EPR, entanglement and macroscopic quantum paradoxes

Eric G. Cavalcanti and Margaret D. Reid University of Queensland, Brisbane

1935: a cool year

- EPR paradox
\rightarrow local realism VS. nonseparability (entanglement)

Schroedinger's Cat

\rightarrow macroscopic realism VS. macroscopic superpositions

EPR Paradox

- Positions x_{A} and x_{B} and momenta p_{A} and p_{B} are perfectly correlated
- With the assumption of local realism;
- one can predict with certainty the result of both x and p by measuring at $B=>$ elements of reality
- But for any quantum state

$$
\begin{aligned}
& \qquad \Delta x \Delta p \geq \hbar / 2 \\
& \Rightarrow \text { Either local realism is false or } \mathrm{QM} \text { is incomplete }
\end{aligned}
$$

Macroscopic Superpositions

- Copenhagen Interpretation
\square quantum world / macroscopic world ; ill-defined boundary
- Decoherence does not solve the problem
- Alternative theories to QM (dynamical collapse theories) aim to determine a limit
\square Ex: Ghirardi, Rimini, Weber and Pearle (GRWP)
length scale (a) rate scale (λ)
- Development of experimental techniques start to make it a feasible programme to push the boundary
- How to experimentally identify a "Schroedinger Cat"?
- Indirectly (dynamical signatures)
- Directly (measurement statistics)

Macroscopic variable ξ

In general

$$
\begin{equation*}
\rho=\sum_{R} P_{R}\left|\psi_{R}\right\rangle\left\langle\psi_{R}\right| . \tag{1}
\end{equation*}
$$

Where (assuming that we have two particles at A and B)

$$
\begin{equation*}
\left|\psi_{R}\right\rangle=\sum_{i, r} c_{i, r}^{R}\left|o_{i}\right\rangle_{A}\left|o_{r}\right\rangle_{B} \tag{2}
\end{equation*}
$$

To prove the existence of a macroscopic superposition, we want to prove the existence in expansion (1) of

$$
\begin{equation*}
\left|\psi_{R}\right\rangle=c_{+}^{R}\left|\psi_{+}\right\rangle+c_{-}^{R}\left|\psi_{-}\right\rangle, \tag{3}
\end{equation*}
$$

where $\left|\psi_{+}\right\rangle=\sum_{o_{i} \in \lambda_{+}, r} c_{i, r}^{R}\left|o_{i}\right\rangle_{A}\left|o_{r}\right\rangle_{B} \quad$, and similarly for $\left|\psi_{-}\right\rangle$
It is easy to see that if there is no superposition of the type (3), the density matrix can be written as

$$
\begin{equation*}
\rho_{m i x}=P_{+}^{0} \rho_{+}+P_{-}^{0} \rho_{-} \tag{4}
\end{equation*}
$$

Proof of failure of (4) is then proof of the existence of a superposition of type (3).

Inequalities for a single system

In any system which can be described by mixture (4), the variances of two observables ξ and η satisfy

$$
\begin{equation*}
\Delta \xi \Delta \eta \geq \Delta_{\text {ave }} \xi \Delta \eta \geq \sum_{\lambda} P_{\lambda}^{0} \chi_{\lambda} \tag{5}
\end{equation*}
$$

$\Delta_{\lambda} \xi \Delta_{\lambda} \eta \geq \chi_{\lambda} \quad$-> Heinsenberg Uncertainty Relation
Defining an average variance
$\Delta_{a v e}^{2} \xi=\sum_{\lambda} P_{\lambda} \Delta_{\lambda}^{2} \xi$
If mixture (4) is valid, then

$$
\begin{gathered}
{[\hat{A}, \hat{B}]=i \hat{C}} \\
\Delta^{2} A \Delta^{2} B \geq \frac{1}{4}|\langle C\rangle|^{2}
\end{gathered}
$$

$\Delta^{2} \xi \geq \Delta_{a v e}^{2} \xi$, and similarly for η
=> By the Cauchy-Schwarz inequality, result (5) follows

Inequalities for composite systems

Given a system composed of two subsystems A and B and a third observable O^{B} to be measured at subsystem B;
We define an average inference variance of ξ given a particular result $O_{i}{ }_{i}$

$$
\Delta_{i n f}^{2} \xi=\sum_{i} P\left(O_{i}^{B}\right) V\left[\xi \mid O_{i}^{B}\right]
$$

therefore $\Delta^{2} \xi \geq \Delta_{\text {inf }}^{2} \xi$, and similarly for η
The uncertainty relations now read

$$
\begin{aligned}
V\left[\xi \mid O_{i}^{B}\right] V\left[\eta \mid O_{i}^{B}\right] & \geq\left(w_{i}^{\lambda}\right)^{2} \\
\Delta_{i n f, \lambda} \xi \Delta_{i n f, \lambda} \eta \geq \bar{w}^{\lambda} \quad \bar{w}^{\lambda} & =\sum_{i} P_{\lambda}\left(O_{i}^{B}\right) w_{i}^{\lambda}
\end{aligned}
$$

If mixture (4) is valid, then by the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\Delta \xi \Delta_{\text {inf }} \eta \geq \Delta_{\text {ave }} \xi \Delta_{\text {inf }} \eta \geq \sum_{\lambda} P_{\lambda}^{0} \bar{w}^{\lambda} \tag{8}
\end{equation*}
$$

Example: two-mode squeezed state

$$
|\psi\rangle=\sum_{n=0}^{\infty} c_{n}|n\rangle_{A}|n\rangle_{B} \quad c_{n}=\tanh ^{n} r / \cosh r
$$

Defining the quadrature operators

$$
\begin{aligned}
& \hat{x}=\left(\hat{a}^{\dagger}+\hat{a}\right), \hat{p}=i\left(\hat{a}^{\dagger}-\hat{a}\right) \\
& \hat{x}^{B}=\left(\hat{b}^{\dagger}+\hat{b}\right), \hat{p}^{B}=i\left(\hat{b}^{\dagger}-\hat{b}\right)
\end{aligned}
$$

They obey the HUP

$$
\Delta^{2} x \Delta^{2} p \geq 1
$$

The probability distribution for x is a gaussian

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-x^{2} / 2 \sigma} \text { where } \sigma=\cosh 2 r
$$

This system presents the EPR correlations

$$
\begin{aligned}
& x=x^{B} \\
& p=-p^{B}
\end{aligned}
$$

with inference variances

$$
V\left[x \mid x_{i}^{B}\right]=V\left[p \mid p_{i}^{B}\right]=1 / \cosh 2 r
$$

With the binning shown in the graph, the variances for each λ are

$$
\Delta_{\lambda}^{2} x=\sigma(1-2 / \pi)=.36 \sigma
$$

To prove the existence of superposition between + and -, we want to violate the inequality

$$
\Delta_{\text {ave }} x \Delta_{\text {inf }} p \geq 1
$$

The two-mode squeezed state does the job:

$$
\Delta_{\text {inf }}^{2} p \Delta_{\text {ave }}^{2} x=.36 \quad \begin{aligned}
& \text {...and that's independent } \\
& \text { of the variance! }
\end{aligned}
$$

For large squeezing, there is a negligible probability of a result in the middle region, as required.
As $r \longrightarrow \infty$, outcomes +1 and -1 become macroscopically distinct

Yet as $r \longrightarrow \infty, \Delta_{\text {ave }}^{2} x \Delta_{\text {inf }}^{2} p=.36 \sigma / \cosh 2 r \longrightarrow .36<1$
proves macroscopic superposition $\left|x_{-}\right\rangle+\left|x_{+}\right\rangle$

I'm still not convinced...

New inequality taking into account the middle region. Violation proves a superposition of size larger than a given s.

Increasing the squeezing we can in principle prove the existence of a superposition of the order of the standard deviation.

What else?

- Discrete (spin) systems
$\square E P R-B o h m$ macroscopic paradox
- Strong proof of violation of macroscopic realism
\square Criteria which don't need the uncertainty principle

Conclusion

- We derived inequalities to experimentally identify superpositions of macroscopically distinguishable states;
- Can be applied to mixed states;
- Two-mode squeezed states violate the appropriate inequality, proving a superposition of the order of the standard deviation;
- Can be used as proof of macroscopic EPR correlations
\rightarrow Either macroscopic realism is false or QM is incomplete
Thank You!

