Polarisation Self-Rotation Squeezing - Progress Report

M. T. L. Hsu, A. Peng, M. Johnsson, J. J. Hope, C. C. Harb, H.-A. Bachor and P. K. Lam

> ARC COE Quantum-Atom Optics ANU Faculties Node

Overview

- $\bullet~\mathrm{Aim}$ To generate squeezed light at Rb lines.
- Squeezing @ Atomic λ 's
 - OPO squeezing @ Cs \sim 3dB (H.J. Kimble's group)
 - MOT squeezing @ Cs \sim 2.5dB (E. Giacobino's group)
 - Waveguide PPLN squeezing @ Rb $\sim 1dB$ (M. Kozuma's group)
 - Vapour cell squeezing @ Rb $\sim 1dB$ (A. Lvovsky's group $^1)$
- Method
 - Polarisation self-rotation effect² in Rb atoms.
 - Examine theory of self-rotation 4-level atom $^3.$
- Results

```
<sup>1</sup>Ries et al PRA 68, 025801 (2003)

<sup>2</sup>Matsko et al PRA 66, 043815 (2002)

<sup>3</sup>Josse et al JOB 5, S513 (2003)

ARC COE Quantum-Atom Optics, ANU Polarisation Self-Rotation Squeezing - Progress Report
```

General Semi-Classical Treatment Quantum Treatment

4-Level Atom

• Model 4-level atom interacting with linearly polarised light

$$\hat{H}_{ ext{int}} = \hbar N \Big(riangle \hat{\sigma}_{33} + riangle \hat{\sigma}_{44} + g (\hat{A}_+ \hat{\sigma}_{41} + \hat{A}_- \hat{\sigma}_{32} + ext{H.C.}) \Big)$$

where g = atom-light coupling constant.

- Derive equations of motion.
 - Include spontaneous emission γ and Langevin terms $\hat{F}_{\mu\nu}$.

General Semi-Classical Treatment Quantum Treatment

Semi-Classical Predictions

- Solve equations of motion to obtain complex susceptibility.
- Consider an almost linearly polarised light in the x-axis with small ellipticity sin ε ≃ ε.
- Obtain absorption by taking the sum of real parts of susceptibility for $\langle \hat{A}_+ \rangle$ and $\langle \hat{A}_- \rangle$ fields.

Absorption =
$$C \frac{\gamma}{\gamma^2 + \triangle^2}$$

• Obtain phase change (rotation) by taking difference of imaginary parts of susceptibility

$$\triangle \theta = C' \frac{\triangle}{\gamma^2 + \triangle^2} \epsilon$$

• C and C' dependent on γ , g, N, L.

General Semi-Classical Treatment Quantum Treatment

Semi-Classical Predictions

Figure: Parameters used: $\gamma \sim 7$ MHz, Atomic density $\sim 10^{18}/m^3$, Optical density ~ 10 mW/mm², $\lambda = 780$ nm, Input beam ellipticity 10mrad, Length of cell 5cm.

General Semi-Classical Treatment Quantum Treatment

Quantum Prediction

• Define quantum Stokes operators.

$$\begin{split} \hat{S}_0 &= \hat{A}_x^{\dagger} \hat{A}_x + \hat{A}_y^{\dagger} \hat{A}_y \\ \hat{S}_1 &= \hat{A}_x^{\dagger} \hat{A}_x - \hat{A}_y^{\dagger} \hat{A}_y \\ \hat{S}_2 &= \hat{A}_x^{\dagger} \hat{A}_y + \hat{A}_y^{\dagger} \hat{A}_x \\ \hat{S}_3 &= i (\hat{A}_y^{\dagger} \hat{A}_x - \hat{A}_x^{\dagger} \hat{A}_y) \end{split}$$

• Write field operators in terms of Stokes operators and Fourier transform to frequency domain.

$$rac{\partial \delta ilde{S}_2}{\partial z} = \mathcal{D}(\omega) \delta ilde{S}_2 + \mathcal{K}(\omega) \delta ilde{S}_3 + ilde{\mathcal{F}}$$

where in steady state $\mathcal{K}(0) = C'$ (i.e. classical self-rotation parameter)

Qualitative Description

- Due to small ellipticity resolve into L-circular and R-circular polarisation components.
- Undergo different refractive indices in atomic media different optical power.
- Consider noise component of optical field intensity dependent phase change $\mathcal{K}(\omega)$.
- As S_3 intensity increases, get larger mapping of S_2 .
- Result shearing of phase space.

Experiment Classical Results Quantum Results

Experimental Layout

- Send in linearly polarised light into Rb vapour cell (heated, B-shielded).
- Measure orthogonal polarisation component (i.e. vacuum field) of output beam (squeezing predicted in orthogonal polarisation).
- Use homodyne detection measure at certain frequency using ESA.

Experiment Classical Results Quantum Results

Self-rotation Results

Figure: Input beam \sim 12.5mW/mm², Ellipticity \sim 7mrad, D1 line.

• Asymmetry possibly due to presence of two isotopes as well as multi-level structure.

Experiment Classical Results Quantum Results

Self-rotation Results

Figure: Contour plot of self-rotation vs beam intensity and laser detuning. Ellipticity \sim 7mrad, D2 line, Beam area \sim 1mm².

Experiment Classical Results Quantum Results

Phase Noise Measurement

Figure: Input beam $\sim 10 \text{mW}/\text{mm}^2$, D2 line.

Experiment Classical Results Quantum Results

Phase Noise Measurement

Figure: Input beam $\sim 10 \text{mW}/\text{mm}^2$, D2 line.

Experiment Classical Results Quantum Results

Phase Noise Measurement

Figure: Input beam $\sim 10 \text{mW}/\text{mm}^2$, D2 line.

Experiment Classical Results Quantum Results

Phase Noise Measurement

Figure: Input beam $\sim 10 \text{mW}/\text{mm}^2$, D2 line.

Analysis

- Observe self-rotation consistent with Lvovsky's results.
- Do not observe any squeezing at detection sideband frequencies of 1 to 10MHz.
- Two possible reasons:
 - Isotopic purity of atomic medium. From theory, get self-rotation across $\sim 1 \text{GHz}$ detuning.
 - 4-level approximation valid for multi-level structure Rb atoms?
- Same observations reported by Paris group (Dantan, Bramati, Pinard)⁴.

⁴Personal correspondence.

Future Directions

- Obtain and use an isotopically pure ⁸⁷Rb cell (in process).
- Model real atomic level structure to (hopefully) predict: -Classical self-rotation signals (i.e. good values, asymmetry).
 - Squeezing from a multi-level structure atom.