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Aims of the talk

To point out that: the Mott insulator-BEC
quantum phase transition is indeed a
physical realisation of a quantum adiabatic
algorithm for Hilbert’s tenth problem for a
class of Diophantine equations



Outline

• Quantum phase transition
• Mott insulator – BEC phase transition
• Bose-Hubbard model

• Quantum adiabatic computation
• An algorithm for Hilbert’s tenth problem

• Intimate connection between the two for  the class
of linear Diophantine equations.



Quantum Phase Transition

• Different to thermal phase transition which
is driven by the thermal fluctuations due to
the competition between energy and entropy

• Driven by the quantum fluctuations (even
at zero temperature) due to the competition
between Hamiltonian terms which have
different symmetry/conjugate properties
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W. Zwerger, J. Opt. B5, (2003) S9





Magnetic Lattices
(courtesy Saeed Ghanbari)
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Other applications of the Bose-Hubbard model

• Arrays of Josephson junctions
• Granular and short-correlation-length

superconductors
• Flux lattices in type-II superconductors
• Ultra-cold atoms in periodic lattices
• A route to molecular BEC
• A route to neutral-atom quantum computers
• NOW: Quantum adiabatic computation for

Hilbert’s tenth problem



Quantum Adiabatic
Computation

• Solution is encoded in the ground state  |g> of
some Hamiltonian HP

• We then start with a readily available |g’> which
is the ground state of another Hamiltonian HI

• We then interpolate between the Hamiltonians in
the time T

H(t) = (1 - t/T) HI + (t/T) HP
• If the quantum adiabatic theorem is satisfied, we

can then obtain |g> from |g’> , and thus the
solution!!!

Farhi et al., quant-ph/0001106







































Can be genralised to the class of linear
Diophantine equations with more than one
variable:

ax + by + cz + d = 0



All in the quantum adiabatic process!

• Why the equivalence? the quantum phase
transition is after all a quantum adiabatic
process, as much as the quantum adiabatic
computation



Superfluid



All in the quantum adiabatic process!

• Why the equivalence? the quantum phase
transition is after all a quantum adiabatic
process, as much as the quantum adiabatic
computation

• Any gain?
– Quantum phase transition helps computing the

noncomputable (other classes of Diophantine
equations)

– A result borrowed from the quantum adiabatic
algorithm helps us to identify the onset of the quantum
phase transition




