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Aims of the talk

To point out that: the Mott insulator-BEC
quantum phase transition 1s indeed a
physical realisation of a quantum adiabatic
algorithm for Hilbert’s tenth problem for a
class of Diophantine equations



Outline

Quantum phase transition

Mott insulator — BEC phase transition
Bose-Hubbard model

Quantum adiabatic computation
An algorithm for Hilbert’s tenth problem

Intimate connection between the two for the class
of linear Diophantine equations.



Quantum Phase Transition

« Different to thermal phase transition which
1s driven by the thermal fluctuations due to
the competition between energy and entropy

* Driven by the quantum fluctuations (even
at zero temperature) due to the competition
between Hamiltonian terms which have
different symmetry/conjugate properties



Mott insulator - BEC guantum phase transition
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Wannier state in the o-th band
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We then have the Bose-Hubbard Model in some approximations:
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Bose-Hubbard Hamiltonian:
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Figure 2 Absorption images of multple matter wave iInterference patterns. These were
obtained after suddenly releasing the atoms from an oplical iattice potential with different
potential gepths I atter atime of fight of 15 ms_Vakesol ywere: 3,0 6:b, 3 E,;¢, 7 E,;
d 10L& e 13 LI14E. 9. 166, andh, 20 E,.

M. Greiner ef al., Nature (London) 415, 39 (2002)



W. Zwerger, J. Opt. BS, (2003) S9




«  molecular BEC via a quantum phase transition
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Magnetic Lattices

(courtesy Saeed Ghanbarti)







Other applications of the Bose-Hubbard model

Arrays of Josephson junctions

Granular and short-correlation-length
superconductors

Flux lattices in type-II superconductors
Ultra-cold atoms 1n periodic lattices

A route to molecular BEC

A route to neutral-atom quantum computers

NOW: Quantum adiabatic computation for
Hilbert’s tenth problem



Farhi et al., quant-ph/0001106

Quantum Adiabatic
Computation

Solution is encoded in the ground state |g> of
some Hamiltonian H)p

We then start with a readily available |g’> which
1s the ground state of another Hamiltonian H,

We then interpolate between the Hamiltonians 1n
the time T

H@)={1-vT) H,+/T) Hp
If the quantum adiabatic theorem 1s satisfied, we

can then obtain |g> from |g’> , and thus the
solution!!!




































Fermat's last theorem
(z+ 1) + (p+1)° —(z+1) = ()
77What about

§)

T+ 1) +(y+1)° =+ 1) +xyz =0

What about Goldbach’s conjecture?

Distribution of zeroes of Riemann Zeta functions?



Hilbert's tenth problem (1900)

Given any polyvnomial equation with any number of unknowns
and with integer coefficients: To devise a universal process ac-
cording to which it can be determined by a finite number of

operations whether the equation has integer solutions.




Turing halting problem (1937)

A Turing computation is equivalent to the computation of a par-
tial recursive function, which is only defined for a subset of the
integers: as this domain is classically undecidable, one cannot al-
ways tell in advance whether the Turing machine will halt (that
is, whether the input is in the domain of the partial recursive

function) or not (when the input is not in the domain).

Turing halting problem MWasevichil%0 pihert’s tenth problem



An observation
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Mott insulator - BEC transition and linear Diophantine equations

Quantum phase transition from the (bosonic) Hubbard model:
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Faowre 1 Equation X — 20 = 0 with o = 2.0, The initial Fock space has only up to [n) = [14); but

the final groumd state |20}, i ned, can be reached and identified. Green and blue are [19) and |21).
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Figew 4 Equation X + 20 = 0, which has no positive solution. The red dots are for the ground state

10); blue dots 11}, Initial size of the truenated Fock space 18 m, = 8.



Can be genralised to the class of linear
Diophantine equations with more than one
variable:

ax+by+cz+d=10



All in the quantum adiabatic process!

* Why the equivalence? the quantum phase
transition 1s after all a quantum adiabatic
process, as much as the quantum adiabatic
computation
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All in the quantum adiabatic process!

 Why the equivalence? the quantum phase
transition 1s after all @ quantum adiabatic
process, as much as the quantum adiabatic
computation

* Any gain’
— Quantum phase transition helps computing the

noncomputable (other classes of Diophantine
equations)

— A result borrowed from the quantum adiabatic
algorithm helps us to identify the onset of the quantum
phase transition
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