# Ultracold fermion theory @ UQ

P. D. Drummond, J. F. Corney, K. Kheruntsyan, X.-J. Liu, H. Hu\*

Australian Centre for Quantum Atom Optics

\*Scuola Normale Superiore, Pisa.





7th December 2004

## Fermion theory @UQ

- ► Revisit our effective field theory for coupled atom-molecule systems
- ► Analytic result for molecular binding energy
- ► Simple variational theory for BEC/BCS crossover
- ▶ New results for fermion collective modes in lattices,
- ► New Gaussian technique for fermion problems
- ► Solution to Fermi/Hubbard sign problem

## **Simplicity of Ultracold Atoms**

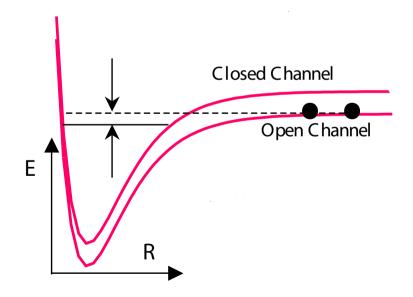
- ✓ underlying interactions well understood, few parameters
- ✓ interactions can be tuned
- ✓ helps understanding of many-body physics
- → apply simple theoretical models to high accuracy
- → novel experimental tests of methods, QFT
- ✓ new tests of massive particle quantum measurements?

### **Recent experiments**

- ► Fermi BCS-BEC experiments: JILA, Duke, Rice, Innsbruck, MIT, Paris (ENS)
- ▶ Bosonic lattice experiments: NIST, Max Planck, Texas
- ► Fermi lattice experiments: Florence (LENS), Zurich
- **► EXPERIMENTS PLANNED AT ACQAO:** 
  - Swinburne: Lithium-6
  - (?) ANU: Helium-3\*

### I: Feshbach Resonance and BEC-BCS

- ► Tunable interactions in ultra-cold quantum gases
- ► Coherent conversion of an atomic gas to a BEC of molecules
- ► Studies of the BCS-BEC crossover regime



## Quantum field theory: K&D 2000

$$H_{0} = \sum_{i=m,1,2} \int d\mathbf{x} \left[ \frac{\hbar^{2}}{2m_{i}} |\nabla \hat{\Psi}_{i}|^{2} + E_{M} \hat{\Psi}_{M}^{\dagger} \hat{\Psi}_{M} \right]$$

$$H_{s} = \sum_{ij} \frac{\hbar U_{ij}}{2} \int d\mathbf{x} \hat{\Psi}_{i}^{\dagger} \hat{\Psi}_{j}^{\dagger} \hat{\Psi}_{j} \hat{\Psi}_{j}$$

$$H_{M \rightleftharpoons A_{1} + A_{2}} = \frac{\hbar \chi}{2} \int d\mathbf{x} \left[ \hat{\Psi}_{M}^{\dagger} \hat{\Psi}_{1} \hat{\Psi}_{2} + H.c. \right]$$

- $\blacktriangleright$   $\hat{\Psi}_{1,2,M}(t,\mathbf{x})$  field operators  $[a_{1,2}(\mathbf{k}), \hat{b}(\mathbf{k})]$
- $ightharpoonup E_M$  'bare' energy detuning;  $U_{ij}$  s-wave scattering
- $\triangleright$   $\chi$  atom-molecule coupling  $(A_1 + A_2 \rightleftharpoons M)$
- One year BEFORE Timmermans or Holland et al :-)

### **Coherent quantum superposition**

**EXACT** quantum ground-state solution, for N = 2:

$$\left|\Psi^{(N)}
ight.
ight.
ight. = \left[\hat{a}_0^\dagger + \sum_k G_k \hat{b}_k^\dagger \hat{c}_{-k}^\dagger
ight]^{N/2} \left|0
ight.
ight.$$

coherent superposition of a molecule with a pair of correlated atoms: "dressed" molecule (K&D 2000)

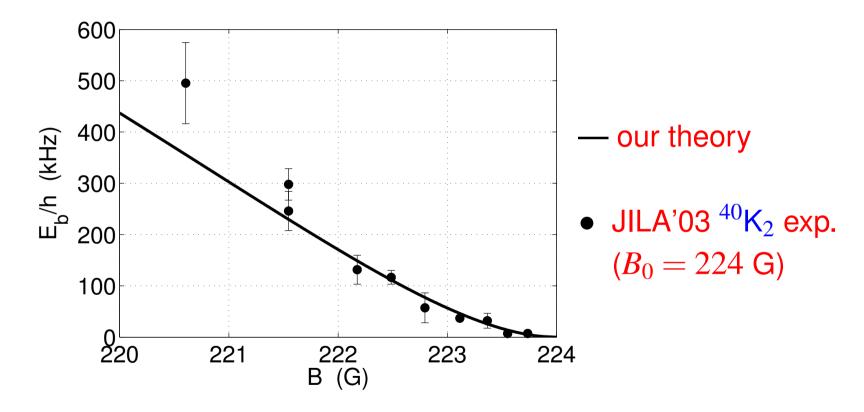
► Renormalised binding energy vs B-field

$$\mathbf{B} = B_0 - \frac{1}{\Delta \mu} \left( \mathbf{E}_b + \frac{sC\hbar \chi_0^2 \sqrt{\mathbf{E}_b}}{1 - 2CU_0 \sqrt{\mathbf{E}_b}} \right), \qquad (E_b \equiv -E)$$

s = 2 for fermions[K&D 2004]

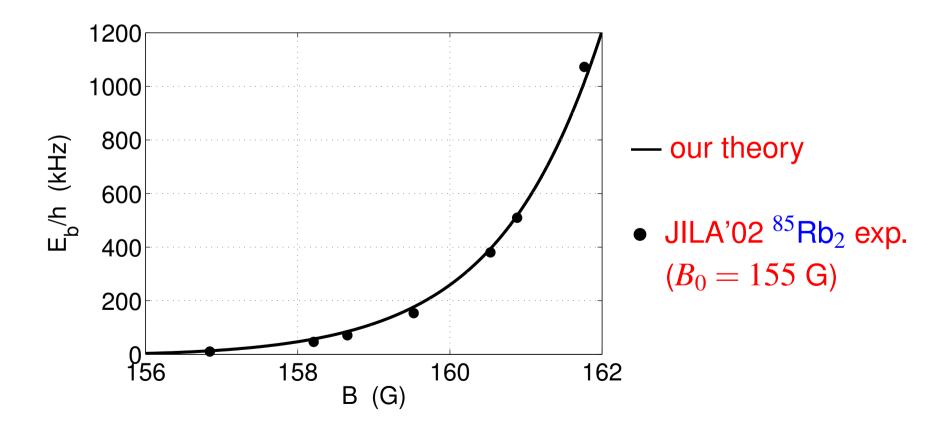
# Molecular binding energy in <sup>40</sup>K<sub>2</sub>

Here, s = 2;  $C = m^{3/2}/(8\pi\hbar^2)$ 

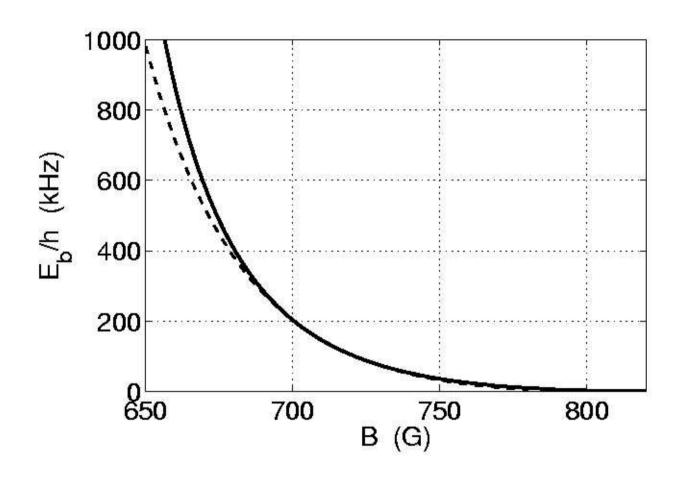


# Bosonic case: <sup>85</sup>Rb<sub>2</sub> dimers [JILA 2002]

The same result, with s=1, applies to the bosonic version of the theory [P.D.Drummond et al., PRL **81**, 3055 (1998)]



# How about <sup>6</sup>Li<sub>2</sub>? [Our theory vs Kokkelmans]



### Variational ansatz: many-body ground-state

Same expression, but with an exponential form for simplicity:

$$|\Psi
angle = \exp\left\{ lpha \left[ \hat{a}_0^\dagger + \sum_k G_k \hat{b}_k^\dagger \hat{c}_{-k}^\dagger 
ight] 
ight\} |0
angle$$

- ► A BEC of modified dressed molecules
- ► Example of a Fermi-Bose Gaussian state(!)
- $\blacktriangleright$  Vary the correlation function  $G_k$  to minimize the energy
- ightharpoonup Vary  $\alpha$  to obtain correct density

#### **Variational solution**

Including renormalization, we obtain two basic gap equations:

$$1 = \widetilde{U}_0 \int_0^K \frac{q^2 dq}{4\pi^2} \left[ \frac{1}{\varepsilon_q} - \frac{1}{E_q} \right]$$

$$n = 2 \left[ \frac{\chi_0 \Delta}{\varepsilon_0^a \widetilde{U}_0} \right]^2 + \int_0^K \frac{q^2 dq}{2\pi^2} \left[ 1 - \frac{U_q}{E_q} \right]$$

Can solve numerically to obtain ground-state energy

### **Conclusions**

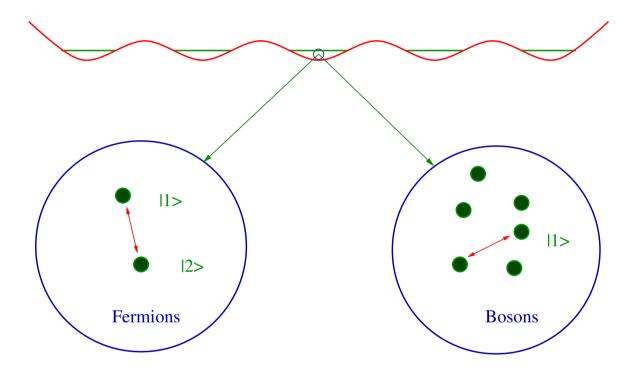
- ▶ Reduces to standard Leggett single-channel BCS crossover model for broad resonance
- ► Similar to Green's function calculations (Holland, Griffin, Ho etc)
- ▶ New features for narrow resonance, ( $\Delta E \leq E_f$ ) high density
- ► Finite temperature and non mft effects under investigation
- ► Role of universality, strong coupling physics?

### **II: Hubbard Model Mott transition**

$$\widehat{H} = -t \sum_{\langle i,j \rangle, \sigma} \widehat{a}_{i,\sigma}^{\dagger} \widehat{a}_{j,\sigma} + U \sum_{j} \widehat{n}_{j,\uparrow} \widehat{n}_{j,\downarrow}$$

- ▶ Simplest model of an interacting Fermi gas
- Describes ultracold gas in an optical lattice
- ▶ Weak-coupling limit → BCS transitions
- ightharpoonup Relevance to high- $T_c$  superconductors?
- ► Test theories of strongly interacting fermions

## Fermionic vs Bosonic Hubbard physics!



#### **TRAPPED 1D FERMI GAS**

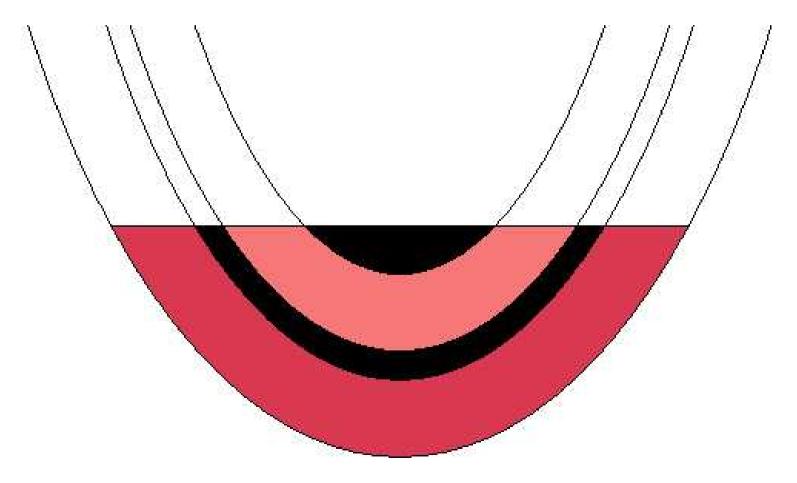
$$\mathcal{H} = -t\sum_{j\sigma} \left( \widehat{a}_{j,\sigma}^{\dagger} \widehat{a}_{j+1,\sigma} + h.c. \right) + U\sum_{j} \widehat{n}_{j,\uparrow} \widehat{n}_{j,\downarrow} + \sum_{j\sigma} \frac{m\omega_0^2 d^2}{2} j^2 \widehat{n}_{j,\sigma},$$

- ► Includes 1D trap potential
- ▶ Use local density approximation
- ► Based on exact solution for 1D Hubbard model

## **Energy Bands in Mott-Insulator regime**

No interactions  $\Longrightarrow$  band insulator when band fills (observed).

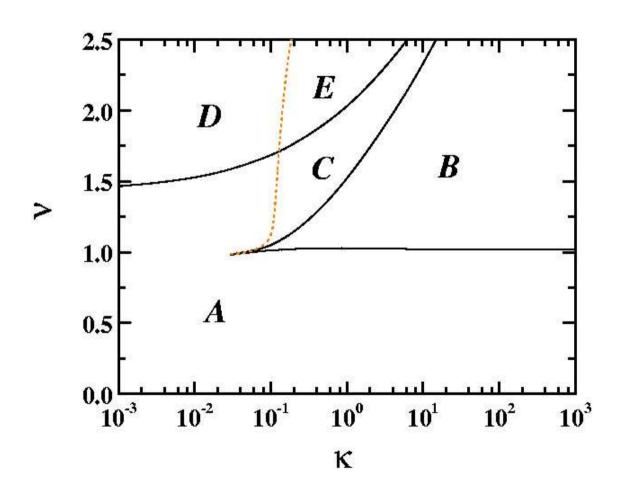
Interactions  $\Longrightarrow$  Mott insulator at half-filling (not yet seen).



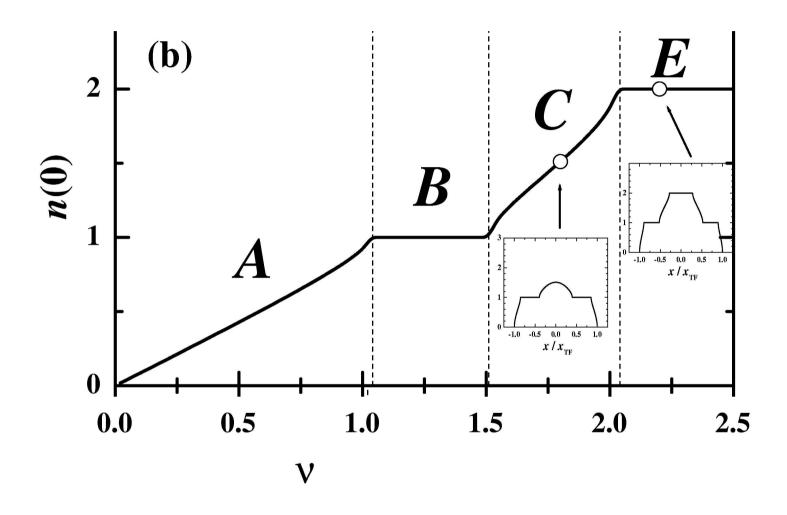
## **Characteristic parameters**

- ► Effective mass:  $m^* = \hbar^2/(2td^2)$
- ▶ Dimensionless trapping frequency:  $\omega = \hbar \omega_0 (m/m^*)^{1/2}/t$ .
- ► Coupling constant  $\kappa = U^2/(8t^2N\omega)$
- ► Effective filling factor  $v = \sqrt{2N\omega}/\pi$

# Phase-diagram vs filling v and coupling k



## Cross-over: Filling vs $\nu$ , at $\kappa=1$



## **Luttinger approximation**

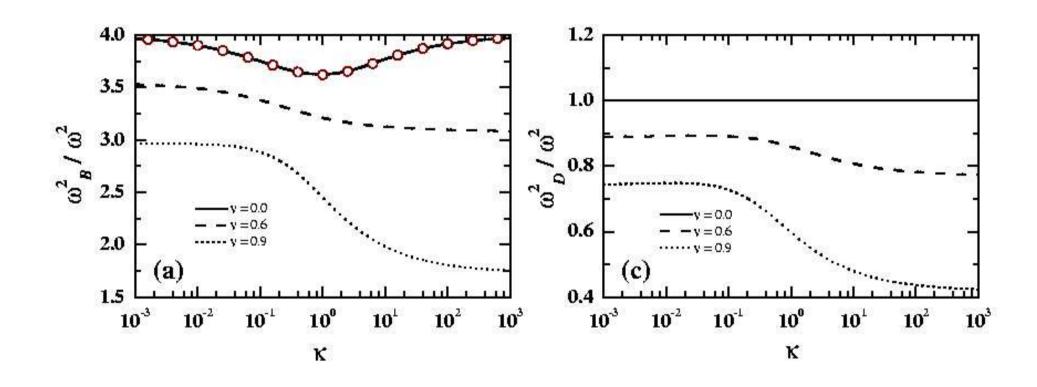
Luttinger long-wavelength Hamiltonian:

$$\mathcal{H}_{LL} = \sum_{\nu=\rho,\sigma} \int dx \frac{u_{\nu}(x)}{2} \left[ K_{\nu}(x) \Pi_{\nu}^{2} + \frac{1}{K_{\nu}(x)} \left( \frac{\partial \phi_{\nu}}{\partial x} \right)^{2} \right].$$

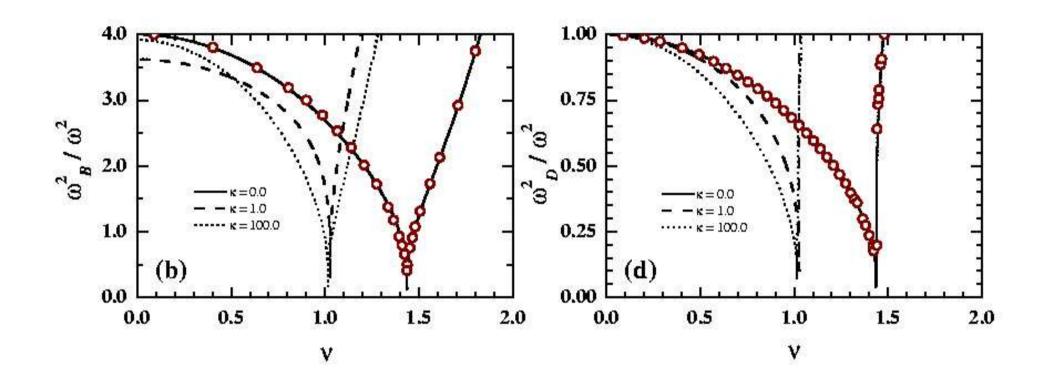
- ▶ Density and phase velocity  $u_{\rho}$ ,  $u_{\sigma}$
- ► Luttinger exponents *K*

Use local-density approximation, solve for collective mode frequency.

## Collective mode frequency vs coupling



## Collective mode frequency vs filling factor



### **Conclusions**

- ► Solved for collective fermionic modes in a trap+lattice
- ► Frequency dip signature of metal-insulator transition, BUT
  - Linearized method (small displacements)
  - Zero temperature only
  - No damping calculated!
- Unsolved problem for large trap displacements

## III: Quantum simulation with Gaussian operators

- Quantum field theory calculation WITHOUT approximation?
- Using Gaussian operator basis
- ▶ Treat covariances as phase-space variables.
- Simulates both *fermions* and *bosons*
- ▶ Can treat thermal ensembles and dynamics
- ► NO: anticommutators, determinants, Fermi sign problem

## **QMC** sign problem

- Quantum Monte Carlo is a standard technique
- ► Except for special cases, fermionic QMC suffers from sign problems:

$$\langle A \rangle \sim \frac{\langle sA \rangle}{\langle s \rangle}$$

- published results almost always have approximations!
- ▶ sign problem increases with dimension, lattice size, interaction strength
- QMC doesn't work at all for quantum dynamics!

## **General expansion**

Expand state density operator  $\hat{\rho}$  in operator basis  $\hat{\Lambda}$ :

$$\widehat{\rho} = \int P(\overrightarrow{\lambda}) \widehat{\Lambda}(\overrightarrow{\lambda}) d\overrightarrow{\lambda}$$

- $ightharpoonup P(\overrightarrow{\lambda})$  is a probability distribution, sampled stochastically
- $\triangleright$   $\overrightarrow{\lambda}$  constitutes a phase-space

## **Strategy**

- ✔ Choose basis to match PHYSICAL state
- ✔ Choose gauge to stabilize equations
- ✓ Choose algorithm to reduce sampling variance

### **OUTLINE**

1. Evolution:  $\partial \widehat{\rho}/\partial t = \widehat{L}[\widehat{\rho}]$ 

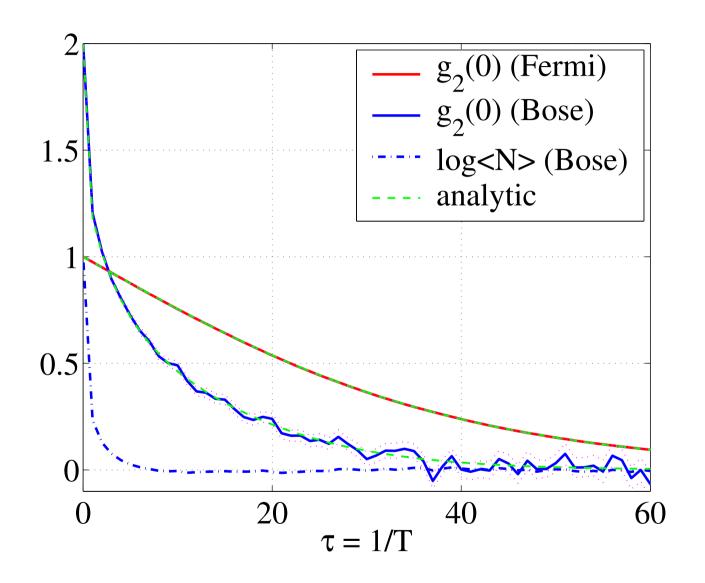
- 2. Phase space:  $\overrightarrow{\lambda} = (\Omega, \alpha)$
- 3. Basis:  $\widehat{\Lambda}(\overrightarrow{\lambda})$ :  $\widehat{\rho} = \int P(\overrightarrow{\lambda}) \widehat{\Lambda}(\overrightarrow{\lambda}) d^{2p} \overrightarrow{\lambda}$
- 4. Identities:  $\partial \widehat{\rho}/\partial t = \int P(\overrightarrow{\lambda})[\angle \widehat{\Lambda}(\overrightarrow{\lambda})]d^{2p}\overrightarrow{\lambda}$
- 5. Partial integration:  $\partial P/\partial t = \mathcal{L}'P = [-\overrightarrow{\partial}\mathbf{A} + \frac{1}{2}\overrightarrow{\partial}\mathbf{D}\overrightarrow{\partial}]P(\overrightarrow{\lambda})$
- 6. Noise:  $\mathbf{D} = \mathbf{B}^T \mathbf{B}, \ \partial \overrightarrow{\lambda} / \partial t = \mathbf{A} + \mathbf{B} \overrightarrow{\zeta}$

### **APPLICATIONS: STATIC CALCULATIONS**

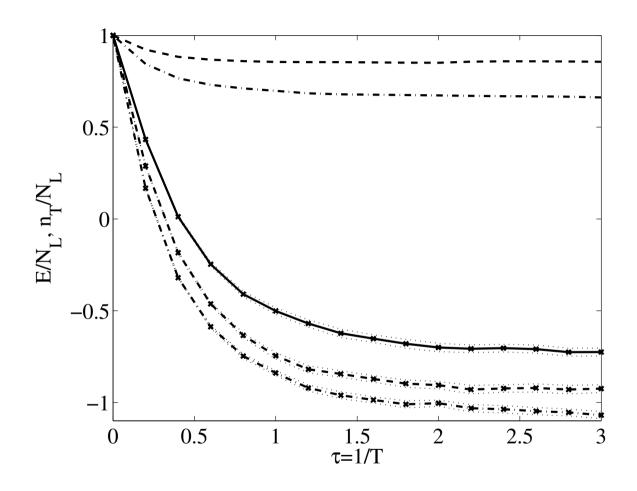
- $\Diamond$  Grand canonical distribution:  $\widehat{\rho} = \exp(-(\widehat{H} \mu \widehat{N})\tau)$ 
  - $\implies \hat{\rho}$  is the unnormalised density operator
  - $\rightarrow$   $\tau = 1/k_BT$  is the inverse temperature,
  - $\implies \mu$  the chemical potential
- Rewrite as equation for temperature evolution:

$$d\widehat{\rho}/d\tau = -\left[(\widehat{H} - \mu \widehat{N}), \widehat{\rho}\right]_{+}/2$$

### 1 site: bosons cf fermions



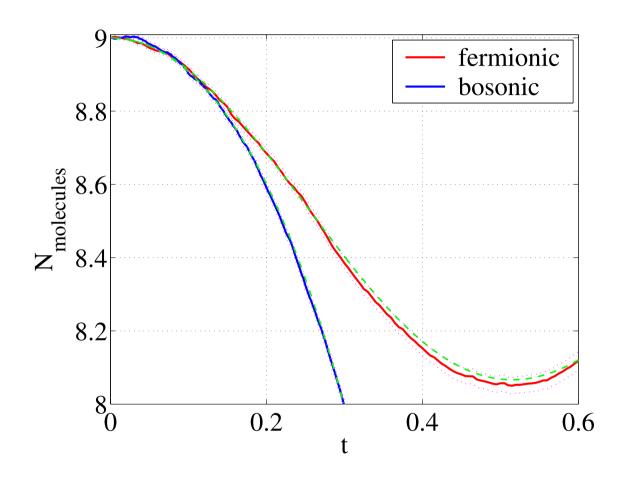
## 2D Lattice-256 sites: no Fermi sign problem



## Quantum dynamics: bosons into fermions

- ▶ Ultracold molecules converted to fermionic atoms?
- ► Experiments at JILA, Innsbruck, MIT, Duke Uni, Paris (ENS)
- ➤ Single-well bosonic photoassociation observed in Texas, Max-Planck
- What about molecular dissociation in an optical lattice?
- ▶ Pauli blockade limits down-conversion to fermionic atoms.
- ➤ Simple test of Fermi-Bose quantum simulation

### Pauli blockade: CAN NIST DO THIS?



➤ You can't run, you can't hide....

## Summary: fermions@UQ

- Our Feshbach field-theory model is well-confirmed
- Simple, physical approach to BEC/BCS crossover
- Theory of Mott 1D, zero temperature case
- FREQUENCY DIP AT MOTT INSULATOR TRANSITION
- new exact technique for dynamic & static Fermi calculations
- can calculate correlations at any temperature 1D, 2D or 3D
- ♦ SOLVES THE USUAL FERMI SIGN PROBLEM