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“ Seek simplicity, and distrust it.”
    A. N. Whitehead (1861 –  1947)

J. F. Corney and P. D. Drummond, “ Gaussian Quantum Monte Carlo methods 
for fermions and bosons” , Phys. Rev. Lett. (to appear).



Why phase-space methods?Why phase-space methods?

Ultracold gases provide an elegant and well-controlled 
environment for exploring the fundamentals of 
quantum, many-body physics.

theoretical predictions can be tested precisely

need for first-principles calculations

Phase-space methods can do this!
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Fermions and antisymmetric Fermions and antisymmetric 
complexitycomplexity

In QM, particles are indistinguishable: 

for bosons: 

for fermions: 

Nodal structure of antisymmetric wavefunction makes 
fermionic calculation much more difficult



Monte Carlo MethodsMonte Carlo Methods
treat wavefunction as a probability distribution

use Monte Carlo methods to sample this 
multidimensional quantity

write 

for fermions, must keep track of sign
D. M. Ceperley, “ Microscopic simulations in physics,”  Rev. Mod. Phys. 71, 438 (1999).

W. von der Linden, “ A quantum Monte-Carlo approach to many-body physics, Phys. Rep. 220, 
53 (1992).

R. R. dos Santos, “ Intro. to quantum Monte-Carlo simulations for fermionic systems,”  Braz. J. 
Physics 33, 36 (2003). 
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sign or phase



Fermion sign errorFermion sign error
physical quantities are weighted averages:

as             , sampling error gets bad

  http://archive.ncsa.uiuc.edu/Science/CMP/lectures/signs.htmlhttp://archive.ncsa.uiuc.edu/Science/CMP/lectures/signs.html
(google “ sign problem” )(google “ sign problem” )

we can avoid this problem by sampling a distribution 
that is always positive

〈 A 〉~ 〈 sA 〉
〈 s 〉

〈 s 〉0

incorporate antisymmetric structure into the underlying basisincorporate antisymmetric structure into the underlying basis



Phase-space representationsPhase-space representations

density operatordensity operator

phase-space variablesphase-space variablesprobability distributionprobability distribution

operator basisoperator basis



General Gaussian operatorsGeneral Gaussian operators

coherentcoherent
thermalthermal

squeezedsqueezed

a generalisation of the density operators
 that describe Gaussian states 



Why a general Gaussian basis?Why a general Gaussian basis?

complete and positive representation of physical states

no unphysical superpositions 

obeys superselection rules

allows a natural phase-space method for fermions

incorporates thermal and squeezed fluctuations 
(quasiparticles)

suited to ultracold quantum gases!



Extended phase spaceExtended phase space

weighting factor coherent displacements

normal correlations
 themal 

fluctuations

anomalous correlations
 squeezing fluctuations

=0 for fermions

Green's functions



Interacting many-body physicsInteracting many-body physics

many-body problems map to nonlinear stochastic 
equations

calculations can be from first-principles

precision limited only by sampling error

adapt basis to suit the problem

DriftDrift DiffusionDiffusion



Molecule formationMolecule formation

Coherently transfer atoms to bound states, using 
magnetic or optical fields

superchemistry for bosons

BEC to BCS crossover for fermions



Atomic-molecular dynamicsAtomic-molecular dynamics

Pauli blocking for fermions

bosons 
or 
fermionsb1

a

b2



Cold atoms in a latticeCold atoms in a lattice

Bosons in a lattice described by Bose-Hubbard model

Fermions in a lattice described by the Hubbard model

H. T. C.  Stoof, Nature 415, 25  (2002).



Hubbard modelHubbard model

  simplest model of an interacting Fermi gas on a lattice

  solid-state models; relevance to High-T
c
 superconductors

only the 1D model is exactly solvable (Lieb & Wu, 1968) 

higher dimensions - use quantum Monte Carlo methods

except for a few special symmetrical cases, QMC suffers 
from sign problems.

errors increases with dimension, lattice size, interaction 
strength

atomic interactionsatomic interactionsinterwell tunnellinginterwell tunnelling



Applying the Gaussian method (1 / 4)Applying the Gaussian method (1 / 4)

goal: solve the Grand canonical distribution:

but this is impossible ! (except for  τ = 0)

so rewrite as equation for temperature evolution:

scaled, inverse scaled, inverse 
temperaturetemperature
=1/k=1/k

BB
TTtotal numbertotal number

chemical potentialchemical potentialunnormalised unnormalised 
density operatordensity operator



Applying the Gaussian method (2 / 4)Applying the Gaussian method (2 / 4)

apply mappings:

Fokker-Planck equation for  P 

contains drift and diffusion

sample with stochastic equations

J. F. Corney and P. D. Drummond, cond-mat/0411712.



Applying the Gaussian method (3 / 4)Applying the Gaussian method (3 / 4)

How to get positive diffusion?

modify interaction term with a 'Fermi gauge': 

 get a positive-definite diffusion matrix

realise the diffusion with a real noise process

problem maps to a real (and much more stable) 
subspace



Applying the Gaussian method (4 / 4)Applying the Gaussian method (4 / 4)

final (Stratonovich) equations:

where:



1D lattice –  100 sites1D lattice –  100 sites



BranchingBranching

averages are weighted, e.g. 

but weights spread exponentially 

many irrelevant paths

so delete low-weight paths and clone high-weight 
paths

branching algorithm increases sampling efficiency



2D –  16x16 sites2D –  16x16 sites

  sign problemsign problem
  for QMC!for QMC!



Summary: Hubbard simulationsSummary: Hubbard simulations

Gaussian operator basis for density operator

first-principles, finite temperature calculations of 
Hubbard model

1, 2 and 3D simulations, up to 400 sites on a p.c. 

simple branching algorithm for weighted paths

no evidence of a sign problem!



What's ahead for Gaussian methods?What's ahead for Gaussian methods?

optimise for large lattices - memory, parallel machines

optimise sampling - more sophisticated methods

study continuous Fermi gas (BEC-BCS crossover)

study atomic-molecular condensates

explore first-principles dynamical (real-time) 
calculations



ConclusionsConclusions

Gaussian phase-space methods are well-placed to fill this need.Gaussian phase-space methods are well-placed to fill this need.

Ultracold gases are an elegant and well-controlled environment Ultracold gases are an elegant and well-controlled environment 
for exploring the fundamentals of quantum, many-body physics.for exploring the fundamentals of quantum, many-body physics.

The fermionic Gaussian method successfully simulates the The fermionic Gaussian method successfully simulates the 
Hubbard model without sign error.Hubbard model without sign error.

There is a need for simulation methods to study these systemsThere is a need for simulation methods to study these systems
from first principles.from first principles.

There are many more applications to come, for both fermions There are many more applications to come, for both fermions 
and bosons, both dynamical and equilibrium.and bosons, both dynamical and equilibrium.


