Coherent transport of matter waves

Les Houches, february 2005

Patricio Leboeuf

Laboratoire de Physique Théorique et Modèles Statistiques Université de Paris 11, Orsay

Related group at LPTMS

N. Pavloff G. Schlyapnikov P. L. D. Gangardt A. Minguzzi N. Bilas Quantum effects: phase coherence length smaller than system size

Many times, the quantum corrections appear as oscillations superimposed to a « classical » smooth behavior

Electronic systems \rightarrow mesoscopic physics

- Magnetic susceptibility in quantum dots
- Persistent currents in metallic rings \rightarrow no classical effect
- Shell effects in the energy of metallic particles (stability)
- conductance quantization
- force in metallic nanocontacts

•

<u>Metallic</u> <u>Nanocontact</u>

G. Rubio, N. Agrait, S. Veira, Phys. Rev. Lett. 76 (1996) 2302

Nuclear masses: Average and Fluctuations $\widetilde{\mathcal{B}} = \overline{\mathcal{B}} - \mathcal{B}$ $M = Z^*M_P + N^*M_N - \mathcal{B}(Z,N)/c^2$ $\overline{\mathcal{B}} = a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} - a_p \frac{t_1}{A^{1/2}}$ 8.5 B/A (MeV) $a_v = 15.67, a_s = 17.26, a_c = 0.714, a_A = 23.29, a_p = 11.2, t_1 = +1, 0, -1$ 8.0 A (MeV) 10 7.5 B 150 200 250 -10-20 ∟ 0 50 100 150 N(51) (41) 20 10 -10-20 $N^{1/3^{-5}}$ 3 4

In other cases, the quantum terms appear as non-oscillatory corrections to a « classical » behavior

• Weak localization

$$T = \frac{1}{2} - \delta, \quad \delta > 0$$

In extreme cases, the quantum behavior could be totally different from the classical one

Qualitatively, all the effects described above may be understood within a single—particle picture \rightarrow « universality » in wave systems

Atom lasers (Atom-Chip experiments,...):

- Fundamental properties
 - (de)coherence effects
 - interference
 - localization
 - dissipation, forces,...

Effects of interactions

Propagation of a Bose condensate through a magnetic guide: Scattering of Bose beams

• a bend in the guide

•

- a red or blue detuned laser beam
- a change in the shape of the guide

Equations of motion:

 $\overline{\chi}$

 a_{sc} :s - wave scattering length (> 0)

$$\delta S = 0$$

 \vec{r}

$$S = \frac{i}{2} \int d^{3}r \, dt \, (\Psi^{*} \partial_{t} \Psi - \Psi \partial_{t} \Psi^{*}) - \int dt \, \mathrm{E}[\Psi]$$
$$\mathrm{E}[\Psi] = \int d^{3}r \left[\frac{1}{2} \left| \vec{\nabla} \Psi \right|^{2} + 2\pi a_{sc} \left| \Psi \right|^{4} + V \left| \Psi \right|^{2} \right]$$

Adiabatic approximation:

$$\Psi (r, t) = \psi (x, t) \phi (r_{\perp}, n)$$

•
$$n(x,t) = \int d^2 r_{\perp} |\Psi|^2 = |\psi(x,t)|^2$$

Longitudinal density

•
$$V_{\perp}(\vec{r}_{\perp}) = \frac{1}{2}\omega_{\perp}^2 r_{\perp}^2$$

Transverse

confinement

Longitudinal potential

• $V_{=}(x)$ • $\hbar = m = 1$

Units

Adiabatic equations of motion:

$$\begin{cases} -\frac{1}{2} \nabla_{\perp}^{2} \phi + \left(V_{\perp} + 4 \pi a_{sc} n \left| \phi \right|^{2} \right) \phi = \varepsilon (n) \phi \\ -\frac{1}{2} \nabla_{x}^{2} \psi + \left(V_{=} + \varepsilon (n) \right) \psi = i \partial_{t} \psi \end{cases}$$

• $\varepsilon(n) = \text{Lagrange multiplier for } n(x,t) = \int d^2 r_{\perp} |\Psi|^2 = |\psi(x,t)|^2$

$$\varepsilon(n) = \begin{cases} \varepsilon_0 + 2a_{sc}n/a_{\perp}^2 & a_{sc}n << 1\\ \varepsilon_0 + 2\omega_{\perp}\sqrt{a_{sc}n} & a_{sc}n >> 1 \end{cases}$$

•
$$a_{\perp}^{-2} = 2\pi \int |\phi_0|^4 d^2 r_{\perp}$$
 • $n_{3D} a_{sc}^3 << 1$

P.L. and N. Pavloff, Phys. Rev. A 64 (2001) 033602

Stationary transmission modes

$$\longrightarrow \quad \psi(x,t) = A(x)e^{-i\mu t} e^{iS(x)}$$

•
$$n(x) = A^2$$
 • $v(x) = S'(x)$ • $\mu > \varepsilon_0$

$$\begin{cases} n(x)v(x) = J_{\infty} & \text{(flux conservation)} \\ -\frac{1}{2}\nabla_{x}^{2}A + \left[V_{=}(x) + \varepsilon(n) + \frac{J_{\infty}^{2}}{2n^{2}}\right]A = \mu A \end{cases}$$

<u>Free modes</u> \longrightarrow $V_{=}(x) = 0$ (straight tube)

 $\frac{1}{2}A'^2 + W(n) = E_{cl} \quad \text{with}$

$$\begin{cases} W(n) = \sigma(n) + \mu n + J_{\infty}^{2} / 2n \\ \sigma(n) = \int_{0}^{n} \varepsilon(\rho) d\rho \end{cases}$$

Free modes

Scattering potential:

Boundary conditions:

compare

group velocity $v_g \leftrightarrow phase$ velocity v_p

speed of the energy transferred to the fluid speed of the obstacle with respect to the beam (stationarity)

Radiation conditions $+ v_g \ge v_p$ $\left(\omega^2(k) = k^2 \left(n \frac{d\varepsilon}{dn} + \frac{k^2}{4} \right) \right)$ Minimum or Saddle

Particular geometry or scattering potential:

$$V_0 = \omega_{\perp}^> - \omega_{\perp}^< = (\alpha - 1) \omega_{\perp}^< ; \quad \omega_{\perp}^> = \alpha \, \omega_{\perp}^<$$

• Solve the matching problem

• Define a transmission coefficient (?)

Concrete example

• ²³ Na atoms $(a_{sc} = 2.75 \text{ nm})$ • $\omega_{\perp}^{<} = 2\pi \times 2 \text{ kHz}$ • $\omega_{\perp}^{>} = 3 \omega_{\perp}^{<}$ $V_{0} = 192 \text{ nK}$

•
$$\mu = 210 \text{ nK}$$

 $J_{\infty}^{\text{max}} = 1.6 \times 10^4 \text{ atoms/s}$

Bose-Einstein condensate

P. L., N. Pavloff and S. Sinha, Phys. Rev. A 68 (2003) 063608

Density profiles at incident current with T=1

Concluding remarks

- Importance and interest of quantum effects
- Peculiar scattering features of nonlinear waves
- The transmission coefficient depends on the current
- At given chemical potential, there exists a maximum transmitted current above which no stationary flow exists
- At a given current, several distinct stationary solutions with different T are possible
- For any chemical potential larger than V_0 , there is a particular J_i which induces total transmission
- Non-stationary flows
- Dynamical selection of the different solutions
- Localization
- 1D approx: single scattering channel \rightarrow Full 3D problem
- Scattering theory is missing