

Les Houches, Feb. 2005

Atom-Field Quantum State Manipulation and Storage

<u>Aurélien Dantan</u>, Vincent Josse, Nicolas Treps, Alberto Bramati, Michel Pinard, Elisabeth Giacobino

Quantum Optics Group, Laboratoire Kastler Brossel, Univ. Pierre et Marie Curie, ENS, Paris

Quantum info & communication → atom-field networks [Duan et al.]

- Non-classical state generation with cold atoms
- Atomic quantum memory
- Atomic teleportation

Optical variables

Monomode field

 $E = \mathcal{E}_0 \left[X \cos(\omega t) + Y \sin(\omega t) \right]$

X, Y quadrature operators

 $\begin{cases} X = (A^{+} + A) & \text{``amplitude''} \\ Y = i(A^{+} - A) & \text{``phase''} \end{cases}$

 $\begin{array}{c} \mathbf{Y} \\ \Delta X=1 \\ \mathbf{X} \end{array}$

Coherent state

$$\Delta X = \Delta Y = 1$$

Quantum noise [X, Y] = 2i

Heisenberg inequalities

 $\Delta X \Delta Y \ge 1$

Squeezed state generation with cold atoms

Squeezed state generation with cold atoms

V. Josse et al. PRL 91, 103601 (2003)

CV entanglement

Inseparability criterion for a, b orthogonal Gaussian states

$$I_{a,b}(\theta) = \frac{1}{2} \left\{ \Delta^2 (X_a + X_b)(\theta) + \Delta^2 (Y_a - Y_b)(\theta) \right\} < 2$$

Entanglement = sum of squeezings

Inseparability criterion measurement

$$I_{+45,-45}(\theta) = \Delta^2 X_x(\theta) + \Delta^2 Y_y(\theta)$$
Direct measurement
$$\rightarrow 2 \text{ homodyne detections}$$

$$A_y \leftarrow A_x$$

$$\lambda/4$$

$$iA_y \leftarrow A_x$$

$$iA_y$$

$$iA_y \leftarrow A_x$$

$$iA_y$$

V. Josse et al. PRL 92, 123601 (2004)

Non-classical state generation

- $\chi^{(2)}$: OPO, OPA
- $\chi^{(3)}$: Kerr effect in fibers, atoms
- \rightarrow Efficient, broad bandwidth, tunable...

 \rightarrow *Storage* ?

Atomic variables

• N 2-level atoms $\equiv N \text{ spins } \frac{1}{2}$

• Collective operators
$$J_x = \sum_{i=1}^N J_x^i = \sum_{i=1}^N \left(\left| e \right\rangle_i \left\langle g \right|_i + \left| g \right\rangle_i \left\langle e \right|_i \right) / 2$$

$$[J_x, J_y] = iJ_z \implies \Delta J_x^2 \Delta J_y^2 \ge \left| \left\langle J_z \right\rangle \right|^2 / 4$$

е

g

Atomic quantum memory

• transfer of the field quantum state A^{in} to the atoms $\rightarrow \ll writing \gg$

- « storage »
- « *readout* » of the atomic state

Atomic quantum memory

• Atomic coherence \equiv harmonic oscillator $\Delta J_x \Delta J_y \geq N/4$

Quantum memory

Quantum memory : efficiency

A. Dantan et al. PRA 69, 43810 (2004)

Storage of entanglement

A. Dantan et al. Europhys. Lett. 67, 881 (2004)

Goal : teleportation of ensemble 1 quantum state to ensemble 3

1) Preparation : Victor

2) Joint measurements : Alice

3) Reconstruction : Bob

3) Reconstruction : Bob

A. Dantan et al. PRL 94, 50502 (2005)

Summary

- Generation & storage of quantum states using cold atoms
- Experiments in progress ...
- Other systems: mechanical oscillators, nuclear spins, solid state media ...