sim 6 \cdot 10^{-17} \tau^{-1/2}$

Interrogation Laser

Resonance frequencies: 0.7 Hz vertical, 0.6 Hz horizontal

H. Stoehr, F. Mensing, J, Helmcke, U. Sterr, Opt. Lett. March 2003

Laser Linewidth

Present stability is imited by Dick effect because of the poor duty cycle to $\sigma(\tau) = 2 \cdot 10^{-14} \tau^{-1/2}$

previous cavity mount

 $a = 10 \text{ m/s}^2$ deformations magnified by 10^7

new cavity mount

see poster by Tatiana Nazarova

¹⁷¹Yb⁺ Single-Ion Frequency Standard

Frequency comparison between two ions

• Frequencies agree to 3.8(6.1)fi10⁻¹⁶ (similar to best results of Cs-clocks) *T. Schneider, E. Peik, Chr. Tamm, Phys. Rev. Lett.* **94**, 230801 (2005)

• Instability of difference frequency: $v_y(100 \text{ s})=9\circ 10^{-16}$ (similar to best results of cold atoms)

E. Peik, T. Schneider, Chr. Tamm, J. Phys. B. **39**, 145 (2006)

Frequency Messurement of the Yb+-clock

v(Yb⁺)=688 358 979 309 307.7 (2.2) Hz

Cotributions to uncertainty budget of the measurements in 2005: $u_A=0.40 \text{ Hz}$ (continuous measurement time of up to 36 h) $u_B(Cs)=1.82 \text{ Hz}$ ($\pi/3\pi''$ -problem) $u_B(Yb^+)=1.05 \text{ Hz}$ (Quadrupole-, Black-body-Stark-shift, line profile, influence of the trap fields)

Optical Lattice Clock

Earth alkali elements Mg, Ca, Sr and Yb, Hg have metastable ³P₀ state

- accessible by 1 photon transition in isotopes with nuclear spin I ≠ 0 Δv ~ mHz
- in most abundant isotopes with I = 0 transitions get allowed in magnetic field $\Delta v \sim \mu Hz$ with B $\sim 1 \text{ mT}$
- "magic wavelengths" dipole traps
- efficient cooling possible

"Magic Wavelength" - no net light shift 10^7 neutral atoms estimated uncertainty $u_y < 10^{-16}$

Strontium Setup

Optical Frequency Comb

time domain: fs-laser with repetition frequency f_{rep} $-1/f_{rep}$

frequency domain: comb of frequencies

self-referencing to measure v_{ceo}

fs Frequency Combs

Ti:sapphire comb

broad-band for calibration of lasers 633 nm, 532 nm ..

Er:fiber comb

frequency devider for optical clock comparison of $Yb^+ - Ca - Sr$

Universität Konstanz Fachbereich Physik

PB

drift of an optical cavity

optical clock ensemble

Conclusion

Calcium clock

vibrationally insensitive reference cavity relative frequency uncertainty 1.2 ·10⁻¹⁴

• Yb clock

relative uncertainty 1.2 ·10⁻¹⁵

- Strontium lattice clock
- Reliable fiber based femtosecond comb

Future:

- Uncertainty $\approx 10^{-17}$ with ions and atoms in lattice
- Clock with instability < 10⁻¹⁶ in one second
- New area at <10⁻¹⁶: Gravitational red shift,

Constancy of constants

Thermal noise

Thanks to:

Ca standard:

Tatiana Nazarova Felix Vogt Christian Lisdat (U. Hannover) Christophe Grain Carsten Degenhard (now Aachen) Hardo Stoehr (now Lübeck)

Sr standard:

Thomas Legero Sundar Raaj Paul-Eric Pottie (now Paris)

Fritz Riehle U.S.

Frequency measurements:

Gesine Grosche Harald Schnatz Burghardt Lipphardt

Yb⁺ single ion: Christian Tamm Ekkehard Peik Tobias Schneider

Quantum-limited measurements with

photons, atoms and molecules

SFB 407:

