Towards Optical Atomic Clocks

Outline

Introduction to optical clocks

Accuracy and stability of an optical frequency standard with Ca atoms

Optical frequency measurement

Future prospects: optical lattice clock Measurement of the "magic wavelength" Technische **Bundesanstalt** Braunschweig, Germany

Quantum Engineering with Photons, Atoms, and Molecules, Les Houches, 17. 02. 2005

Physikalisch-

Applications that require better atomic clocks

Generation of more stable time scales

Tests of fundamental theories: General Relativity Quantum Electrodynamics Cosmology Constance of fundamental constants

Deep-space navigation Pioneer anomaly

Deep Space Network

1997: Lift-off of Cassini - Huygens probe -> Saturn (2004)

4 "Swingbys" near Venus, Jupiter, Earth at 300 km distance

Required accuracy: +/- 25 km

Telemetry using 3 antennas on earth only works with the best clocks available.

Peik et al. PRL 2004

PIB

Principle of Clocks

Stability of Atomic Clocks

Stability: necessary averaging time, to detect a certain effect ?

depends on relative line width $\Delta v / v_0$ atom number *N* and cycle time T_c

$$\sigma_y(\tau) \approx \frac{\Delta \nu}{\nu_0} \sqrt{\frac{T_c}{N\tau}}$$

reduction of Δv with cold trapped atoms; increase v_o (optical frequencies instead of microwaves)

¹⁷¹Yb⁺ Single-Ion Frequency Standard

transition: ${}^{2}S_{1/2} - {}^{2}D_{3/2}$ $\lambda = 436 \text{ nm}, \Delta v = 3.1 \text{ Hz}$ $\sigma_{y}(\text{min}) \sim 5 \cdot 10^{-15} \text{ s}^{-1/2}$

- two traps agree within a few Hz
- shift due to stray fields

Sub-Doppler Cooling of Calcium

first stage:

• $T \approx 3 \text{ mK}$

second stage: quench-cooling:

• T $\approx 10 \ \mu K$

T. Binnewies et al., PRL 87, 123002-1 (2001)

Time-Domain Atom Interferometers

asymmetric atom interferometer $\Delta \Phi_{a} = [2\pi(\nu - \nu_{0}) + \delta] \cdot 2T + \Phi_{2} - \Phi_{1} + \Phi_{3} - \Phi_{4}$

symmetric atom interferometer $\Delta \Phi_{\rm s} = 2 \Phi_2 - \Phi_1 - \Phi_3$

G. Wilpers et al.: Appl. Phys. B 76, 149 (2003)

Correction of Spatial Phase Errors

 $\Delta \Phi = \text{const} \cdot T^2$

The **const** depends on horizontal allignment and wavefront curvature.

With ultracold atoms the residual shifts due to spatial phases contribute less than 1 Hz (2 x 10^{-15})

horizontal alignment: < 100 µrad (0.3 ')

radius of curvature: R > 6 m(small sensitivity at T=10 μ K)

Correction of Spatial Phase Errors

frequency shift as a function of the pulse separation time T

resolution dependence

instantaneous optical phase during a laser pulse for different AOM center frequencies

measured and calculated shift using optical Bloch equations with measured temporal laser phase

Density-dependent shift at $T \approx 20 \ \mu K$:

 $\Delta v = A \cdot < \rho >$ A = (-2 ± 6) ·10⁻¹¹ Hz cm³

frequency uncertainty u(v) = 0.06 Hz

mean-field energy:

$$E_{\rm MF} = \frac{4\pi\hbar^2 a}{m} n < 0.1\,{\rm Hz}\cdot h$$

s-wave scattering length (50 $a_0 - 300 a_0$)

Uncertainty budget

Effect	T = 12 μK (2003)	T = 12 μK near future
spatial phases - Doppler effect	1.0 Hz	150 mHz
temporal phase contributions	1.6 Hz	200 mHz
asymmetry of line shape	0.05 Hz	50 mHz
magnetic field (64 Hz/mT ²)	0.2 Hz	200 mHz
quadratic Stark effect (E < 2 V/cm)	0.1 Hz	100 mHz
black body radiation oven walls	<mark>3.9 Hz</mark> 0.07 Hz	70 mHz
laser frequency drift	0.1 Hz	100 mHz
influence of cold atom collisions	0.06 Hz	60 mHz
statistical uncertainty of the frequency meas.	3.0 Hz	5 mHz
Cs clock (1 · 10 ⁻¹⁵)	0.5 Hz	
total uncertainty δν	5.5 Hz	370 mHz
total relative uncertainty δv/v	1.2 · 10 ⁻¹⁴	8 · 10 ⁻¹⁶

New Setup

direct loading from thermal atomic beam is replaced by:

- Zeeman slower
- 2-D molasses to deflect slow atoms to MOT region
- better loading rate: 10⁹ trapped atoms within 1 s

no black body shift from the oven

Principle of Clocks

Interrogation Laser

Resonance frequencies: 0.7 Hz vertical, 0.6 Hz horizontal

finesse: 79 000 linewidth (FWHM): 19 kHz

optical phase difference between two lasers power spectrum of the beat

laser linewidth ~ 1 Hz drift 0.06 Hz/s

Measured Stability

 $T_{cycl} = 30 \text{ ms}$)

Optical Frequency Comb

Fiber Laser fs Frequency Comb

reliability and accuracy

Concept of an optical lattice clock

Magic Wavelength no net light shift 10⁷ neutral atoms

H. Katori: Spectroscopy of Strontium Atoms in the Lamb-Dicke
Confinement. In: Proc. of 6th Symposium on Frequency Standards and
Metrology, (P. Gill ed., World Scientific), p. 323 - 330, (2002).

Advantages

- Very long interaction time small line width
- Confinement to the Lamb-Dicke regime $\Delta x < \lambda$ no first-order Doppler effect
- Large number of atoms High signal-to-noise-ratio S/N ~ N^{1/2}
- Prospects to surpass this quantum limit with entangled states

Optical Lattice Clock

Earth alkali elements Mg, Ca, Sr and Yb, Hg have metastable ³P₀ state

- accessible by 1 photon transition in fermionic isotopes, $\Delta v \sim mHz$
- or by 2 and 3 photon Raman transitions also in bosonic isotopes
- "magic wavelengths"
- efficient cooling possible

Theory:

using available atomic data and adjusting line strength of the 2 most important transitions

magic wavelengths:

³P₁ : (800.8 ± 2.2) nm

³P₀ : (735.5 ± 20) nm

Degenhardt et al. PRA 70, 023414 (2004)

Optical dipole trap

30 ms

- Conservative light forces in focused laser beam to trap atoms
- Trap depth: 8 W @ 514 nm, $w_0 = 50 \ \mu m \Rightarrow U_{dip} = 40 \ \mu K$
- Loading of dipole trap: overlap with MOT ~ 2 % transfer

0 ms

• Quench-cooling is compatible with trap operation as long as the light-shifts are right ! (poster Felix Vogt)

10 ms 20 ms expansion after turning off the MOT

how close will laser cooling lead towards quantum degeneracy ?

Conclusion

- Calcium clock at present frequency uncertainty 1.2 -10⁻¹⁴ negligible collisional frequency shift
- Reliable fiber based femtosecond comb
- Measurement of "magic wavelength"
- Optical dipole trap for calcium

Future:

- Uncertainty $\approx 10^{-15}$ with ballistic atoms
- Clock with instability < 10⁻¹⁶ in one second
- Optical lattice clock with low uncertainty
- Quantum degeneracy

The People

Ca and Sr standards:

Tatiana Nazarova Felix Vogt

Christian Lisdat (U. Hannover) Paul-Eric Pottie Christophe Grain

Fritz Riehle U.S.

former members:

Hardo Stoehr Guido Wilpers (NIST) Tomas Binnewies Carsten Degenhardt Jürgen Helmcke

Frequency measurements:

Harald Schnatz Burghardt Lippard Harald Telle Nils Haverkamp Stefan Weyers

Yb single ion:

Christian Tamm Ekkehard Peik Tobias Schneider

Funding:

DFG EU CAUAC SFB 407

SFB 407: Quantum-limited measurements with photons, atoms and molecules

