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An optical lattice holds and manipulates
atoms through the light shift
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Counter-propagating laser beams

create a standing wave. Periodic
light-shift potential = optical lattice.

Photon scattering (decoherence) ~ Ω2/Δ2 so decoherence can be
made negligible with large detuning and high power



A BEC in a optical lattice

Release non-adiabatically; after free-flight see momentum states-
-periodic wavefunction implies momentum components at
multiples of twice the photon momentum (2nhk)

(This is the same as diffraction)

Load a BEC, in a
harmonic, magnetic trap…

…into an optical lattice by
“adiabatically” turning on the laser beams

For non-interacting atoms this makes
a mini-BEC in each potential well

a



Diffraction of a BEC upon release from a 1-D lattice
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Atomic diffraction from 1, 2, and 3 dimensional lattices

1D

2D

3D

pancakes

tubes

points



Bloch functions:
ψn,q(x) = un,q(x)eiqx/h

where u(x+a) = u(x).
i.e., ψn,q(x) is periodic,
except for a phase eiqx/h;
q = quasimomentum.
q is modulo hK = 2hk = h/a,
the reciprocal lattice momentum.
Note: changing the lattice
depth doesn’t change q.

Much of the behavior of atoms in optical lattices follows the
bandstructure theory familiar from solid state physics.



(quasi) periodic wavefunction in a periodic potential

a

The quasi momentum gives the well-to-
well phase change of the wavefunction

An extra 2π phase change from well to well
(equivalent to adding a reciprocal lattice vector to
the quasi momentum) does not change the
wavefunction.



Periodic Zone Scheme;  note anticrossings



Bragg scattering couples degenerate
states separated by 2hk

v = vrec = hk/m 



Diffraction depends on sudden lattice turn-off.

Sudden turn-off

Brillouin zone edge



Diffraction depends on sudden lattice turn-off.

Sudden turn-off Turn on and off
adiabatically  for
band excitation

Brillouin zone edge

“Adiabatic” loading/unloading returns the original
condensate:  q maps into p within the lowest band.



Diffraction depends on sudden lattice turn-off.

Sudden turn-off Load adiabatically for
atom-atom interaction,
turn off adiabatically for

band excitation

Turn on and off
adiabatically  for
band excitation

Brillouin zone edge

“Adiabatic” loading/unloading returns the original
condensate:  q maps into p within the lowest band.

Still slower loading allows the interactions to scramble the
phase of wavefunction between lattice sites, filling the BZ.



The interactions that induce the phase shifts that
filled the Brillouin zone in the previous figure can

also induce correlations between the particles.
In an uncorrelated gas, the probability of finding a particle at a given
place is unrelated to whether another particle is nearby.  Any high-
temperature, low density gas is essentially uncorrelated.

Photon bunching,  Hanbury Brown-Twiss effect, is an example of
correlation in a non-interacting Bose gas.  The correlation disappears
in the case of degeneracy:   a laser (or a Bose condensate.)

By contrast, a degenerate , non-interacting Fermi gas is strongly
anticorrelated.

Interactions also produce correlations--and the effects are very
different in 1-D compared to 3-D.



Correlation in 3-D and 1-D gases with repulsive interactions.
At issue is the relative size of the interaction energy Eint, which is large
when the atoms are close together, compared to the kinetic energy cost
Ecor to localize the atoms to the mean inter-particle separation, thus
keeping them apart.

3-D

Eint ~ h2asn/m

Ecor ~ (hn1/3)2/m

Eint/ Ecor ~ asn1/3

A 3-D gas becomes
correlated when nas

3 >1,
i.e., at high density.

1-D
Eint ~ h2asn/m ~ h2asn1D/a⊥2m

Ecor ~ (hn1D)2/m

Eint/ Ecor ~ as/(a⊥2n1D )

A 1-D gas becomes correlated
when as/(a⊥2n1D ) > 1, i.e., at
LOW density!



Making a 1D gas
3D 87Rb

BEC
Array of
1D tubes



Making a 1D gas
3D 87Rb

BEC
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f" ~ 20 # 40 kHz
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>> fz

interaction

temperature

axial frequency

What makes the tubes
truly 1-D?
Radial trapping
frequency much larger
than all other energies
in the system:

Array of
1D tubes



Making a 1D gas
3D 87Rb

BEC

! 

f" ~ 20 # 40 kHz

! 

>> k
B
T

! 

f" >> µ

! 

>> fz

interaction

temperature

axial frequency

What makes the tubes
truly 1-D?
Radial trapping
frequency much larger
than all other energies
in the system:

(For our system, a⊥ > as, so the scattering is still in 3D)

Array of
1D tubes



3-body Decay as Correlation Probe
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Measured reduction in Three Body Loss
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(2003)



These correlations are in a 1D system
that is nearly homogeneous along its axis.

How do things change when when we add
a lattice along the 1D axis?



Bose Hubbard Model

J ... tunneling

U ... onsite interaction

ER ? 25kHz, V0 ? 9ER
Slide:Courtesy of Peter Zoller

Both J and U change
with the lattice depth:
J is strongly dependent
and U is weakly
dependent.



“Superfluid”-Mott insulator phase transition
 D. Jaksch et al., PRL '99

• “superfluid” phase

• Mott insulator

. . . . 
1 2 M

tunneling >> on site interaction

. . . . 
1 2 M

tunneling << on site interaction
Phase transition is achieved when laser parameters are
changed adiabatically with respect to tunneling.

commensurate
filling
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Slide:  Courtesy of Peter Zoller



Create a 1-D gas, then apply a lattice along it

different from a 3D Bose gas in 1D lattice of “pancakes”
e.g.  Kasevich, Inguscio, Arimondo



Reversible Loss of Phase Coherence
(? a signature of the Mott transition ?)

(a)

(b)

(c)

diffraction
pulse

1 Erec

8

11 14 15

14 11 0.3

Similar to 3D version in Munich Nature 415, 40 (2002); Gaithersburg Phil.Trans Roy.Soc. 361, 1417 (2003)
Similar to 1D experiments in Eslinger’s group.

Reversible loss of phase coherence



Fock state means undefined relative phase

. . . . 
1 2 M

tunneling << on site interaction

commensurate
filling

b1
?
b2
?
? b

M

? |vac?
"Fock states"

A lattice of atoms, deep in the Mott state, is useful as a
qubit register for quantum information applications.



Is the disappearance of interference really
showing the Mott transition?

The reversible loss of coherence is an expected result of the Mott
transition, but it is not coincident with the Mott transition.

The lattice depth for our observed total loss of coherence is higher
than expected for the Mott transition.

(Note that the situation is complicated by being inhomogeneous.)

An abrupt change in transport is expected at the Mott transition and
would be a more reliable indicator.

We have studied transport in the 1-D system with an optical lattice,
with truly surprising results.



Load atoms
into confining

lattice

Shift trap
Induce dipole
oscillations

Outline of Experiment

200 ms load
30 ER lattice

105 atoms
70 atoms/tube

Add
1D lattice

20 ms load

1D Depths:
0 ER to 10 ER

Remove lattice
Turn off trap

Measure
velocity

after
time of
flight

Wait T

Small
displacement:

~3 µm
RTF < 10 µm

Trapping
frequency 70Hz

Lattice
turned

off
smoothly
in 200 µs



All lattice loading slow (adiabatic)

Lattice unloading adiabatic with respect to band, fast
with respect to interactions.

increases the signal to noise of center of mass
(no diffraction)

gives information about momentum distribution

Oscillation amplitude small compared to band edge
(velocity of oscillating cloud << vrec)

remain in harmonic part of band
avoid known dynamic instabilities

Experimental Conditions



Load atoms
into lattice:

Displace
Harmonic Trap:

Wait variable
delay then turn
off trap/lattice:

•Harmonic Trap Displaced by 3 µm (Cloud Radius ~10 µm)

• vmax = 1 mm/s   (less than 1/5 of recoil velocity)

•Maximum Gradient: 40 Hz/(λ/2)  (<< 2 kHz/(λ/2) )

•  ~2 particles/site maximum

Image position after
Time-of-Flight (velocity):

Underdamped Dipole Oscillations



Time (ms)

Example:
1D Lattice only, no confining tubes

“pancakes” configuration

Motion confined to parabolic dispersion:
 effective mass frequency shift, no damping
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Weakly Interacting Harmonic Oscillation

e.g.  Kasevic, Inguscio, Arimondo



Damped Oscillations
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Load atoms
into lattice:

Displace
Harmonic Trap:

Wait 90 ms (cloud slowly
returns to equilibrium):

Turn off 1D lattice:

Velocity measured in TOF proportional to
displacement from equilibrium after 90ms.

Release after T/4
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Cloud motion small
 compared to size!

Overdamped Measurements



Displacement from Equilibrium

after 90 ms in Lattice
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Equilibrium Position

Maximum Displacement

T/4 = 8 ms

(including
effective mass)

Overdamped Motion



Damping Constant

Manuscript in preparation
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The explanation of this
remarkably strong damping is

“beyond the scope of this
presentation”….but….



The quantum depletion of the 1D gas is quite large, even with
no lattice (20- 30%).  It is suggested that this depletion
(excitations) interact with the condensate so as to damp it:

J. Gea-Banacloche, A. M. Rey, G. Puipillo, C. L. Williams,
C. W. Clark cond-mat-0410677 (2004)

A. Polkcvnikov and D.W. Wang, PRL 93, 070401 (2004).

(and related work at Harvard by:  E. Altman,  A.
Plkovnikov  E. Demler, B. Halperin,  M. Lukin)



What next for cold atoms in 1D?
New experiments in Gaithersburg will test the theoretical
explanations.

Lots of 1-D experimental work going on, elsewhere, e.g., in
Munich/ Mainz (Bloch), Zurich (Esslinger),Yale/Stanford
(Kasevich), Penn State (Weiss).  Mott, squeezing, correlations,
Tonks gas, etc.

Applications to quantum information:  Mott state initializes qubits
in a natural register;  1-D physics should make the Mott transition
more robust. (Gaithersburg)

Mott-related cat states for sub-shot-noise performance? (Oxford)

Theory is advancing rapidly in many places



The End


