TWO-MODE THEORY

OF

BEC INTERFEROMETRY

B J DALTON

ARC Centre for Quantum-Atom Optics Centre for Atom Optics and Ultrafast Spectroscopy
Swinburne University of Technology Melbourne, Victoria 3122, Australia

INTRODUCTION

- Aim

- Develop a theory of BEC interferometry for case of single component BEC - all bosons in same spin state.
- Apply to SUT experiment involving magnetic traps on an atom chip - permanent magnets plus current elements.

- BEC Interferometer

- BEC initially at zero temperature with all bosons in lowest orbital $\phi_{1}(r)$.
- Trapping potential changes from a single well into a double well and back again.
- Asymmetry in double well potential leads to interferometric effects, such as for boson numbers in excited orbital $\phi_{2}(\mathbf{r})$.
- Interferometer process is depicted in Figure 1. Red squares indicate bosons, trap potential is shown in red, typical orbitals are shown in blue or pink.

- Issues

- Does the BEC fragment into two BECs (left well, right well) during the process?
- What happens to the single boson orbitals
$\phi_{1}(r, t), \phi_{2}(r, t)$, as the trap potential changes?
- What excited BEC states are important in the process?
- How are the interferometric measurements, such as the excited boson probability, related to asymmetry in the trapping potential?
- How does the interferometer sensitivity depend on the number of bosons?
- What is the optimum way to change the trap potential during the process?
- What effect would decoherence, quantum fluctuations, finite temperatures, .. have?

- Nature of Orbitals

- Single Well - Possible orbitals are shown in Figure 2a.
- Double Asymmetric Well - Possible delocalised orbitals are shown in Figure 2b.
- Double Asymmetric Well - Possible localised orbitals are shown in Figure 2c.

- Full Theory - Future work

- Phase space method (based on Drummond et al, PRA 68, 063822, (2003)).
- Stochastic PDE for condensate wave function.
- Quantum fluctuations around mean field (condensate wave function) treated.
- Decoherence effects due BEC coupling to reservoirs, classical fluctuations in trap potentials, ..included.
- Presence of excited states of BEC (single boson, collective, ..) during process allowed for.
- Multimode and fragmentation effects incorporated.
- Finite temperature effects included.
- Boson number unrestricted.

- Simple Theory - Present work

- Variational approach based on two-mode approximation with time dependent orbitals (based on Menotti et al, PRA 63,023601 (2001)) and using spin operators.
- Self-consistent coupled equations for amplitudes and orbitals - Generalised Gross-Pitaevskii equations.
- Decoherence, thermal, multimode effects ignored.
- Boson number, excitations, fluctuations restricted.

THEORY

- Hamiltonian - Kinetic energy, trapping potential, two-body interaction (zero-range approximation)

$$
\widehat{H}=\int d r\left(\frac{\hbar^{2}}{2 m} \nabla \widehat{\Psi}^{\dagger} \cdot \nabla \widehat{\Psi}+\widehat{\Psi}^{\dagger} V \widehat{\Psi}+\frac{g}{2} \widehat{\Psi}^{\dagger} \widehat{\Psi}^{\dagger} \widehat{\Psi} \widehat{\Psi}\right)
$$

- Field Operators - Bosons

$$
\left[\widehat{\Psi}(\mathbf{r}), \widehat{\Psi}^{\dagger}\left(\mathbf{r}^{\prime}\right)\right]=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

- Single Boson Orbitals - Orthogonal and normalised, time dependent in general

$$
\int d \mathbf{r} \phi_{i}^{*}(\mathbf{r}, t) \phi_{j}(\mathbf{r}, t)=\delta_{i j}
$$

- Annihilation and Creation Operators - Orbital expansion, time dependent creation, annihilation operators

$$
\begin{gathered}
\widehat{\Psi}(\mathbf{r})=\sum_{i} \widehat{c}_{i}(t) \phi_{i}(\mathbf{r}, t) \quad \widehat{\Psi}^{\dagger}(\mathbf{r})=\sum_{i} \widehat{c}_{i}^{\dagger}(t) \phi_{i}^{*}(\mathbf{r}, t) \\
{\left[\widehat{c}_{i}(t), \widehat{c}_{j}^{\dagger}(t)\right]=\delta_{i j} \quad(i, j=1,2, . .)}
\end{gathered}
$$

- Two orbitals only in the sum (two-mode approximation).
- Boson Number Operator - Conserved quantity

$$
\begin{aligned}
\widehat{N} & =\int d \widehat{\mathrm{~T}}^{\dagger}(\mathrm{r}) \widehat{\Psi}(\mathrm{r}) \\
& =\sum_{i} \widehat{c}_{i}^{\dagger} \widehat{c}_{i}
\end{aligned}
$$

- Spin Operators - Two-mode case

$$
\begin{aligned}
& \widehat{S}_{x}=\left({\widehat{c_{2}}}^{\dagger} \widehat{c_{1}}+{\widehat{c_{1}}}_{\dagger}^{c_{2}}\right) / 2 \\
& \widehat{S}_{y}=\left({\widehat{c_{2}}}^{\dagger} \widehat{c_{1}}-{\widehat{c_{1}}}_{\dagger}^{c_{2}}\right) / 2 i \\
& \widehat{S}_{z}=\left({\widehat{c_{2}}}^{\dagger} \widehat{c_{2}}-\widehat{c_{1}} \dagger \widehat{c_{1}}\right) / 2
\end{aligned}
$$

- Commutation Rules - Angular momentum theory

$$
\left[\widehat{S}_{\alpha}, \widehat{S}_{\beta}\right]=i \epsilon_{\alpha \beta \gamma} \widehat{S}_{\gamma} \quad(\alpha, \beta, \gamma=x, y, z)
$$

- Angular Momentum Squared - Conserved

 quantity$$
\begin{aligned}
(\widehat{S})^{2} & =\sum_{\alpha}\left(\widehat{S}_{\alpha}\right)^{2} \\
& =\frac{\widehat{N}}{2}\left(\frac{\hat{N}}{2}+1\right)
\end{aligned}
$$

- Angular momentum squared related to boson number operator.
- Basis States for BEC System - N bosons

$$
|k\rangle=\frac{\left({\widehat{c_{1}}}^{\dagger}\right)^{\left(\frac{N}{2}-k\right)}}{\left[\left(\frac{N}{2}-k\right)!\right]^{\frac{1}{2}}} \frac{\left({\widehat{c_{2}}}^{\dagger}\right)^{\left(\frac{N}{2}+k\right)}}{\left[\left(\frac{N}{2}+k\right)!\right]^{\frac{1}{2}}}|0\rangle
$$

- This represents a state with $\left(\frac{\mathrm{N}}{2}-k\right)$ bosons in orbital $\phi_{1}(r, t)$ and $\left(\frac{N}{2}+k\right)$ bosons in orbital $\phi_{2}(r, t)$.
- In general, this is a fragmented state of the N boson system involving two BECs, not just one.
- Special State - Single BEC

$$
\left|-\frac{N}{2}\right\rangle=\frac{\left({\widehat{c_{1}}}^{\dagger}\right)^{N}}{[\mathrm{~N}!]^{\frac{1}{2}}}|0\rangle
$$

- This state is a single unfragmented BEC with all bosons in orbital $\phi_{1}(r, t)$.
- Giant Spin System - Two-mode approximation

$$
\begin{aligned}
(\widehat{S})^{2}|k\rangle & =\frac{\mathrm{N}}{2}\left(\frac{\mathrm{~N}}{2}+1\right)|k\rangle \\
\widehat{S}_{z}|k\rangle & =k|k\rangle
\end{aligned}
$$

- The BEC behaves as a giant spin system with spin angular momentum quantum number $j=\frac{N}{2}$ and with spin magnetic quantum number $k\left(-\frac{N}{2} \leq k \leq \frac{N}{2}\right)$.
- General Quantum State - State amplitudes

$$
|\Phi(t)\rangle=\sum_{k=-\frac{N}{2}}^{\frac{N}{2}} b_{k}(t)|k\rangle
$$

- This N boson state is a quantum superposition of fragmented states.
- Normalisation - Conservation of probability

$$
\sum_{k=-\frac{N}{2}}^{\frac{N}{2}}\left|b_{k}(t)\right|^{2}=1
$$

- Initial Condition - All bosons in single condensate

$$
|\Phi(0)\rangle=\left|-\frac{N}{2}\right\rangle
$$

- Action - Functional of quantum state $|\Phi(\mathrm{t})\rangle$

$$
S=\int d t\left(\frac{\left\langle\partial_{t} \Phi \mid \Phi\right\rangle-\left\langle\Phi \mid \partial_{t} \Phi\right\rangle}{2 i}-\frac{\langle\Phi| \hat{H}|\Phi\rangle}{\hbar}\right)
$$

- Minimisation of action for arbitrary variation of state leads to time-dependent Schrodinger equation (TDSE).
- For restricted variation of state get approximations to TDSE.
- Principle of Least Action - Action a functional of amplitudes $\mathrm{b}_{k}(\mathrm{t})$ and orbitals $\phi_{i}(\mathrm{r}, \mathrm{t})$

$$
\begin{aligned}
& \frac{\delta S\left[\mathrm{~b}_{k}, \mathrm{~b}_{k}^{*}, \phi_{i}, \phi_{i}^{*}\right]}{\delta \mathrm{b}_{k}^{*}}=0 \\
& \frac{\delta S\left[\mathrm{~b}_{k}, \mathrm{~b}_{k}^{*}, \phi_{i}, \phi_{i}^{*}\right]}{\delta \phi_{i}^{*}}=0
\end{aligned}
$$

- The action is minimised for arbitrary variation of the amplitudes and orbitals. The functional derivatives of the action then are zero.
- The Lagrange multiplier associated with the normalisation constraint can be transformed away.
- Obtain self-consistent coupled equations for amplitudes and orbitals - generalised Gross-Pitaevskii equations.

- Application of Least Action Principle

- Hamiltonian can be written in terms of spin operators and its matrix elements calculated from previous expressions plus

$$
\begin{aligned}
\widehat{S}_{ \pm}\left|\frac{N}{2}, k\right\rangle & =\left\{\frac{\mathrm{N}}{2}\left(\frac{\mathrm{~N}}{2}+1\right)-k(k \pm 1)\right\}^{\frac{1}{2}}\left|\frac{\mathrm{~N}}{2}, k \pm 1\right\rangle \\
\widehat{S}_{ \pm} & =\widehat{S}_{x} \pm i \widehat{S}_{y}
\end{aligned}
$$

- Angular momentum theory method involving step-up and step-down operators.
- Functions of Orbitals - (i, j, m, n=1,2)

$$
\begin{aligned}
\widetilde{W}_{i j}(\mathrm{r}, t) & =\frac{\hbar^{2}}{2 m} \sum_{\mu=x, y, z} \partial_{\mu} \phi_{i}^{*} \partial_{\mu} \phi_{j}+\phi_{i}^{*} V \phi_{j} \\
\widetilde{V}_{i j m n}(\mathrm{r}, t) & =\frac{g}{2} \phi_{i}^{*} \phi_{j}^{*} \phi_{m} \phi_{n} \\
\widetilde{T}_{i j}(\mathrm{r}, t) & =\frac{1}{2 i}\left(\partial_{t} \phi_{i}^{*} \phi_{j}-\phi_{i}^{*} \partial_{t} \phi_{j}\right)
\end{aligned}
$$

- Rotation Matrix - $\left(-\frac{N}{2} \leq k, l \leq+\frac{N}{2}\right)$

$$
\begin{aligned}
U_{k l}= & \frac{1}{2 i}\left[\left(\partial_{t}\langle k|\right)|l\rangle-\langle k|\left(\partial_{t}|l\rangle\right)\right] \\
= & \int d \widetilde{U}_{k l}\left(\phi_{i}, \phi_{i}^{*}, \partial_{t} \phi_{i}, \partial_{t} \phi_{i}^{*}\right) \\
\widetilde{U}_{k l}= & \widetilde{\mathrm{T}}_{11}\left(\frac{\mathrm{~N}}{2}-\mathrm{k}\right) \delta_{k l}+\widetilde{T}_{22}\left(\frac{\mathrm{~N}}{2}+\mathrm{k}\right) \delta_{k l} \\
& +\widetilde{\mathrm{T}}_{12}\left\{\left(\frac{\mathrm{~N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}\right)\right\}^{\frac{1}{2}} \delta_{k, l+1} \\
& +\widetilde{\mathrm{T}}_{21}\left\{\left(\frac{\mathrm{~N}}{2}-l\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\right\}^{\frac{1}{2}} \delta_{l, k+1}
\end{aligned}
$$

- Space integrals of orbitals and their time derivatives.
- Hamiltonian Matrix - $\left(-\frac{N}{2} \leq k, l \leq+\frac{N}{2}\right)$

$$
\begin{aligned}
H_{k l} & =\langle k| \widehat{H}|l\rangle \\
& =\int d r \widetilde{H}_{k l}\left(\phi_{i}, \phi_{i}^{*}, \partial_{\mu} \phi_{i}, \partial_{\mu} \phi_{i}^{*}\right)
\end{aligned}
$$

- Space integrals of orbitals and their spatial derivatives.
- Hamiltonian density

$$
\begin{aligned}
\widetilde{H}_{k l}= & \widetilde{W}_{11}\left(\frac{\mathrm{~N}}{2}-\mathrm{k}\right) \delta_{k l}-\widetilde{W}_{22}\left(\frac{\mathrm{~N}}{2}+\mathrm{k}\right) \delta_{k l} \\
& +\widetilde{\mathrm{W}}_{12}\left\{\left(\frac{\mathrm{~N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}\right)\right\}^{\frac{1}{2}} \delta_{k, l+1} \\
& +\widetilde{W}_{21}\left\{\left(\frac{\mathrm{~N}}{2}-l\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\right\}^{\frac{1}{2}} \delta_{l, k+1} \\
& +\widetilde{\mathrm{V}}_{1111}\left(\frac{\mathrm{~N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}-\mathrm{k}-1\right) \delta_{k l} \\
& +\left(\widetilde{\mathrm{V}}_{1212}+\widetilde{\mathrm{V}}_{1221}+\widetilde{\mathrm{V}}_{2121}+\widetilde{\mathrm{V}}_{2112}\right)\left(\frac{\mathrm{N}^{2}}{4}-\mathrm{k}^{2}\right) \delta_{k l} \\
& +\widetilde{\mathrm{V}}_{2222}\left(\frac{\mathrm{~N}}{2}+\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}-1\right) \delta_{k l} \\
& +\left(\widetilde{\mathrm{V}}_{1112}+\widetilde{\mathrm{V}}_{1121}\right)\left(\frac{\mathrm{N}}{2}-l\right)\left\{\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}\right)\right\}^{\frac{1}{2}} \delta_{k, l+1} \\
& +\left(\widetilde{\mathrm{V}}_{1222}+\widetilde{\mathrm{V}}_{2122}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\left\{\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}\right)\right\}^{\frac{1}{2}} \delta_{k, l+1} \\
& +\left(\widetilde{\mathrm{V}}_{1211}+\widetilde{\mathrm{V}}_{2111}\right)\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left\{\left(\frac{\mathrm{N}}{2}-\mathrm{l}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\right\}^{\frac{1}{2}} \delta_{l, k+1} \\
& +\left(\widetilde{\mathrm{V}}_{2212}+\widetilde{\mathrm{V}}_{2221}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}\right)\left\{\left(\frac{\mathrm{N}}{2}-\mathrm{l}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\right\}^{\frac{1}{2}} \delta_{l, k+1} \\
& +\widetilde{\mathrm{V}}_{1122}\left\{\left(\frac{\mathrm{~N}}{2}-l+1\right)\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}+1\right)\right\}^{\frac{1}{2}} \delta_{k, l+2} \\
& +\widetilde{\mathrm{V}}_{2211}\left\{\left(\frac{\mathrm{~N}}{2}-\mathrm{k}+1\right)\left(\frac{\mathrm{N}}{2}-l\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}+1\right)\right\}^{\frac{1}{2}} \delta_{l, k+2}
\end{aligned}
$$

- Quadratic Functions of Amplitudes

(i, j, $\mathrm{m}, \mathrm{n}=1,2$), $\left(-\frac{N}{2} \leq k, l \leq+\frac{N}{2}\right)$

$$
\begin{aligned}
X_{i j} & =\sum_{k, l} b_{k}^{*} X_{k l}^{i j} b_{l} \\
Y_{i j m n} & =\sum_{k, l} b_{k}^{*} Y_{k l}^{i j m n} b_{l}
\end{aligned}
$$

$$
X_{k l}^{11}=\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right) \delta_{k l} \quad X_{k l}^{12}=\left\{\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}\right)\right\}^{\frac{1}{2}} \delta_{k, l+1}
$$

$$
X_{k l}^{21}=\left\{\left(\frac{\mathrm{N}}{2}-\mathrm{l}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\right\}^{\frac{1}{2}} \delta_{l, k+1} \quad X_{k l}^{22}=\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right) \delta_{k l}
$$

$$
Y_{k l}^{1111}=\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}-\mathrm{k}-1\right) \delta_{k l}
$$

$$
Y_{k l}^{2222}=\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}-1\right) \delta_{k l}
$$

$$
Y_{k l}^{1212}=Y_{k l}^{1221}=Y_{k l}^{2112}=Y_{k l}^{2121}=\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right) \delta_{k l}
$$

$$
Y_{k l}^{1112}=Y_{k l}^{1121}=\left(\frac{\mathrm{N}}{2}-l\right)\left\{\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}\right)\right\}^{\frac{1}{2}} \delta_{k, l+1}
$$

$$
Y_{k l}^{1222}=Y_{k l}^{2122}=\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\left\{\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}\right)\right\}^{\frac{1}{2}} \delta_{k, l+1}
$$

$$
Y_{k l}^{1211}=Y_{k l}^{2111}=\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left\{\left(\frac{\mathrm{N}}{2}-l\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\right\}^{\frac{1}{2}} \delta_{l, k+1}
$$

$$
Y_{k l}^{2212}=Y_{k l}^{2221}=\left(\frac{\mathrm{N}}{2}+l\right)\left\{\left(\frac{\mathrm{N}}{2}-l\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\right\}^{\frac{1}{2}} \delta l, k+1
$$

$$
Y_{k l}^{1122}=\left\{\left(\frac{\mathrm{N}}{2}-\mathrm{l}+1\right)\left(\frac{\mathrm{N}}{2}-\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}+1\right)\right\}^{\frac{1}{2}} \delta_{k, l+2}
$$

$$
Y_{k l}^{2211}=\left\{\left(\frac{\mathrm{N}}{2}-\mathrm{k}+1\right)\left(\frac{\mathrm{N}}{2}-\mathrm{l}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{k}\right)\left(\frac{\mathrm{N}}{2}+\mathrm{l}+1\right)\right\}^{\frac{1}{2}} \delta_{l, k+2}
$$

- Coupled Amplitude Equations

$$
i \hbar \frac{\partial b_{k}}{\partial t}=\sum_{l}\left(H_{k l}-\hbar U_{k l}\right) b_{l}
$$

- Matrix elements depend on orbitals $\phi_{i}(\mathbf{r}, \mathrm{t})$.

- Coupled Generalised Gross-Pitaevskii

 Equations for Orbitals$$
\begin{aligned}
i \hbar \sum_{j} X_{i j} \frac{\partial \phi_{j}}{\partial t}= & \sum_{j} X_{i j}\left(-\frac{\hbar^{2}}{2 m} \sum_{\mu=x, y, z} \partial_{\mu}^{2} \phi_{j}+V \phi_{j}\right) \\
& +g \sum_{i m n} Y_{i j m n} \phi_{j}^{*} \phi_{m} \phi_{n}
\end{aligned}
$$

- Coefficients depend quadratically on amplitudes $\mathrm{b}_{k}(\mathrm{t})$.
- The combined set of equations for the amplitudes and orbitals form a self-consistent set.
- Interferometer Measurement - Boson number in orbital $\phi_{2}(r, t)$

$$
\begin{aligned}
N_{2} & =\langle\Phi| \widehat{c}_{2}^{\dagger} \widehat{c}_{2}|\Phi\rangle \\
& =\frac{N}{2}+\sum_{k} k\left|b_{k}\right|^{2}
\end{aligned}
$$

- Measurement of N_{2} at end of process depends on asymmetry and exhibits interferometric effects.

- Initial Conditions

$$
b_{k}(0)=\delta_{k,-\frac{N}{2}}
$$

- In this case only non-zero coefficients are

$$
X_{11}(0)=N \quad Y_{1111}(0)=N(N-1)
$$

- Orbital $\phi_{1}(r, t)$ satisfies single GPE as $t \rightarrow 0$

$$
i \hbar \frac{\partial \phi_{1}}{\partial t}=-\frac{\hbar^{2}}{2 m} \sum_{\mu=x, y, z} \partial_{\mu}^{2} \phi_{1}+V \phi_{1}+g(N-1)\left|\phi_{1}\right|^{2} \phi_{1}
$$

which is consistent with initial condition of all bosons occupying this orbital.

- Orbital $\phi_{2}(r, t)$ is chosen by orthogonality.

- Iterative Method of Solution

- First Step: * Assume know amplitudes b_{k}
* Calculate the $X_{i j}$ and $Y_{i j m n}$
* Solve generalised GPE for orbitals ϕ_{i}
- Second Step: * Calculate the $H_{k l}$ and $U_{k l}$ * Solve for amplitudes b_{k}
- Third Step: * Repeat process until solutions converge.

- Direct Method of Solution

- Solution of coupled set of equations via XMDS.

- Regime of Validity - Two-mode theory

- Mean field energy $\mathrm{Ng}|\phi|^{2}$ and thermal energy quantum $\mathrm{k}_{\mathrm{B}} \mathrm{T}$ both small compared to trap phonon energy $\hbar \omega_{0}$ gives

$$
\mathrm{N} \ll \frac{\mathrm{a}_{0}}{\mathrm{a}_{s}} \quad \mathrm{~T} \ll \frac{\hbar \omega_{0}}{\mathrm{k}_{\mathrm{B}}},
$$

with scattering length a_{s} and vibrational amplitude $\mathrm{a}_{0}=\sqrt{\left(\hbar / 2 m \omega_{0}\right)}$ (Milburn et al, PRA 55, 4318 (1997)).

- For Rb^{87} with $\mathrm{a}_{\mathrm{s}}=5 \mathrm{~nm}, \mathrm{a}_{0}=1 \mu \mathrm{~m}, \omega_{0}=2 \pi .58 \mathrm{~s}^{-1}$, find $\mathrm{N} \ll 2.10^{2}$ and $\mathrm{T} \ll 2.8 \mathrm{nK}$.

- Related Work - Two-mode theory

- Menotti et al, PRA 63, 023601 (2001) write orbitals and state amplitudes in terms of Gaussian forms with a total of four variational functions. Coupled self-consistent equations are derived for these. Dynamical BEC splitting, fragmentation, collapses and revivals treated.
- Spekkens et al, PRA 59, 3868 (1999) use variational principle and spin operator methods for static, symmetrical potential cases to derive self-consistent coupled equations for state amplitudes and orbitals - generalised time independent GPE. Static BEC fragmentation found.
- Cederbaum et al, PRA 70, 023610 (2004) predict fragmented excited BEC states in the static case using generalised time independent GPE derived using variational methods.
- Numerous papers exist treating BEC dynamics in a double well potential assuming fixed orbitals or assuming that no BEC fragmentation occurs. Spin operators based on fixed orbitals are also widely used.

SUMMARY

- Using the two-mode approximation and treating the N bosons as a giant spin system, a theory of BEC interferometry has been developed based on applying the Principle of Least Action to a variational form for the quantum state which allows for a possible fragmentation of the BEC.
- Self-consistent coupled equations are obtained for the state amplitudes and the orbitals, the latter being a generalisation of the Gross-Pitaevskii equations.
- Numerical studies of these equations are planned with the aim of applying the results to future BEC interferometry experiments at Swinburne University of Technology involving a double well interferometer based on an atom chip.

