Coherence of Photons in Disordered Media

R. KaiserC. MiniaturaG. LabeyrieD. WilkowksiG.L. GattobigioR.KuhnL. HeT. Wellens

Collaborations : D.Delande (Paris), C. Müller (Bayreuth), M.Havey (USA), ...

Quantum Engineering with Photons, Atoms and Molecules Les Houches, February 14-17, 2005

Mesoscopic regime : Interferences alter diffusion process

Propagation of light waves / Propagation of matter waves

Photonic crystals

Interferences in 1D, 2D and 3D Energy bandgaps Localized modes

much more on http://ab-initio.mit.edu/

Anderson localization in random media

Random equivalent of photonic crystals

Coherent transport : in 1D and 2D : localization for any disorder in 3D : threshold for localization ?

... are waves

Random walk : **Diffusion** coefficient $D_0 \approx \ell^2 / \tau$ Interference correction to Diffusion coefficient $D \approx D_0 (1-3/k \ \ell)$ Strong Localization (D=0) : Ioffe-Regel criterium : $k \ \ell \approx 1$ (on resonance $n_{at} \approx 10^{14} \ at/cm^3$)

Strong Localization of light

Interference of waves propagating along closed loops?

'precursor' modes ?
⇒ random laser

Scattering Experiments

* coherent transmission, diffuse transmission / reflection

* far field analysis

Fluctuating Speckle Pattern

speckle

Integrated signal (configuration average)

Configuration Averaged Intensity

• correlated (i.e. reciprocal) paths add coherently

$$\Delta \varphi = (k_{in} + k_{out}) \cdot (r_{in} - r_{out}) \qquad \theta = 0 \implies \Delta \varphi = 0 \text{ for any path}$$

Coherent Backscattering

$$\frac{\langle I(0)\rangle}{\langle I(\theta)\rangle} = 2$$

Experimentel Setup

Configuration Average

Coherent backscattering

escat

N_{max} N=2

• <u>cone height</u> : reciprocal amplitudes (phase, intensity)

• cone with : $\Delta \theta = 2\pi$ -

Young double slits / self-aligned multiple Sagnac interferometer

Coherent Backscattering

Light waves :

white paint (TiO₂), teflon, milk, paper, tissue rings of Saturn

<u>Acoustic waves</u> : metal rods fish (?)

Matter waves :

electrons : negative magneto-resistance

Seismic waves :

Why cold atoms ?

spontaneous emission :

 \Rightarrow coherent process?

 \Rightarrow role of quantum fluctuations?

 $\delta = \omega_{las} - \omega_{at}$

 $\lambda = 780$ nm

 $\Gamma/2\pi = 6 \text{ MHz}$

resonant scattering :

$$\sigma = \frac{3\lambda^2}{2\pi} \frac{1}{1 + (2\delta/\Gamma)^2} >> (a_0)^2$$

> quality factor ~
$$10^8$$

> 'monodisperse' sample : cold atoms
> 'delay time' at resonance : τ_d ~50ns

• \Rightarrow matter waves

Phys. Rev. Lett. 83, 5266 (1999)

Probing and manipulating the coherence of photons in disordered systems

scattering effect (cross section)
 vs propagation effect (index of refraction)

time dependant / dynamic analysis

• interference contrast : amplitude vs phase effect (geometrical phase compensated)

$$E_{I} e^{i\phi_{I}} + E_{II} e^{i\phi_{II}}$$

coherence length

2 MOT in Nice

vapor trap : optical thickness : 40

Zeeman slower : optical thickness : 3

Restoring Coherent Backscattering with Magnetic Fields

Restoring Coherence Length with Magnetic Fields

 $\mu B >> \Gamma$ effective 2 level system

Coherence length : ③ REDUCED by internal structure (3-4')
③ RESTORED by magnetic field

Weak Localization

negative magneto-resistance

increased weak localization :

magnetic impurities + magnetic field

FIG. 2. Resistance changes as a function of the magnetic field for the wires of n^+ -Cd_{1-x}Mn_xTe with x = 0 (a) and x = 1%(b) at various temperatures between 30 mK and 4.2 K (traces for the lowest temperatures are shifted upward). Dashed lines represent magnetoresistance calculated in the framework of 3D weak-localization theory [4,14]. Dotted lines are guides for the eye, and visualize a strong temperature dependence of the resistance features in Cd_{0.99}Mn_{0.01}Te (b).

from Phys. Rev. Lett. 75, 3170 (1995)

Time Resolved Experiments :

• Phase velocity : $c = \frac{c_0}{n}$

propagation of phase for a monochromatic wave c > 0 $c \leq c_0$

• Group velocity : $v_g = \frac{\partial \omega}{\partial k}$

 τ_{Wigner}

cold atoms on resonance : $v_g < 0$

propagation of transmitted gaussian pulse with slowly varying envelope

•**Transport velocity :** propagation of scattered wave energy $0 < v_{tr} < c_0$

 $|v_{g}| << 0$

$$\tau_0 \approx \frac{L^2}{\pi^2 D} = \frac{3}{\pi^2} \mathbf{b}^2 \tau_{tr}$$

 $b = \frac{L}{l}$ optical thickness

Phys. Rev. Lett. 91, 223904 (2003)

Phys. Rev. Lett. 91, 223904 (2003)

Transport time for light in cold atoms

$$\tau_0 \approx \frac{L^2}{\pi^2 D} = \frac{3}{\pi^2} \mathbf{b}^2 \tau_{\rm tr}$$

Transport Time : Independent of δ

$$\tau_{\rm tr} \approx \tau_{\rm Wigner} \left(\delta\right) + \frac{\ell\left(\delta\right)}{v_{\rm gr}(\delta)}$$

Phys. Rev. Lett. 91, 223904 (2003)

Dynamical Breakdown of CBS

scatterer should not move faster than light

A.A.Golubenstev, Sov. JETP **5**9, 26 (1984)

 $v \tau_{tr} \ll \lambda$

at resonance : $\mathbf{kv} \ll \Gamma$

Experimental Observation of Dynamical Breakdown

Dynamical Breakdown of CBS large detuning : $\delta >> kv$ \Rightarrow partial restoration of interference contrast

Inelastic light scattering In localized regime \Rightarrow large build-up factors expected

⇒ saturation of atomic transition ⇒ inelastic scattering : phase coherence ?

Influence of larger saturation on CBS

inelastic scattering : Mollow triplet ...

Phys. Rev. E 70, 036602 (2004).

Inelastic scattering effects similar to Doppler induced frequency redistribution Some questions concerning matter wave scattering by light potential

Perspectives

Light scattering

- Coherent light transport beyond CBS
 - \Rightarrow (quantum) statistics
 - \Rightarrow fluctuations, correlations
 - \Rightarrow Sagnac interferometer (v_{tr}/c=10⁻⁵)
 - \Rightarrow random laser (+ gain)

Strong Localization : $n\lambda^3 \approx 1$ ⇒ dynamical analysis, spectroscopy ⇒ cold collisions & super-/subradiance ⇒ dipole blockade?

Matter wave scattering

Rb : BEC Sr : 'red' MOT

CBS with matter waves Strong Localization

Current Status of our experiments :

Rb: \Rightarrow new scaling law : L $\propto \& N : \checkmark$ \Rightarrow compression : $n\lambda_{opt}{}^{3} \approx 1$ \Rightarrow random laser (add pump) : 4 wave mixing : \checkmark \Rightarrow plasma physics (mechanical effects) : \checkmark

MOT size with many cold Atoms ⇒ compression...

Self Sustained Oscillation of MOT size

Instability : phase diagram

Current Status of our experiments :

Rb: \Rightarrow new scaling law : L $\propto \otimes N : \checkmark$ \Rightarrow compression : $n\lambda_{opt}^{3}\approx 1$ \Rightarrow random laser (add pump) : 4 wave mixing : \checkmark \Rightarrow plasma physics (mechanical effects) : \checkmark \Rightarrow extra heating on blue MOT : \checkmark Sr: \Rightarrow Red Mot (50% transfer efficiency) : \checkmark \Rightarrow T=1 μ K : (n $\lambda_{DB}^{3}\approx 10^{-4}$) \checkmark \Rightarrow more cooling and more atoms : $n\lambda_{opt}^{3} \approx 1$ \Rightarrow cold collision (blue MOT) \checkmark

Transverse dimension

Atom moving across laser profile: additional fluctuations \Rightarrow heating (correlation time vs friction)

 $\sigma_I / <I >= 0.18$ and $L_c = 100 \ \mu m$, $v_\perp = 1 \ m/s \iff \tau_c = 100 \ \mu s$

Broadband Transfer to Red MOT

Transfer Limitation :

atoms moving out of the laser atoms moving out of resonance

time [ms]

80-

Towards strong localization of light

