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Overview

• Finite temperature Bose gases.

• Introduction to classical fields.

• Measuring condensate fractions.

• Shift in Tc for interacting Bose gases.

• Summary.
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The challenge for theorists

Can we come up with a practical non-equilibrium

formalism for finite temperature Bose gases?

Desirable features:

•• Can deal with inhomogeneous potentials.

• Can treat interactions non-perturbatively.

• Calculations can be performed on a reasonable time

scale (say under one week).
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Potential applications

Topics of interest include:

• Condensate formation.

• Vortex lattice formation, dynamics

• Low dimensional systems (fluctuations important)

• Correlation functions

• Atom lasers . . .
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Classical field approximation

An example: the classical theory of electromagnetic

radiation resulted in the Rayleigh-Jeans law.

Based on the equipartion theorem :

• Each oscillator mode has energy kBT in equilibrium.

Lord Rayleigh Sir James Jeans
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The UV catastrophe

But we all know it doesn’t work . . .

So Planck says:
“Classical fields are no good”
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However . . .

For the infra-red modes the RJ law
is a good approximation.

Quantum and classical results are
similar for

Ephoton ≤ kBT

Thus we require

• High occupancy per mode.

• An energy cutoff.
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Classical fields for matter waves
The Projected Gross-Pitaevskii equation:

i
dψ(x)

dτ
= Hspψ(x) + CnlP

{

|ψ(x)|2ψ(x)
}

, Cnl =
8πaN

L
.

All modes assumed to be highly occupied.
Projection prevents higher energy modes becoming occupied :

P{F (x)} =
∑

k∈C

φk(x)

∫

d3
x
′ φ∗

k(x
′)F (x′) — prevents UV catastrophe.

Advantages: 1. Relatively easy (i.e possible!) to simulate in 3D.

2. Method is non-perturbative.

However: Atoms above cutoff necessary for real calculations.
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Ergodicity

Begin simulations with random initial conditions

⇒ Result is thermal equilbrium

System is ergodic: time average ≡ ensemble average

Time-averaged column densities in momentum space, TOP trap
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Time-averaged column densities
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Theorists’ criterion for BEC: Penrose-Onsager
⇒ Single-particle density matrix has a macroscopic eigenvalue.

Given ψ(x, t) =
∑

k ck(t)φ(x) we can calculate

ρij = 〈c∗i cj〉 ≈
lim

T→∞
1

T

∫ T

0

c∗i (t)cj(t)dt

Typically have ∼ 2000 states below
cutoff

This can easily be diagonalized on
a workstation

[Also have a microcanonical mea-
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Experimentalists’ measure of BEC

⇒ Fit a bimodal distribution to column density.

Compare the two measures from an
evaporative cooling calculation.
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Shift in critical temperature with interactions
A difficult problem: perturbation theory doesn’t work near Tc.

Several competing phenomena:

• Finite size effects (downwards)

• Mean field effects (downwards)

• Critical fluctuations (upwards)

Homogeneous gas, thermodynamic
limit: ∆Tc/Tc0 = can1/3.

We find c = 1.3 ± 0.4 — agrees with
Monte Carlo calculations.

P. Arnold and G. Moore, PRL 87, 120401 (2001);
V. A. Kashurnikov et al., PRL 87, 120402 (2001).
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Critical temperature for trapped gas
Giorgini et al. estimate downwards shift in Tc due to mean field.

Tc

Tc0

≈ 1.33N 1/6 a

aho

.

Are critical fluctuations important?

We compare PGPE calculations for
a TOP trap to mean-field HFB-
Popov calculations for the same
basis set.
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Comparison with experiment
Careful measurements by Gerbier et al. Phys. Rev. Lett. 92, 030405 (2004).
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Analytic result is an estimate of mean field shift. We will calculate this numerically.
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Other current topics
• Formation of vortices at the phase transition:

⇒ Kibble / Zurek scenario for BECs?

⇒ Only phenomenological time-dependent
Landau-Ginzburg theory to date.

• Vortices in 2D

⇒ Pairing / Kosterlitz-Thouless transition?

• Trapped Bose gases with angular momentum.

. – p.16



Summary

• Finite temperature Bose gases.

• Introduction to classical fields.

• Measuring condensate fractions.

• Shift in Tc for interacting Bose gases.

• Brief mention of the road ahead.

That’s all, folks!
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