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Experimental Reality Check

Presently there are no sources of single 
photon states as just described
Best that can be done:

ρ = P0 0 0 + P1 1 1 P1 ≈ 60%

A.I.Lvovsky, H.Hansen, T.Aichele, O.Benson, J.Mlynek, and S.Schiller 
Phys. Rev. Lett. 87, 050402 (2001)



Experimental Reality Check

Presently there are no sources of single 
photon states as just described
Best that can be done:

Also need detectors that can count photons 
with high efficiency - currently ~ 90% 
efficiency

ρ = P0 0 0 + P1 1 1 P1 ≈ 60%
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|α> = |0> + α |1> + 0.5 α2 |2> +….

α << 1

G.I.Taylor, Proc.Cambridge Phil.Soc.15, 114 (1909).
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Measure
in
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See also: Santori, Fattal, Vuckovic, Solomon and Yamamoto, 
Nature, 419, 594 (2002)
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Photon source: bright beamPhoton source: bright beam--like sourcelike source

S. Takeuchi, Optics Letters 26, 843 (2001); C. Kurstsiefer et al., J. Mod. Opt. 48, 1997 (2001)

• tune crystal to 
obtain good modes

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

• spatially filter
with fibres

• frequency filter
(~0.4 nm)



Different CNOT Experiments

Pittman, Fitch, Jacobs, and Franson, 
PRA 68, 032316 (2003).

3 photon gate, operates in coincidence.
O’Brien, Pryde, White, Ralph and Branning, 

Nature 426, 264 (2003).
2 photon gate, operates in coincidence

Gasparoni, Pan, Walther, Rudolph, and Zeilinger,
Phys. Rev. Lett. 93, 020504 (2004)

4 photon gate, operates in coincidence (though in principle could be 
heralded)



Photons as qubits

We can encode qubits as the polarization states 
of single photons

Arbitrary one qubit operations can be realized 
with half and quarter wave-plates

“0” = |H> “1” = |V>

α |H> + β |V>

PBS

α |01> + β |10>
Dual-rail encoding
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Optical CNOT Gate
single photons of

arbitrary polarization
simultaneously

injected

non-classical
interference

successful events
post-selected as

simultaneous clicks
on photon counters

T.C.Ralph, N.K.Langford, T.B.Bell and A.G.White, PRA 65, 062324 (2002)



Optical CNOT Gate

Photon pairs 
from down-
converter

Polarization 
beam

displacers

Photon 
counting



Optical CNOT Gate

J.L.O’Brien, G.J.Pryde, A.G.White, T.C.Ralph, D.Branning,           
Nature 426, 264 (2003).



“Classical” CNOT Operation

Ideal operation Experiment
1,01,1

1,11,0

0,10,1

0,00,0
Truth Table



Quantum CNOT Operation

Entanglement Production

0 − 1( )C 1 T

→ 0 C 1 T − 1 C 0 T



CNOT Truth Table
(average Fidelity = 92%)

Singlet state from CNOT
|H>|V>-|V>|H>
(Fidelity = 94%)

Ideal                        experimental: real                 imaginary
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Process Tomography

environment

ρ ε(ρ)?

ε(ρ) = Σ χ�� Α� ρ Α�
†

Process matrix - determined by 256
measurement combinations

Quantum Computation
and Quantum Information,

Nielsen and Chuang



Process Tomography

environment

ρ ε(ρ)?

ε(ρ) = Σ χ�� Α� ρ Α�
†

Process matrix - determined by 256
measurement combinations

Constraint 1:
Positive map

Constraint 2:
Trace preserving

Find physical matrix 
closest fit

O’Brien et al, to appear
Phys.Rev.Lett. (04)
quant-ph/0402166
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Process Tomography

Measured (Re) Measured (Im)

= 87%

O’Brien, Pryde, Gilchrist, James, Langford, Ralph, White,
PRL, 93, 080502 (2004)

average fidelity = (d Fp +1)/(d+1) = 90%   
purity = 0.83   maximum increase in tangle = 0.73
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Process Tomography II
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*Model gate including spatio-temporal structure *Perform tomography
on the model - equivalent result for process with less data

P.P.Rohde, J.L.O’Brien, G.J.Pryde,T.C.Ralph, quant-ph/0411144
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Z-measurement Error Correction

α (|HH> + |VV>) + β (|VH> + |HV>)
“V”

α |V> + β |H>

Knill, LaFlamme and Milburn, 
Nature 409, 46 (2001)

Pittman, Jacobs and Franson,
PRA, 64, 062311 (2001)

Teleported gates
fail by making a
Z-measurement

LOQC
cluster states Nielsen, PRL, 93, 040503 (04)



Z-measurement Error Correction

α (|HH> + |VV>) + β (|VH> + |HV>)
“ ? ”

α |V> + β |H>

Knill, LaFlamme and Milburn, 
Nature 409, 46 (2001)

Photon Loss
error

correction

α |H> + β |V> or

|Φ>LL= α |0>L|0>L|0>L + β |1>L|1>L|1>L 



Experimental 
Z-measurement Error Correction

α |H> + β |V>
|H> + |V> 

α (|HH> + |VV>) + 
     β (|VH> + |HV>)

(i) Encoding

Non-deterministic
CNOT



Experimental 
Z-measurement Error Correction

(i) Encoding

Input:           |0>                    |0> + |1>              |0> + i |1>

Average
Fidelity
88 ± 3%
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Experimental 
Z-measurement Error Correction

(ii) Decoding

Average
Fidelity
96 ± 3 %

O’Brien, Pryde
White and Ralph, 
quant-ph/0408064

Syndrome
measured 

but not
corrected
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