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Fermion theory @UQ

I Revisit our effective field theory for coupled atom-molecule systems

I Analytic result for molecular binding energy

I Simple variational theory for BEC/BCS crossover

I New results for fermion collective modes in lattices,

I New Gaussian technique for fermion problems

I Solution to Fermi/Hubbard sign problem
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Simplicity of Ultracold Atoms

4 underlying interactions well understood, few parameters

4 interactions can be tuned

4 helps understanding of many-body physics

→ apply simple theoretical models to high accuracy

→ novel experimental tests of methods, QFT

4 new tests of massive particle quantum measurements?
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Recent experiments

I Fermi BCS-BEC experiments: JILA, Duke, Rice, Innsbruck, MIT, Paris
(ENS)

I Bosonic lattice experiments: NIST, Max Planck, Texas

I Fermi lattice experiments: Florence (LENS), Zurich

I EXPERIMENTS PLANNED AT ACQAO:

• Swinburne: Lithium-6
• (?) ANU: Helium-3*
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I: Feshbach Resonance and BEC-BCS

I Tunable interactions in ultra-cold quantum gases

I Coherent conversion of an atomic gas to a BEC of molecules

I Studies of the BCS-BEC crossover regime
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Quantum field theory: K&D 2000
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I Ψ̂1,2,M(t,x) – field operators [ ˆa1,2(k), b̂(k)]

I EM – ’bare’ energy detuning; Ui j – s-wave scattering

I χ – atom-molecule coupling (A1 +A2 � M)

I One year BEFORE Timmermans or Holland et al :-)
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Coherent quantum superposition

I EXACT quantum ground-state solution, for N = 2:

∣∣∣Ψ(N)
〉
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−k

]N/2

|0〉

coherent superposition of a molecule with a pair of correlated
atoms: “dressed” molecule (K&D 2000)

I Renormalised binding energy vs B-field
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s = 2 for fermions[K&D 2004 ]
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Molecular binding energy in 40K2

Here, s = 2; C = m3/2/(8π~
2)
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Bosonic case: 85Rb2 dimers [JILA 2002]

The same result, with s = 1, applies to the bosonic version of the theory
[P.D.Drummond et al., PRL 81, 3055 (1998)]
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How about 6Li2? [Our theory vs Kokkelmans]
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Variational ansatz: many-body ground-state

I Same expression, but with an exponential form for simplicity:

|Ψ〉 = exp

{
α

[
â†
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Gkb̂
†
kĉ†

−k

]}
|0〉

I A BEC of modified dressed molecules

I Example of a Fermi-Bose Gaussian state(!)

I Vary the correlation function Gk to minimize the energy

I Vary α to obtain correct density
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Variational solution

Including renormalization, we obtain two basic gap equations:

1 = Ũ0
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0Ũ0

]2

+
Z K

0

q2dq
2π2

[
1−Uq

Eq

]

4 Can solve numerically to obtain ground-state energy
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Conclusions

I Reduces to standard Leggett single-channel BCS crossover model for
broad resonance

I Similar to Green’s function calculations (Holland, Griffin, Ho etc)

I New features for narrow resonance, (∆E ≤ E f ) high density

I Finite temperature and non mft effects under investigation

I Role of universality, strong coupling physics?
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II: Hubbard Model Mott transition

Ĥ = −t ∑
〈i, j〉,σ

â†
i,σâ j,σ +U ∑

j
n̂ j,�n̂ j,�

I Simplest model of an interacting Fermi gas

I Describes ultracold gas in an optical lattice

I Weak-coupling limit =⇒ BCS transitions

I Relevance to high-Tc superconductors?

I Test theories of strongly interacting fermions
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Fermionic vs Bosonic Hubbard physics!

Fermions

|1>

|2>
|1>

Bosons
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TRAPPED 1D FERMI GAS

H = −t ∑
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0d2

2
j2n̂ j,σ,

I Includes 1D trap potential

I Use local density approximation

I Based on exact solution for 1D Hubbard model
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Energy Bands in Mott-Insulator regime

No interactions =⇒ band insulator when band fills (observed).

Interactions =⇒ Mott insulator at half-filling (not yet seen).
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Characteristic parameters

I Effective mass: m∗ = ~
2/

(
2td2

)

I Dimensionless trapping frequency: ω = ~ω0 (m/m∗)1/2 /t.

I Coupling constant κ = U2/
(
8t2Nω

)

I Effective filling factor ν =
√

2Nω/π
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Phase-diagram vs filling ν and coupling κ
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Cross-over: Filling vs ν , at κ = 1
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Luttinger approximation

Luttinger long-wavelength Hamiltonian:

HLL = ∑
ν=ρ,σ

Z

dx
uν(x)
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[
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∂φν
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)2
]

.

I Density and phase velocity uρ, uσ

I Luttinger exponents K

Use local-density approximation, solve for collective mode frequency.
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Collective mode frequency vs coupling

Ultracold fermion theory @ UQ - www.physics.uq.edu.au/BEC 21



Collective mode frequency vs filling factor
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Conclusions

I Solved for collective fermionic modes in a trap+lattice

I Frequency dip signature of metal-insulator transition, BUT

• Linearized method (small displacements)
• Zero temperature only
• No damping calculated!

I Unsolved problem for large trap displacements
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III: Quantum simulation with Gaussian operators

I Quantum field theory calculation WITHOUT approximation?

I Using Gaussian operator basis

I Treat covariances as phase-space variables.

I Simulates both fermions and bosons

I Can treat thermal ensembles and dynamics

I NO: anticommutators, determinants, Fermi sign problem
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QMC sign problem

I Quantum Monte Carlo is a standard technique

I Except for special cases, fermionic QMC suffers from sign problems:

〈
A
〉
∼

〈
sA

〉
〈
s
〉

I published results almost always have approximations!

I sign problem increases with dimension, lattice size, interaction strength

I QMC doesn’t work at all for quantum dynamics!
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General expansion

Expand state density operator ρ̂ in operator basis Λ̂:

ρ̂ =

Z

P(
−→
λ )Λ̂(

−→
λ )d

−→
λ

I P(
−→
λ ) is a probability distribution, sampled stochastically

I
−→
λ constitutes a phase-space
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Strategy

4 Choose basis to match PHYSICAL state

4 Choose gauge to stabilize equations

4 Choose algorithm to reduce sampling variance
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OUTLINE

1. Evolution: ∂ρ̂/∂t = L̂[ρ̂]

2. Phase space:
−→
λ = (Ω ,α)

3. Basis: Λ̂(
−→
λ ): ρ̂ =

R

P(
−→
λ )Λ̂(

−→
λ )d2p)

−→
λ

4. Identities: ∂ρ̂/∂t =
R

P(
−→
λ )[LΛ̂(

−→
λ )]d2p−→λ

5. Partial integration: ∂P/∂t = L ′P = [−−→
∂ A+ 1

2

−→
∂ D

−→
∂ ]P(

−→
λ )

6. Noise: D =BT B, ∂
−→
λ /∂t = A+B

−→
ζ

Ultracold fermion theory @ UQ - www.physics.uq.edu.au/BEC 28



APPLICATIONS: STATIC CALCULATIONS

♦ Grand canonical distribution: ρ̂ = exp(−(Ĥ −µN̂)τ)

=⇒ ρ̂ is the unnormalised density operator
=⇒ τ = 1/kBT is the inverse temperature,
=⇒ µ the chemical potential

♦ Rewrite as equation for temperature evolution:

dρ̂/dτ = −
[
(Ĥ −µN̂), ρ̂

]
+

/2
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1 site: bosons cf fermions
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2D Lattice-256 sites: no Fermi sign problem
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Quantum dynamics: bosons into fermions

I Ultracold molecules converted to fermionic atoms?

I Experiments at JILA, Innsbruck, MIT, Duke Uni, Paris (ENS)

I Single-well bosonic photoassociation observed in Texas, Max-Planck

I What about molecular dissociation in an optical lattice?

I Pauli blockade limits down-conversion to fermionic atoms.

I Simple test of Fermi-Bose quantum simulation
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Pauli blockade: CAN NIST DO THIS?
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I You can’t run, you can’t hide....
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Summary: fermions@UQ

♦ Our Feshbach field-theory model is well-confirmed

♦ Simple, physical approach to BEC/BCS crossover

♦ Theory of Mott 1D, zero temperature case

♦ FREQUENCY DIP AT MOTT INSULATOR TRANSITION

♦ new exact technique for dynamic & static Fermi calculations

♦ can calculate correlations at any temperature - 1D, 2D or 3D

♦ SOLVES THE USUAL FERMI SIGN PROBLEM
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