
TWO-MODE THEORY

OF

BEC INTERFEROMETRY

B J DALTON

ARC Centre for Quantum-Atom Optics
Centre for Atom Optics and Ultrafast

Spectroscopy
Swinburne University of Technology
Melbourne, Victoria 3122, Australia



INTRODUCTION
 Aim
 Develop a theory of BEC interferometry for case of single
component BEC - all bosons in same spin state.

 Apply to SUT experiment involving magnetic traps on an
atom chip - permanent magnets plus current elements.

 BEC Interferometer
 BEC initially at zero temperature with all bosons in lowest
orbital 1r.

 Trapping potential changes from a single well into a
double well and back again.

 Asymmetry in double well potential leads to
interferometric effects, such as for boson numbers in
excited orbital 2r.

 Interferometer process is depicted in Figure 1. Red
squares indicate bosons, trap potential is shown in red,
typical orbitals are shown in blue or pink.



 Issues
 Does the BEC fragment into two BECs (left well, right
well) during the process?

 What happens to the single boson orbitals
1r, t,2r, t, . as the trap potential changes?

 What excited BEC states are important in the process?

 How are the interferometric measurements, such as the
excited boson probability, related to asymmetry in the
trapping potential?

 How does the interferometer sensitivity depend on the
number of bosons?

 What is the optimum way to change the trap potential
during the process?

 What effect would decoherence, quantum fluctuations,
finite temperatures, .. have?

 Nature of Orbitals
 Single Well - Possible orbitals are shown in Figure 2a.

 Double Asymmetric Well - Possible delocalised orbitals
are shown in Figure 2b.

 Double Asymmetric Well - Possible localised orbitals are
shown in Figure 2c.



 Full Theory - Future work

 Phase space method (based on Drummond et al, PRA
68, 063822, (2003)).

 Stochastic PDE for condensate wave function.

 Quantum fluctuations around mean field (condensate
wave function) treated.

 Decoherence effects due BEC coupling to reservoirs,
classical fluctuations in trap potentials, ..included.

 Presence of excited states of BEC (single boson,
collective, ..) during process allowed for.

 Multimode and fragmentation effects incorporated.

 Finite temperature effects included.

 Boson number unrestricted.

 Simple Theory - Present work

 Variational approach based on two-mode approximation
with time dependent orbitals (based on Menotti et al, PRA
63, 023601 (2001)) and using spin operators.

 Self-consistent coupled equations for amplitudes and
orbitals - Generalised Gross-Pitaevskii equations.

 Decoherence, thermal, multimode effects ignored.

 Boson number, excitations, fluctuations restricted.



THEORY
 Hamiltonian - Kinetic energy, trapping potential,
two-body interaction (zero-range approximation)
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 Field Operators - Bosons
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 Single Boson Orbitals - Orthogonal and
normalised, time dependent in general
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 Annihilation and Creation Operators - Orbital
expansion, time dependent creation, annihilation operators

r ∑
i

cit ir, t 
†
r ∑

i
ci
†
t i

∗r, t

cit, cj
†
t  ij i, j  1,2, . . 

 Two orbitals only in the sum (two-mode approximation).



 Boson Number Operator - Conserved quantity
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 Commutation Rules - Angular momentum theory
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 Angular Momentum Squared - Conserved
quantity
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 Angular momentum squared related to boson number
operator.



 Basis States for BEC System - N bosons

|k  c1
†


N
2 −k

 N
2 − k! 1

2

c2
†


N
2 k

 N
2  k! 1

2
| 0

 This represents a state with  N
2 − k bosons in orbital

1r, t and  N
2  k bosons in orbital 2r, t.

 In general, this is a fragmented state of the N boson
system involving two BECs, not just one.

 Special State - Single BEC
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 This state is a single unfragmented BEC with all bosons in
orbital 1r, t.

 Giant Spin System - Two-mode approximation
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 The BEC behaves as a giant spin system with spin
angular momentum quantum number j  N

2 and with spin
magnetic quantum number k  − N

2 ≤ k ≤ N
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 General Quantum State - State amplitudes
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 This N boson state is a quantum superposition of
fragmented states.

 Normalisation - Conservation of probability
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 Initial Condition - All bosons in single condensate
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 Action - Functional of quantum state |t
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 Minimisation of action for arbitrary variation of state leads
to time-dependent Schrodinger equation (TDSE).

 For restricted variation of state get approximations to
TDSE.



 Principle of Least Action - Action a functional of
amplitudes bkt and orbitals ir, t
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 The action is minimised for arbitrary variation of the
amplitudes and orbitals. The functional derivatives of the
action then are zero.

 The Lagrange multiplier associated with the normalisation
constraint can be transformed away.

 Obtain self-consistent coupled equations for amplitudes
and orbitals - generalised Gross-Pitaevskii equations.

 Application of Least Action Principle
 Hamiltonian can be written in terms of spin operators and
its matrix elements calculated from previous expressions
plus
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 Angular momentum theory method involving step-up and
step-down operators.



 Functions of Orbitals - i, j,m,n  1,2
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 Space integrals of orbitals and their time derivatives.

 Hamiltonian Matrix - − N
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 Space integrals of orbitals and their spatial derivatives.



 Hamiltonian density
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 Quadratic Functions of Amplitudes
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 Coupled Amplitude Equations
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 Matrix elements depend on orbitals ir, t.

 Coupled Generalised Gross-Pitaevskii
Equations for Orbitals
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 Coefficients depend quadratically on amplitudes bkt.

 The combined set of equations for the amplitudes and
orbitals form a self-consistent set.

 Interferometer Measurement - Boson number in
orbital 2r, t
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 Measurement of N2 at end of process depends on
asymmetry and exhibits interferometric effects.



 Initial Conditions
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 In this case only non-zero coefficients are
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 Orbital 1r, t satisfies single GPE as t → 0
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which is consistent with initial condition of all bosons
occupying this orbital.

 Orbital 2r, t is chosen by orthogonality.

 Iterative Method of Solution
 First Step: * Assume know amplitudes bk

* Calculate the Xij and Yijmn

* Solve generalised GPE for orbitals i

 Second Step: * Calculate the Hkl and Ukl

* Solve for amplitudes bk

 Third Step: * Repeat process until solutions converge.

 Direct Method of Solution
 Solution of coupled set of equations via XMDS.



 Regime of Validity - Two-mode theory

 Mean field energy Ng ||2and thermal energy quantum
kBT both small compared to trap phonon energy 0 gives
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with scattering length as and vibrational amplitude
a0  /2m0 (Milburn et al, PRA 55, 4318 (1997)).

 For Rb87 with as 5 nm, a0 1 m, 0 2. 58 s−1, find
N  2. 102 and T  2.8 nK.

 Related Work - Two-mode theory

 Menotti et al, PRA 63, 023601 (2001) write orbitals and
state amplitudes in terms of Gaussian forms with a total of
four variational functions. Coupled self-consistent equations
are derived for these. Dynamical BEC splitting,
fragmentation, collapses and revivals treated.

 Spekkens et al, PRA 59, 3868 (1999) use variational
principle and spin operator methods for static, symmetrical
potential cases to derive self-consistent coupled equations
for state amplitudes and orbitals - generalised time
independent GPE. Static BEC fragmentation found.

 Cederbaum et al, PRA 70, 023610 (2004) predict
fragmented excited BEC states in the static case using
generalised time independent GPE derived using
variational methods.



 Numerous papers exist treating BEC dynamics in a
double well potential assuming fixed orbitals or assuming
that no BEC fragmentation occurs. Spin operators based on
fixed orbitals are also widely used.



SUMMARY
 Using the two-mode approximation and treating the N
bosons as a giant spin system, a theory of BEC
interferometry has been developed based on applying the
Principle of Least Action to a variational form for the
quantum state which allows for a possible fragmentation of
the BEC.

 Self-consistent coupled equations are obtained for the
state amplitudes and the orbitals, the latter being a
generalisation of the Gross-Pitaevskii equations.

 Numerical studies of these equations are planned with the
aim of applying the results to future BEC interferometry
experiments at Swinburne University of Technology
involving a double well interferometer based on an atom
chip.


