Observation of Bose-Einstein condensation of ⁴He*

Andrey Tychkov Tom Jeltes John M^cNamara

BEC : January 27, 2005 Phys. Rev. A73,031603(R) (2006)

Wim Vassen

Workshop on Quantum-Atom Optics Kioloa, Australia, Feb.11, 2006

<u>Metastable helium</u>

- 2 ${}^{3}S_{1}$ state: $\tau = 8000$ s, Laser cooling: $\lambda = 1083$ nm
- 20 eV internal energy: single He* atom detection
- Penning ionization: He⁺
 (He^{*} + He^{*} → He + He⁺ + e⁻)
- ³He* *fermion* and ⁴He* *boson* I=1/2

Centre

aser

vrije Universiteit amsterdam

Scattering lengths large and positive!
 a₄₄=+7.512 nm ; a₃₄=+28.8 nm

Magneto-optical trap (MOT) setup

Loading and cooling of $\sim 2 \times 10^9$ ⁴He* atoms in ~ 1 second at T ~ 1 mK (phase-space density $\sim 10^{-7}$)

Detection methods He*, He*, absorption imaging

1-D Doppler cooling in magnetic trap $V_{ext}(r) = \frac{m}{2} \omega_x^2 x^2 + \frac{m}{2} \omega_y^2 y^2 + \frac{m}{2} \omega_z^2 z^2 \qquad (\omega_x = \omega_y \gg \omega_z)$

Circularly polarized laser beam along the z-axis at high (24 G) B₀

Laser cooling in **axial** (z) direction: $(\sigma^+$ - cycling transition)

Cooling in **radial** direction: **reabsorption of spontaneously emitted red-detuned photons** (collisions, anharmonic mixing)

Successfully used to cool spin-polarized ³He* fermions (>1×10⁹)

s-wave collisions are forbidden – Pauli principle Cooling in radial direction – reabsorption of scattered photons

Characterization trapped He* cloud Time-of-flight on microchannel plate detector (MCP)

Centre

vrije Universiteit amsterdam

aser

MOT: T = 1 mK, N = 1.0×10^{9}

Cloverleaf, after
 1D Doppler cooling:
 T = 0.15 mK, N = 6 × 10⁸

 $T=3\times T_D$,

Laser Centre Vrije Universiteit, Amsterdam

Phase-space density increase ~ 600

No atoms lost during Doppler cooling

BEC reached after 15 s rf (50 – 8 MHz) evaporative cooling ramp

BEC also observed after 2 s rf ramp (with less atoms)

Observation of BEC

- Time-of-flight:
 - Number of atoms, N₀(BEC), N_{th}
 - Temperature, T
 - Expansion in x-direction (vertical)
- Absorption imaging:
 - MCP calibration (MOT)
 - Expansion in y,z plane
- He+ ions: non-destructive
 - Loss processes
 - BEC formation and decay

from fit noncondensed part: $T_c \sim 2 \ \mu K$ and N_T

 N_0 via μ or integral

Method 1:

 N_0 = integral of green curve times MCP calibration (20% accuracy)

maximum number deduced: $N_0 = 1 \times 10^7$

However: saturation of MCP for $N_0 > 1 \times 10^6$

N₀ too small

Method 2 : N₀ via chemical potential

 μ extracted from width of TOF signal (radial expansion only!) gives $N_0 = 5 \times 10^7$

However: Absorption imaging reveals anomalous expansion of the BEC as a result of too slow trap switch-off: stretching in radial direction.

N₀ too large

 $1.5 \times 10^7 < N_0 < 4 \times 10^7$

BEC is detected up to t=75 s W. Hogervorst, W. Vassen, J. Phys. B36, L149 (2003)

Decay of the condensate:

the effect of atomic transfer

(Cloud lifetime $\tau \sim 3$ min)

Assumption:

BEC + thermal cloud remain in thermodynamic equilibrium during decay

Output: N₀(t), N_{th}(t), T(t)

Input: N₀(0), N_{th}(0), τ - lifetime, β (two-), L (three-body loss rate constant)

Decay of the condensate: the effect of atomic transfer

- Atoms lost from a condensate are lost from the trap, or transferred to the thermal cloud.
- The presence of a thermal cloud reduces the lifetime of a BEC

Assumption:

only background gas collisions

$$\dot{N}_{C} = -\frac{1}{\tau} \left(N_{C} + \frac{1}{4} N_{T} \right)$$

Atomic transfer simplest case: non-interacting bosons & only background collisions

Only background gas collisions cause trap loss

$$N_T = g_3(1) \left(\frac{kT}{\hbar\omega}\right)^3$$

$$E_T = \hbar \omega \frac{\pi^4}{30} \left(\frac{kT}{\hbar \omega}\right)^4 = \alpha N_T^{4/3}$$

$$\dot{N} = -\frac{1}{\tau}N = \dot{N}_C + \dot{N}_T = -\frac{1}{\tau}(N_C + N_T)$$

$$\dot{E} = -\frac{1}{\tau}E = \dot{E}_C + \dot{E}_T = -\frac{1}{\tau}(E_C + E_T)$$

$$\dot{N}_T = -\frac{1}{\tau} N_T \frac{1 - \varepsilon_0 N_T / E_T}{4/3 - \varepsilon_0 N_T / E_T} \simeq -\frac{3}{4\tau} N_T$$

$$\dot{N}_C = -\frac{1}{\tau} \left(N_C + \frac{1}{4} N_T \right)$$

$$\mathcal{E}_0 = \frac{1}{2}\hbar(\omega_x + \omega_y + \omega_z)$$

BEC decay depends on N_T

including two- and three-body losses

$$\begin{split} -\dot{N} &= \frac{1}{\tau} N + 2\chi \int d^3 r \, \left(\frac{1}{2!} n_C^2 + 2n_C n_T + n_T^2 \right) + \\ &\quad 3\xi \int d^3 r \, \left(\frac{1}{3!} n_C^3 + \frac{3}{2!} n_C^2 n_T + 3n_C n_T^2 + n_T^3 \right) \end{split}$$

+ similar equation for total energy loss rate

 τ - lifetime χ - two-body loss rate ξ - three-body loss rate

Expressions for condensate and thermal (noncondensate) part density are related!

Decay of the condensate: the effect of atomic transfer

BEC is detected up to t=75 s

(Cloud lifetime $\tau \sim 3$ min)

For quasi-pure BEC the model gives decay without atomic transfer (upper curve)

Estimated loss rate constants: $\beta=2(1) \times 10^{-14} \text{ cm}^3/\text{s}$ L=9(3) ×10⁻²⁷ cm⁶/s

Theoretical predictions: $\beta = 1 \times 10^{-14} \text{ cm}^3/\text{s}$ $L = 2 \times 10^{-27} \text{ cm}^6/\text{s}$

P.O. Fedichev et al., Phys. Rev. Lett. 77, 2921 (1996)

Rf output coupler - pulsed atom laser

mean field interactions determine pulse shape

