Applying the classical field method to experimental Bose condensed systems

Matthew Davis

UQ node, ARC Centre of Excellence for Quantum-Atom Optics.

Blair Blakie

Department of Physics, University of Otago, NZ.

Overview

- Finite temperature Bose gases.
- Introduction to classical fields.
- Measuring condensate fractions.
- Shift in T_c for interacting Bose gases.
- Summary.

The challenge for theorists

Can we come up with a *practical* non-equilibrium formalism for finite temperature Bose gases?

Desirable features:

- Can deal with inhomogeneous potentials.
- Can treat interactions non-perturbatively.
- Calculations can be performed on a reasonable time scale (say under one week).

Potential applications

Topics of interest include:

- Condensate formation.
- Vortex lattice formation, dynamics
- Low dimensional systems (fluctuations important)
- Correlation functions
- Atom lasers ...

Classical field approximation

- An example: the classical theory of electromagnetic radiation resulted in the Rayleigh-Jeans law.
- Based on the equipartion theorem :
 - Each oscillator mode has energy k_BT in equilibrium.

Lord Rayleigh

Sir James Jeans

The UV catastrophe

But we all know it doesn't work ...

So Planck says: "Classical fi elds are no good"

However ...

For the infra-red modes the RJ law is a good approximation.

Quantum and classical results are similar for

$$E_{\rm photon} \le k_B T$$

Thus we require

- High occupancy per mode.
- An energy cutoff.

Classical fields for matter waves

The Projected Gross-Pitaevskii equation:

$$i\frac{d\psi(\mathbf{x})}{d\tau} = H_{\rm sp}\psi(\mathbf{x}) + C_{\rm nl}\mathcal{P}\left\{|\psi(\mathbf{x})|^2\psi(\mathbf{x})\right\}, \qquad C_{\rm nl} = \frac{8\pi aN}{L}.$$

Classical fields for matter waves

The Projected Gross-Pitaevskii equation:

$$i\frac{d\psi(\mathbf{x})}{d\tau} = H_{\rm sp}\psi(\mathbf{x}) + C_{\rm nl}\mathcal{P}\left\{|\psi(\mathbf{x})|^2\psi(\mathbf{x})\right\}, \qquad C_{\rm nl} = \frac{8\pi aN}{L}.$$

All modes assumed to be highly occupied.

Projection prevents higher energy modes becoming occupied :

$$\mathcal{P}\{F(\mathbf{x})\} = \sum_{k \in C} \phi_k(\mathbf{x}) \int d^3 \mathbf{x}' \ \phi_k^*(\mathbf{x}') F(\mathbf{x}') - \text{prevents UV catastrophe.}$$

Classical fields for matter waves

The Projected Gross-Pitaevskii equation:

$$i\frac{d\psi(\mathbf{x})}{d\tau} = H_{\rm sp}\psi(\mathbf{x}) + C_{\rm nl}\mathcal{P}\left\{|\psi(\mathbf{x})|^2\psi(\mathbf{x})\right\}, \qquad C_{\rm nl} = \frac{8\pi aN}{L}.$$

All modes assumed to be highly occupied.

Projection prevents higher energy modes becoming occupied :

$$\mathcal{P}\{F(\mathbf{x})\} = \sum_{k \in C} \phi_k(\mathbf{x}) \int d^3 \mathbf{x}' \ \phi_k^*(\mathbf{x}') F(\mathbf{x}') - \text{prevents UV catastrophe.}$$

Advantages: 1. Relatively easy (i.e possible!) to simulate in 3D.2. Method is non-perturbative.

However: Atoms above cutoff necessary for real calculations.

Begin simulations with random initial conditions

⇒ Result is **thermal equilbrium**

System is **ergodic**: time average \equiv ensemble average

Time-averaged column densities in momentum space, TOP trap

Time-averaged column densities

Theorists' criterion for BEC: Penrose-Onsager

 \Rightarrow Single-particle density matrix has a macroscopic eigenvalue.

Given $\psi(\mathbf{x},t) = \sum_k c_k(t)\phi(\mathbf{x})$ we can calculate

$$\rho_{ij} = \langle c_i^* c_j \rangle \approx \lim_{T \to \infty} \frac{1}{T} \int_0^T c_i^*(t) c_j(t) dt$$

- Typically have $\sim 2000~{\rm states}~{\rm below}$ cutoff
- This can easily be diagonalized on a workstation
- [Also have a microcanonical measure of temperature]

Experimentalists' measure of BEC

Compare the two measures from an evaporative cooling calculation.

. – p.13

Shift in critical temperature with interactions

A diffi cult problem: perturbation theory doesn't work near T_c . Several competing phenomena:

- Finite size effects (downwards)
- Mean fi eld effects (downwards)
- Critical fluctuations (upwards)

Homogeneous gas, thermodynamic limit: $\Delta T_c/T_{c0} = can^{1/3}$.

We find $c = 1.3 \pm 0.4$ — agrees with Monte Carlo calculations.

P. Arnold and G. Moore, PRL 87, 120401 (2001);V. A. Kashurnikov et al., PRL 87, 120402 (2001).

Critical temperature for trapped gas

Giorgini et al. estimate downwards shift in T_c due to mean fi eld.

Are critical fluctuations important?

We compare PGPE calculations for a TOP trap to mean-field HFB-Popov calculations for the same basis set.

Answer: maybe!

Cnl = 0

Cnl = 5e2

Cnl = 2e3

0.8

0.6

0.4

0.2

0

Condensate fraction

Comparison with experiment

Careful measurements by Gerbier et al. Phys. Rev. Lett. 92, 030405 (2004).

Analytic result is an estimate of mean field shift. We will calculate this numerically.

Other current topics

- Formation of vortices at the phase transition:
 - \Rightarrow Kibble / Zurek scenario for BECs?
 - ⇒ Only phenomenological time-dependent Landau-Ginzburg theory to date.
- Vortices in 2D
 - \Rightarrow Pairing / Kosterlitz-Thouless transition?
- Trapped Bose gases with angular momentum.

Summary

- Finite temperature Bose gases.
- Introduction to classical fi elds.
- Measuring condensate fractions.
- Shift in T_c for interacting Bose gases.
- Brief mention of the road ahead.

Summary

- Finite temperature Bose gases.
- Introduction to classical fi elds.
- Measuring condensate fractions.
- Shift in T_c for interacting Bose gases.
- Brief mention of the road ahead.

That's all, folks!