Superradiant light scattering from a Bose-Einstein condensate

Rob Ballagh & James Douglas

University of Otago Dunedin New Zealand

Background

- An old topic of laser physics
 - Haake, Bonifacio, *PRA*, *4*, 302, (1971)
 - Gross, Haroche, *Physics Repts, 93,302, (1982)*
- In the context of cold atoms
 - Bonafacio, CARL, PRA, 50, 1776 (1994)

Experiment • Ketterle, Science, 285, 571 (1999) [Nature 1999, PRL 2000, Science 2003]

Experiment - Kozuma et al , *Science 286,2309, (1999)*

• Moore, Meystre, PRL, 83, 5202 (1999)

This Talk

- Obtain full spatio-temporal description of BEC superradiance
- Review experimental scenario
- Outline theoretical formalism
- Simulation results
 - solutions in 2D and 3D for condensate and light
 - survey of regimes
 - effects of condensate nonlinearity
 - Decoherence rates

Experiment by Ketterle's group

Science, 285, 571, (1999)

Time development of condensate momentum distribution

Corresponding scattered light

A Basic Mechanism

Each scattering event transfers to C.O.M of each atom

net energy
$$\hbar \delta = \hbar (\omega_1 - \omega_2)$$

:
net momentum : $\hbar \mathbf{q} = \hbar (\mathbf{k}_1 - \mathbf{k}_2)$
 $\hbar^2 (\mathbf{l} \mathbf{s}' + \mathbf{q})^2 = \hbar^2 (\mathbf{l} \mathbf{s}')^2$

associated recoil energy $\hbar \omega_{recoil} = \frac{\hbar^2 (\mathbf{k} + \mathbf{q})^2}{2m} - \frac{\hbar^2 (\mathbf{k})^2}{2m}$ Resonant process; require $\delta \approx \omega_{recoil}$

Formalism

$$\hat{H} = \hat{H}_{atom} + \hat{H}_{rad} + \hat{H}_{atom-pump} + \hat{H}_{atom-rad} + \hat{H}_{atom-atom}$$

$$\begin{split} \hat{H}_{atom} &= \int d^{3}\mathbf{r} \left[\hat{\Psi}_{g}^{\dagger}(\mathbf{r}) \left(-\frac{\hbar^{2}}{2m} \nabla^{2} + \hbar \omega_{g} + V_{g}(\mathbf{r}) \right) \hat{\Psi}_{g}(\mathbf{r}) + (g \to e) \\ \hat{H}_{rad} &= \hbar \sum_{\mathbf{k}} \omega_{k} \hat{a}^{\dagger}(\mathbf{k}) \hat{a}(\mathbf{k}) \\ \hline \mathbf{Interactions} \\ \hat{H}_{atom-rad} &= -i\hbar \sum_{\mathbf{k}} \int d^{3}\mathbf{r} g(\mathbf{k}) \hat{\Psi}_{e}^{\dagger}(\mathbf{r}) \hat{a}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{r}} \hat{\Psi}_{g}(\mathbf{r}) + h.c. \quad \text{vacuum radiation} \\ \hat{H}_{atom-pump} &= \frac{\hbar \Omega_{0}}{2} e^{-i\omega_{L}t} \int d^{3}\mathbf{r} \hat{\Psi}_{e}^{\dagger}(\mathbf{r}) e^{i\mathbf{k}_{L}\cdot\mathbf{r}} \hat{\Psi}_{g}(\mathbf{r}) + h.c. \quad \begin{array}{c} \text{Classical} \\ \text{laser field} \\ \hat{H}_{atom-atom} &= \frac{\hbar U_{o}}{2} \int d^{3}\mathbf{r} \hat{\Psi}_{g}^{\dagger}(\mathbf{r}) \hat{\Psi}_{g}^{\dagger}(\mathbf{r}) \hat{\Psi}_{g}(\mathbf{r}) \quad \begin{array}{c} \text{Ground state} \\ \text{collisions} \end{array} \end{split}$$

Fundamental Equations

$$\begin{split} \frac{\partial \hat{\Psi}_{e}(\mathbf{r})}{\partial t} &= \frac{1}{i\hbar} [\hat{\Psi}_{e}(\mathbf{r}), \hat{H}] = i \left(\frac{\hbar}{2m} \nabla^{2} - \frac{1}{\hbar} V_{e}(\mathbf{r}) - \omega_{eg} \right) \hat{\Psi}_{e}(\mathbf{r}) \\ &- \frac{i\Omega_{0}}{2} e^{-i\omega_{L}t} \hat{\Psi}_{g}(\mathbf{r}) e^{i\mathbf{k}_{L}\cdot\mathbf{r}} - \sum_{\mathbf{k}} g(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{r}} \hat{a}(\mathbf{k}) \hat{\Psi}_{g}(\mathbf{r}) \\ &\quad \mathbf{absorb \ laser \ photon} \qquad \mathbf{absorb \ scattered \ photon} \\ \frac{\partial \hat{\Psi}_{g}(\mathbf{r})}{\partial t} &= \frac{1}{i\hbar} [\hat{\Psi}_{g}(\mathbf{r}), \hat{H}] = i \left(\frac{\hbar}{2m} \nabla^{2} - \frac{1}{\hbar} V_{g}(\mathbf{r}) - U_{0} \hat{\Psi}_{g}^{\dagger}(\mathbf{r}) \hat{\Psi}_{g}(\mathbf{r}) \right) \hat{\Psi}_{g}(\mathbf{r}) \\ &- \frac{i\Omega_{0}^{*}}{2} e^{i\omega_{L}t} \hat{\Psi}_{e}(\mathbf{r}) e^{-i\mathbf{k}_{L}\cdot\mathbf{r}} + \sum_{\mathbf{k}} g(\mathbf{k}) e^{-i\mathbf{k}\cdot\mathbf{r}} \hat{a}^{\dagger}(\mathbf{k}) \hat{\Psi}_{e}(\mathbf{r}) \\ \frac{\partial \hat{a}(\mathbf{k})}{\partial t} &= \frac{1}{i\hbar} [\hat{a}(\mathbf{k}), \hat{H}] = -i\omega_{k} \hat{a}(\mathbf{k}) + \int d^{3}\mathbf{r}g(\mathbf{k}) \hat{\Psi}_{g}^{\dagger}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}} \hat{\Psi}_{e}(\mathbf{r}) \end{split}$$

Assume $\Delta = \omega_L - \omega_{ea} \gg \gamma$ **Einstein A coefficient** Adiabatically eliminate internal upper state Gives for scattered photon (in slowly varying form $\hat{a}'(\mathbf{k}) = \hat{a}(\mathbf{k})e^{i\omega_L t}$) $\frac{\partial \hat{a}'(\mathbf{k})}{\partial t} = i\Delta_L(k)\,\hat{a}'(\mathbf{k}) + \frac{\Omega_0}{2\Delta}g(\mathbf{k})\int d^3\mathbf{r}e^{i(\mathbf{k}_L - \mathbf{k})\cdot\mathbf{r}}\left(\hat{\Psi}_g^{\dagger}(\mathbf{r})\hat{\Psi}_g(\mathbf{r})\right) + O(g^2)$ $\Delta_L(k) = \omega_L - \omega_k$ laser couples to ground state density grating And for ground state field light shift $\frac{\partial \hat{\Psi}_g(\mathbf{r})}{\partial t} = i \left[\frac{\hbar}{2m} \nabla^2 - \frac{1}{\hbar} V_g(\mathbf{r}) - \left(\frac{|\Omega_0|^2}{4\Lambda} \right) - U_0 \hat{\Psi}_g^{\dagger}(\mathbf{r}) \hat{\Psi}_g(\mathbf{k}) \right]$ $\begin{array}{c} \text{light} \\ \text{scattering} \\ \text{terms} \end{array} + \frac{1}{2\Delta} \sum_{\mathbf{k}} \left(i\Omega_0^* g(\mathbf{k}) e^{-i(\mathbf{k}_L - \mathbf{k}) \cdot \mathbf{r}} \hat{a}'(\mathbf{k}) + h.c. \right) \end{array} \hat{\Psi}_g(\mathbf{r}) + O(g^2)$ terms scatter *into* laser mode out of second order laser mode scattering

Classical field representation

Wigner function treatment

$$\begin{split} \hat{\Psi}_g(\mathbf{r},t) &\to \sqrt{N_0} \Psi(\mathbf{r},t) + & \text{Half particle of noise on each mode initially} \\ \hat{a}'(\mathbf{k},t) &\to \alpha(\mathbf{k},t) & \text{(neglect vacuum radiation noise)} \end{split}$$

Find expression for scattered photon amplitude

Take matter 'wavefunction' to momentum representation

$$\Phi(\mathbf{k}) = \frac{1}{\sqrt{V}} \int d\mathbf{r} \Psi(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}} \quad ; \quad \Psi(\mathbf{r}) = \frac{1}{\sqrt{V}} \sum_{\mathbf{k}} \Phi(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{r}}$$

Dominant behaviour of matter wave in momentum space...

$$\frac{\partial \Phi(\mathbf{k})}{\partial t} = -i \left[\frac{\hbar k^2}{2m} + \frac{|\Omega_0|^2}{4\Delta} \right] \Phi(\mathbf{k}) + \dots$$

So introduce slowly varying wave function (in momentum space) $\Phi'(\mathbf{k},t) = \Phi(\mathbf{k},t)e^{i(\frac{\hbar k^2}{2m} + \frac{|\Omega_0|^2}{4\Delta})t}$ Equation for scattered photon becomes

$$\begin{split} \frac{\partial \alpha(\mathbf{k})}{\partial t} &= i\Delta_L\left(k\right)\alpha(\mathbf{k}) + \frac{\Omega_0 g(\mathbf{k})N_0}{2\Delta}\sum_{\mathbf{k}'} \Phi'(\mathbf{k}')\Phi'^*(\mathbf{k}'+\mathbf{k}_L-\mathbf{k})e^{i\Delta_{\mathbf{k}',\mathbf{k}_L-\mathbf{k}}^R t} \\ \text{where} \qquad & \hbar\Delta_{\mathbf{k}',\mathbf{k}_L-\mathbf{k}}^R = E(\mathbf{k}'+\mathbf{k}_L-\mathbf{k}) - E(\mathbf{k}') \\ \text{ntegrate photon equation} \qquad (\text{ignore radiation noise}) \\ \alpha(\mathbf{k},t) &= \frac{\Omega_0 g(\mathbf{k})N_0}{2\Delta} \int_0^t ds e^{i(\Delta_L(k)-\Delta^R)s} \sum_{\mathbf{k}'} \Phi'(\mathbf{k}',t-s)\Phi'^*(\mathbf{k}'+\mathbf{k}_L-\mathbf{k},t-s) \\ \Delta_L\left(k\right) \quad \text{very fast, photons stay in system for time } L/c \end{split}$$

 $\Phi^{'}$ condensate, slow

Make **Markov** approximation, to give **photon amplitude** at time *t*

$$\alpha(\mathbf{k},t) = \frac{\pi \Omega_0 g(\mathbf{k}) N_0}{\Delta} \sum_{\mathbf{k}'} \delta\left(\Delta^R - \Delta_L(k)\right) \Phi(\mathbf{k}',t) \Phi^*(\mathbf{k}'+\mathbf{k}_L-\mathbf{k},t)$$

Finally, scattered photon amplitude

$$\begin{aligned} \alpha(\mathbf{k},t) &= \frac{\pi\Omega_0 g(\mathbf{k}) N_0}{cdk\Delta} \mathcal{F}(k=k_L) \tilde{\rho}(\mathbf{k}-\mathbf{k}_L,t) \\ \text{where} \quad \tilde{\rho}(\mathbf{k}-\mathbf{k}_L,t) = \int d^3 \mathbf{r} |\Psi(\mathbf{r},\mathbf{t})|^2 e^{-i(\mathbf{k}-\mathbf{k}_L)\cdot\mathbf{r}} \\ \text{and} \quad \mathcal{F}(k=k_L) \text{ is the discrete version of the delta function} \\ \hline \textit{Then we get} \qquad \hline \textit{Gross-Pitaevskii Superadiance equation} \\ \frac{\partial\Psi(\mathbf{r},t)}{\partial t} &= i \left[\frac{\hbar}{2m} \nabla^2 - \frac{|\Omega_0|^2}{4\Delta} - U_0 N_0 |\Psi(\mathbf{r},t)|^2 \\ &+ i \sum_{\mathbf{k}} G\left(\mathbf{k}\right) \mathcal{F}(k=k_L) \left(e^{-i(\mathbf{k}_L-\mathbf{k})\cdot\mathbf{r}} \tilde{\rho}(\mathbf{k}-\mathbf{k}_L,t) - c.c.\right) \right] \Psi(\mathbf{r},t) \end{aligned}$$

$$G(\mathbf{k}) = \frac{|\Omega_0|^2 \gamma}{4\Delta^2} N_0 \left(\frac{dk^2}{4\pi k_L^2}\right) \frac{3}{2} |\mathbf{\hat{e}}_d \cdot \mathbf{\hat{e}}_k^*|^2$$

Scattering rate (per mode) below threshold

Total photon scattering rate from one atom

Results

- Release condensate from trap, then apply laser
- In our simulations

units of time
$$t_0 = \frac{1}{\omega_{trap}}$$
; length $x_0 = \sqrt{\frac{\hbar}{2m\omega_{trap}}}$

- Most of our simulations in 2D (phenomena is primarily 2D)
- Require three dimensionless parameters

Condensate nonlinearity

 $C = \frac{U_0 N_0}{\hbar \omega_{trap} x_0^3}$

$$G = \frac{G\left(\mathbf{k}\right)}{\omega_{trap}}$$

Laser wavenumber

N atom gain

 \mathbf{k}_L

Low laser power

Linear condensate Gain and decoherence rates Effect of condensate shape

Nonlinear condensate

- High laser power
- Coherent matter wave amplifier

 $G \lesssim \omega_{recoil}$

laser

C=0

Superradiant Rayleigh Scattering

 $\mathbf{k}_L = \mathbf{6}$

Momentum Space Evolution $k_0 = 6$, G = 36, $\lambda = 0.1$

J. S. Douglas and R. J. Ballagh

June 2004

Behaviour of scattered radiation

Number of photons scattered into mode **k** per unit time is $|a(\mathbf{k},t)|^2 \frac{c}{L} = G(\mathbf{k}) N_0 \left[\tilde{\rho}(\mathbf{k}-\mathbf{k}_L,t)\right]^2$

Angular distribution of scattered light

 $\frac{\theta_G}{\theta_D} < 1$ Angular spread of radiation is θ_G

 $\frac{\theta_G}{\theta_D} > 1$ Angular spread of radiation is determined by θ_D (but may split into several modes)

Temporal behaviour of scattered atoms

Suggested loss mechanism: due to separation of packets

implies
$$\Gamma \approx \frac{2v}{W}$$

Effect of condensate shape (1)

laser

Low laser power

C=0

Superradiant Rayleigh Scattering

Momentum Space Evolution $k_0 = 6$, G = 36, $\lambda = 1$

J. S. Douglas and R. J. Ballagh

June 2004

Angular distribution of scattered radiation

Enhancement of forward recoil in spherical geometry

Effect of condensate shape (2)

C=0

Low laser Superradiant Rayleigh Scattering power Momentum Space Evolution

$$k_0 = 6$$
, G = 36, $\lambda = 10$

laser

J. S. Douglas and R. J. Ballagh

June 2004

Effect of condensate nonlinearity

Low laser power

C=*5000*

Superradiant Rayleigh Scattering

Momentum Space Evolution $k_0 = 6$, G = 36, $\lambda = 0.1$, C = 5000

J. S. Douglas and R. J. Ballagh

July 2004

Behaviour of scattered radiation

Superradiance suppressed by condensate nonlinearity

Decoherence rate increases with nonlinearity

High laser power

Ketterle experiment (Science, 300,475,2003)

C=5000

laser

$G \gg \omega_{recoil}$

Superradiant Rayleigh Scattering

Momentum Space Evolution $k_0 = 6$, G = 13000, $\lambda = 0.1$, C = 5000

J. S. Douglas and R. J. Ballagh

July 2004

Behaviour of scattered radiation

temporal

Features of behaviour with high laser power

Three dimensional simulations

Condensate: summed momentum populations

-1 10 10 -2 5 5 k_z 0 k_z -3 0 -5 -5 -4 -10 -10 -5 -5 5 0 k_x -10 10 0 5 k_y k_y 0 G=500 $\mathbf{k}_{L}=5$ k_x 10 -10 0

Three dimensional simulations

Scattered light

Zoom

Coherent Matter wave amplifier

Ketterle: Nature,402,641,(1999);PRL,85,4225,(2000) Kozuma et al: Science,286,17,(1999)

Numerical simulation

- seed 0.1%
- superradiant scatter 10%
- Final Bragg scatter 10% (on original condensate)

Fraction of atoms output

Phase

Somewhat similar to Ketterle, but better!

- Mach Zehnder interferometer
- Longer superadiant pulse, 50% scattered
- Observe fringe visibility of 71%
- Two effects

(i) change of shape of scattered condensate(ii) nonlinearity

Summary

- 2D and 3D spatio-temporal treatment of superadiance in BEC by classical field method
- Qualitative agreement with most experimental features
- Insight into effects of nonlinearity, including decoherence effects