Cold molecules from deceleration and photodissociation

Sebastian Jung, Eberhard Tiemann, Christian Lisdat 14.02.2005

EU Network Cold Molecules AG Tiemann Hannover

Institute of Quantum Optics

University of Hannove

- Motivation
- Reactive collisions, Feshbach resonances, and photodissociation
- Photodissociation SO₂
- Deceleration experiment with SO₂ molecules
 - Stark effect
 - Molecular beam source
 - Hexapole lens
 - Design of the decelerator
- Summary

Applications of cold molecules

- Trapping of molecules
- High resolution spectroscopy
- Study of cold molecule particle collisions
- Control of dissociation near the threshold
- Quantum chemistry

Cold collisions and photodissociation

Control of both reactant AB and photon, observation of products »Cold« means close to the threshold

Photodissociation

- Complementary aspects to reactive and cold collisions
- Control of one particle only
- Steering by laser light
- Suitable system required

Photodissociation

Excitation of repulsive state or Excitation above threshold Excess energy determined by photon energy

Predissociation

Observed fragments

- studied in our group
- spectroscopic knowledge is highly important

Kinetic energy of SO + O

Kinetic energy of fragments is given by relative position of levels SO₂ and SO + O

Tunable kinetic energy

SO and O in triplet states: Magnetic trapping ? Accumulation in phase space ?

Experimental part

- Cold SO₂ is required for long observation time and cold fragments
- SO₂ comes in bottles
- Supersonic beam for high population in the lowest levels
- Deceleration of the molecules (Stark decelerator)

Ground state Stark effect

Experimental setup

Pulsed valve

supersonic expansion is used to produce internally cold molecules with narrow velocity distribution

Principle:

- cooled gas
- gas expansion with high pressure into vacuum
- multiple collisions
- high average velocity
- narrow velocity distribution

Pulsed valve

supersonic expansion is used to produce internally cold molecules with narrow velocity distribution

Pulsed valve

0

supersonic expansion is used to produce internally cold molecules with narrow velocity distribution

Electric field of a hexapole

5.9

12

-02

0.0

 X/r_0

1.0-

0.7-

0.3

0.0

3-

-0.7-

-1.0+

-1.0

-0.7

۲/۲₀

kV / cm

0.7

0.3

1.0

Simulation of hexapole

Simulated trajectories of the $|| M > = ||_{11}0 >$ state

with and without voltage at the hexapole Stark selection: focussing + defocussing

$U_{hexapole} = \pm 11.0 kV$

Field of two electrodes

- minimum electric field on the molecular beam axis
- low-field seeking states experience a focusing force (guiding)
- no focussing in the plane parallel to the electrodes
- alternate horizontally and vertically positioned pairs

Decelerator principle

switching sequence for one molecule

Switching intervals and bunching

Molecules will oscillate with phase and velocity around the equilibrium values.

molecule looses more energy velocity and phase get smaller

Simulations of decelerator

Simulations of decelerator

First decelerator

The first decelerator will have 100 stages and should reduce the velocity from 285 m/s to 240 m/s.

This corresponds to 30% of the kinetic energy!

Summary

- Dissociation of cold SO₂
- Source of cold particles SO + O
- Trapping of radicals SO and O, accumulation in phase space
- Feshbach resonances: Tuning of velocities, switching of channels
- Successful focussing of SO₂
- Feasibility of a Stark decelerator

forward + backward