Ultracold Metastable Helium Atoms Collisions, trapping effects, long-range bound states

Ian Whittingham

School of Mathematical and Physical Sciences, James Cook University, Townsville Collaborators: Tim Beams (JCU), Gillian Peach (UCL)

Overview

- Ultracold collisions in traps
- **J** Ultracold He(2s ${}^{3}S_{1}$)+He(2s ${}^{3}S_{1}$)
 - Potentials, collisions
 - Isotropic and anisotropic harmonic traps
- Ultracold He(2s ${}^{3}S_{1}$)+He(np ${}^{3}P_{j}$)
 - Bound states
 - Multichannel and perturbative calculations
- Current and future calculations
 - Anharmonicity corrections for S + S
 - Photoassociation to long-range S + P bound states
- Conclusions/Outlook

Ultracold Collisions in Traps

Understanding collisions is crucial to design and operation of traps.

- High *elastic* collision rate required for efficient thermalisation.
- Low inelastic rates required to minimize trap loss.
- For He* Penning ionisation

$$\mathrm{He}^* + \mathrm{He}^* \to \mathrm{He} + \mathrm{He}^+ + e^-$$

causes rapid trap loss unless *spin polarised* $s = 1, m_s = +1$ He^{*} is used so that the total spin of the colliding atoms is S = 2.

Effects of Trapping Environment

- Ultracold collisions usually studied under weak trapping conditions where confining field is either
 - Ignored or
 - Assumed to have parabolic or harmonic spatial variation of sufficiently low frequency (typically 10² Hz) to be treated as constant.
- Tight trapping conditions (optical lattices, microtraps) with trapping frequencies $10^5 10^6$ Hz are expected to modify the properties of colliding atoms.

Ultracold He(2s ${}^{3}S_{1}$)+**He(2s** ${}^{3}S_{1}$)

- Binary collisions represented by the potentials $^{1,3,5}\Sigma^+_{u/q}$.
- Spin polarised systems: ${}^{5}\Sigma_{g}^{+}$ (14 bound states) with BE_{14} (MHz) and scattering length a_{5} (nm).
 - Stärck and Meyer (1994): $BE_{14} = 135.9, a_5 = 8.298$
 - Dickinson *et al* (2004): $8.044 \le a_5 \le 12.17$
 - Przybytek and Jeziorski (2005): $BE_{14} = 87.4 \pm 6.7, a_5 = 7.64 \pm 0.20$
 - Experiment (Moal *et al* 2005): $BE_{14} = 91.35 \pm 0.06, a_5 = 7.512 \pm 0.005$
 - Beams and Peach (2006) $(1 + \alpha)V_{\text{Disp}}^{\text{SM}}$ with $\alpha = 1.1773 \times 10^{-3}$ gives $BE_{14} = 91.35, a_5 = 7.512$.
- At low incident kinetic energies of ultracold collisions, l = 0 (s-wave) scattering dominates.

Collisions Between Two Atoms

Hamiltonian

$$\hat{H} = \hat{T}_A + \hat{T}_B + \hat{H}_{\rm el} + \hat{H}_{\rm ext}.$$

- $\hat{T}_{A,B}$ represent the kinetic energy of the nuclei.
- \hat{H}_{el} is the electronic Hamiltonian (kinetic energy of the electrons plus electrostatic interactions).
- \hat{H}_{ext} describes interaction with external field.
- Harmonic approximation near trapping minimum:
 - Decouples CM and relative motions.
 - CM obeys dynamics of a pure harmonic oscillator.
 - Relative motion states $|\psi
 angle$ satisfy

$$[\hat{T}_r + V^{\rm el}(r) + V^{\rm trap}(\mathbf{r})]|\psi\rangle = E^{\rm rel}|\psi\rangle.$$

Isotropic Harmonic Trap

Trapping potential for the relative motion is also harmonic

$$V^{\text{trap}}(\mathbf{r}) = \frac{1}{2}\mu \sum_{i=1}^{3} \omega_i^2 (r^i)^2.$$

• For isotropic traps, all trapping frequencies are equal $\omega_i = \omega$. Relative motion states have the form

$$\psi_{nlm}(\mathbf{r}) = \frac{1}{r} F_{nl}(r) Y_{lm}(\theta, \phi),$$

where the radial functions $F_{nl}(r)$ satisfy

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V^{\rm el}(r) + \frac{1}{2}\mu\omega^2 r^2\right]F_{nl}(r) = E_{nl}F_{nl}(r).$$

Quantum Defect Method I

- V^{el} modifies trap energies $E_0 = \hbar \omega (2n_r + l + \frac{3}{2})$ to $E = \hbar \omega (2n_r^* + l + \frac{3}{2})$ where $n_r^* = n_r \delta$.
- Quantum Defect Theory based upon observation that present problem (characterised by long asymptotic trap region beyond effective range of V^{el}) shows similar features to the well studied modified Coulomb problem (long-range attractive Coulomb potential supplemented by a short-range interaction).

Quantum Defect Method II

• Transform harmonic oscillator equation in variables $\rho = r/\xi$, $\xi = \sqrt{\hbar/\mu\omega}$, $\kappa = 2E/\hbar\omega$:

$$\left[\frac{d^2}{d\rho^2} - \frac{l(l+1)}{\rho^2} + \kappa - \rho^2\right]F(\rho) = 0$$

into

$$\left[\frac{d^2}{dy^2} - \frac{\lambda(\lambda+1)}{y^2} + \frac{2}{y} + \epsilon\right]Y(y) = 0$$

where $y = \kappa \rho^2$, $Y(y) = \sqrt{\rho}F(\rho)$ and $\epsilon = -1/n^{*2}$ with $n^* = \kappa/4 = \nu - \delta$.

• This is the modified Coulomb problem (Seaton 1958,1983) for a bound state with $(n, l) \rightarrow (\nu, \lambda)$ where $\nu = n_r + \lambda + 1$ and $\lambda = l/2 - 1/4$.

Self-Consistent Solution

✓ $V^{\rm el}(r)$ rapidly approaches zero (~ r^{-6} for He^{*}) outside about 50a₀ where the trap solution is

$$F^{\rm as}(r) = Ae^{-\frac{1}{2}r^2}r^{l+1}W_{lE}(r^2). \qquad (V^{\rm el}(r) = 0)$$

• Large intermediate region typically $10^2 - 10^4 a_0$ where

$$F^{\text{int}}(r) = Br\left[j_l(kr) - \tan \delta_l(E)n_l(kr)\right]. \quad (V^{\text{trap}}(r) = 0)$$

Matching these solutions yields energy eigenvalues in terms of scattering phase shifts

$$\tan \delta_l(E) = -\left(\frac{E}{4}\right)^{l+\frac{1}{2}} \tan \left(\frac{\pi}{4}[E-2l+1]\right) \frac{\Gamma(\frac{1}{4}[E-2l+1])}{\Gamma(\frac{1}{4}[E+2l+3])}.$$

Note: Result does not depend on the use of a δ -function pseudopotential for V^{el} .

Discrete Variable Representation

- Solve radial equation in the form $\hat{H}\psi(x) = E\psi(x)$ using a DVR.
- Introduce set of orthonormal basis functions $\{\phi_k\}$ and set of discrete grid points $\{x_\alpha\}$ and choose expansion coefficients to give matrix eigenvalue equation

$$\hat{H}\psi(x_{\beta}) = \sum_{\alpha} H_{\beta\alpha}\psi(x_{\alpha}) = E\psi(x_{\beta}),$$

where the matrix elements of \hat{H} are

$$H_{\beta\alpha} = \sum_{k} \phi_k^*(x_\beta) \hat{H} \phi_k(x_\alpha).$$

For bound states, a Fourier sine basis is used.

Scaling Transformation

- Current problem involves two disparate length scales
 1. the short-range molecular interaction (~ 50a₀), and
 2. the long-range trapping potential (~ 10³ 10⁶a₀).
- To sample the small ρ region sufficiently without using an excessive number of grid points in the trapping region, introduce nonlinear coordinate transformation $\rho = U(t)$. This transforms $[-\hat{D}_{\rho}^2 + V(\rho)]\psi(\rho) = E\psi(\rho)$ into

$$\left[-f^2(t)\hat{D}_t^2 f^2(t) + V[U(t)] + f^3(t)f''(t)\right]\phi(t) = E\phi(t),$$

where $f(t) \equiv [U'(t)]^{-\frac{1}{2}}$ and $\phi(t) \equiv \psi[U(t)]/f(t)$.

• The choice $\rho = \zeta t^p$ with $\zeta = 20, p = 10$ gives $\approx 17\%$ of scaled mesh points inside 20.

Spin-Dipole Interaction

Non-spherically symmetric interaction

$$\hat{H}_{\rm sd} = -\frac{\beta}{\hbar^2 r^3} \left[3 \frac{(\hat{\mathbf{s}}_A \cdot \mathbf{r})(\hat{\mathbf{s}}_B \cdot \mathbf{r})}{r^2} - \hat{\mathbf{s}}_A \cdot \hat{\mathbf{s}}_B \right] = V_{\rm p}(r) \mathbf{T}^2 \cdot \mathbf{C}^2.$$

- Interaction causes transitions from spin-polarised S = 2state to the S = 0 state from which there is a high probability of ionization.
- SD interaction is relatively weak so use perturbation theory.
- Rates sensitive to form used for Penning decay width.
- For frequencies above 100 kHz the lifetimes are less than typical trapping times.

Anisotropic Traps

General harmonic trap can be expanded into an isotropic $V^{(0)}(r)$ and anisotropic part $V^{(2)}(r, \theta, \phi)$

$$V^{\text{trap}}(\mathbf{r}) = \frac{1}{2}\mu \sum_{i=1}^{3} \omega_i^2 (r^i)^2 = \frac{1}{2}\mu \bar{\omega}^2 r^2 \left[1 + \alpha (Y_{22} + Y_{2,-2}) + \beta Y_{20}\right].$$

Writing the relative Hamiltonian as $\hat{H} = \hat{H}_0 + V^{(2)}$ and expanding the state $|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\psi_{\alpha}\rangle$ in terms of the eigenstates of \hat{H}_0 we obtain the matrix eigenvalue equation

$$\sum_{\alpha} \left[E_{\alpha} \delta_{\alpha' \alpha} + \langle \psi_{\alpha'} | V^{(2)} | \psi_{\alpha} \rangle \right] c_{\alpha} = E c_{\alpha'}.$$

The matrix elements are given by $D_{\alpha'\alpha} \int_0^\infty F_{\alpha'}^*(r) r^2 F_{\alpha}(r) dr$.

Cylindrical Trap ($\alpha = 0$)

- Asymmetry parameter β ranges from 2 (pancake) to -1 (cigar).
- Effects of collisions increases significantly with $|\beta|$ and is most marked for l = 0.
- Self-consistent solution for asymptotic spherically symmetric V^{el} matched to axially symmetric V^{trap} is currently under investigation.

He(2s ${}^{3}S$) + **He(np** ${}^{3}P_{j}$)

- Photoassociation spectroscopy of bound states can provide
 - Valuable knowledge about the He* system.
 - Accurate determination of the S + S scattering length a_5 .
- Optical Feshbach Resonance can modify a_5 through laser coupling to a S + P bound state.

Some Recent Studies

- Herschbach *et al* (2000) observed bound states (NOT long-range) that dissociate to the 2s ${}^{3}S_{1}$ +2p ${}^{3}P_{2}$ limit.
- ▲ Léonard *et al* (2003) reported theoretical and experimental studies of some purely long-range bound states (binding energies ≤ 1.43 GHz) below the 2s ³S₁+2p ³P₀ limit.
- Kim *et al* (2004) and van Rijnbach (2004) observed detailed structure (40 peaks) associated with bound states ≤ 13.57 GHz below the 2s ${}^{3}S_{1}$ +2p ${}^{3}P_{2}$ limit.
- Moal et al (2005) reported high accuracy determination of a_5 from two-photon photoassociation determination of the least bound (v = 14) state of S + S.

Collisions of Atoms with Fine-Structure

Hamiltonian

$$\hat{H} = \hat{T}_r + \hat{H}_{\rm el} + \hat{H}_{\rm fs}.$$

where

$$\hat{T}_r \equiv -\frac{\hbar^2}{2\mu} \nabla_r^2 = -\frac{\hbar^2}{2\mu r} \frac{\partial^2}{\partial r^2} r + \frac{\hat{l}^2}{2\mu r^2} \equiv \hat{T}^{\rm rad} + \hat{H}^{\rm rot}$$

Expand system eigenstate in a channel basis :

$$|\Psi(r,q)\rangle = \sum_{b} \frac{1}{r} G_b(r) |\Phi_b(r,q)\rangle$$

to give (q denotes electronic and angular coords)

$$\sum_{b} \left[T_{ab}^{\mathrm{rad}} + H_{ab}^{\mathrm{rot}} + H_{ab}^{\mathrm{el}} + H_{ab}^{\mathrm{fs}} \right] G_b(r) = EG_a(r).$$
Ultracold Metastable Helium Atoms - p. 18/25

Long-Range Bound States

- Multichannel calculations (Venturi *et al* 2003; Leduc *et al* 2003):
 - 12 Born-Oppenheimer potentials $(^{2S+1}\Sigma_{\sigma}^{+}, ^{2S+1}\Pi_{\sigma}; S = 1, 3, 5; \sigma = u/g)$ with retarded long-range dispersion contribution

$$f_{3\Lambda}(r/\lambda)C_{3\Lambda}/r^3 + C_{6\Lambda}/r^6$$

- Ad hoc short-range potentials of two forms.
- Penning ionisation at $r \leq 5a_0$ ignorable as long-range bound states occur at $r \geq 100a_0$.
- Four sets of purely long-range states found:
 - 1_g (3 levels) and 0_u^+ (6 levels) below 2s 3S_1 +2p 3P_0 .
 - 0_u^- (1 level) and 2_u (4 levels) below 2s 3S_1 +2p 3P_1 .

Perturbative Calculations

- Multichannel calculations necessary to include couplings that substantially alter nature and lifetimes of bound states, however insight can be obtained from a decoupled perturbative approach.
- *Movre-Pichler with rotation*: Diagonalise at each *r*

$$V_{ab}^{\rm MPR} = H_{ab}^{\rm el} + H_{ab}^{\rm fs} + H_{ab}^{\rm rot}(\Omega)$$

where $H(\Omega)$ is that part of \hat{l}^2 that leaves Ω unchanged.

Neglect radial couplings in kinetic energy terms

$$T_{ab}^{\rm rad} = -\frac{\hbar^2}{2\mu} \left[\delta_{a,b} \frac{d^2 G_b}{dr^2} + 2\langle \Phi_a | \frac{\partial}{\partial r} | \Phi_b \rangle \frac{dG_b}{dr} + \langle \Phi_a | \frac{\partial^2}{\partial r^2} | \Phi_b \rangle G_b \right]$$

Single Channel Results

Bound states determined from

$$\left[-\frac{\hbar^2}{2\mu}\left(\frac{d^2}{dr^2} + \langle \Phi_a | \frac{d^2}{dr^2} | \Phi_a \rangle\right) + V_a^{\text{MPR}}(r)\right] G_a(r) = EG_a(r).$$

- Results for He(2s ${}^{3}S_{1}$)+ He(2p ${}^{3}P_{0,1}$) reproduce multichannel results to better than 0.5 MHz for all but the $J = 3 0_{u}^{+}$ levels where differences are ≤ 3 MHz.
- For He(2s ${}^{3}S_{1}$)+ He(3p ${}^{3}P_{0,1}$) we find only one bound state, situated in the 0_{u}^{+} potential with J = 1. Unfortunately this state extends in to $\approx 80a_{0}$ and is sensitive to the *ad hoc* short-range potentials added. Estimates of its binding energy range from 25 to 40 MHz.

Bound States Below j = 2 **Limit**

- Dickinson *et al* (2005):
 - Calculated *ab initio* short-range ${}^5\Sigma^+_{g/u}$ and ${}^5\Pi_{g/u}$ potentials plus retarded dispersion.
 - Single channel determination of quintet levels gave assignments (Ω_u, J, v) of $\approx 75\%$ of the 40 observed PA peaks
- Léonard *et al* (2005):
 - Compared PA peaks ≤ 10 GHz below asymptote observed in MOT and magnetic traps.
 - Single channel calculations of *ungerade* levels revealed evidence of weak non-diagonal rotational couplings from quintet to singlet symmetry for $1_u(J = 1, 3)$ and $2_u(J = 3)$. $2_u(J = 2)$ is purely quintet.

Current/Future Calculations I

1. He(2s ${}^{3}S_{1}$)+He(2s ${}^{3}S_{1}$) Anharmonic quartic corrections for isotropic trap:

$$V^{\text{trap}} = \frac{\alpha}{2} (M^2 R^4) + 4\mu^2 r^2 R^2 + 8\mu^2 (\mathbf{R} \cdot \mathbf{r})^2$$

- 2. He(2s ${}^{3}S_{1}$)+He(2p ${}^{3}P_{j}$)
 - Multichannel calculation of the numerous bound states below the j = 2 asymptote when short-range ${}^{1,3}\Sigma_{g/u}$ and ${}^{1,3}\Pi_{g/u}$ potentials become available.
 - Trapping effects on long-range bound states.
- 3. He(2s ${}^{3}S_{1}$)+He(3p ${}^{3}P_{j}$) Further study of $(0_{u}^{+}, J = 1)$ bound state below j = 0asymptote. Requires numerous potentials into $r \approx 20a_{0}$.

Current/Future Calculations II

Photoassociation to long-range bound states of He(2s ${}^{3}S_{1}$)+He(2p ${}^{3}P_{j}$), especially the $(0_{u}^{+}, v = 0)$ state just below the j = 0 asymptote.

- Investigate dependence upon laser intensity for small detunings comparable to laser coupling.
- Use fully dressed multichannel calculation.
- Limitations on existing calculations:
 - Napolitano (1998): Multichannel, dressed s + dwaves, high detunings $-\hbar\Delta \gg \hbar\Omega_{\rm Rabi}$.
 - Bohn and Julienne (1999); perturbative radiative coupling.
 - Simoni *et al* (2002): radiative coupling vanishes asymptotically.

Conclusions/Outlook

- Several interesting and important calculations worth undertaking for 2s ³S+2s ³S and 2s ³S+np ³P He* systems.
- Progress is critically dependent upon availability of
 - Short-range singlet and triplet potentials for 2s ³S+2p ³P and numerous potentials for 2s ³S+3p ³P.
 - Postgraduate and postdoctoral students!