AlL Optical QuANTUM GATES

T.C.Ralph

Centre for Quantum Computer Technology
Department of Physics
University of Queensland ralph@physics.uq.edu.au

LOQC People

LOQC People

Staff	Postdocs
T.C.Ralph	J.L.O'Brien
A.G.White	G.J.Pryde
G.J.Milburn	A.Gilchrist
	H.Jeong
	K.Pregnell

Collaborators
D.F.V.James ~ Los Alamos
S.Bartlett ~ University of Queensland C.Myers ~ University of Waterloo
M.Nielsen ~ University of Queensland

Students
N.K.Langford
T.Weinhold
A.Hayes
A.Lund
P.Rohde
R.Dalton

Overview

- Introduction
- Optical CNOT gate
π How it works in theory
π How it works in practice

Overview

- Introduction
- Optical CNOT gate
π How it works in theory
त How it works in practice
- Process Tomography
- Error correction
- Future - scale-up

Single Photon States

single spatio-temporal mode \equiv transform limited

Single Photon States

single spatio-temporal mode \equiv transform limited
If there is exactly 1 quanta of energy in the mode it is a single photon state

Single Photon States

single spatio-temporal mode \equiv transform limited
If there is exactly 1 quanta of energy in the mode it is a single photon state
|1>

Single Photon States

single spatio-temporal mode \equiv transform limited
If there is exactly 1 quanta of energy in the mode it is a single photon state
|11>

Experimental Reality Check

- Presently there are no sources of single photon states as just described
- Best that can be done:

$$
\rho=P_{0}|0\rangle\langle 0|+P_{1}|1\rangle<1 \mid \quad P_{1} \approx 60 \%
$$

A.I.Lvovsky, H.Hansen, T.Aichele, O.Benson, J.Mlynek, and S.Schiller Phys. Rev. Lett. 87, 050402 (2001)

Experimental Reality Check

- Presently there are no sources of single photon states as just described
- Best that can be done:

$$
\rho=P_{0}|0\rangle\langle 0|+P_{1}|1\rangle\langle 1| \quad P_{1} \approx 60 \%
$$

- Also need detectors that can count photons with high efficiency - currently $\sim 90 \%$ efficiency

Post-selection

$$
\left|\alpha>=|0>+\alpha| 1>+0.5 \alpha^{2}\right| 2>+\ldots .
$$

QபANTUM CDMPUTER
TECHNDLDGY

Post-selection

$$
\alpha \ll 1
$$

$$
\left|\alpha>=|0>+\alpha| 1>+0.5 \alpha^{2}\right| 2>+\ldots .
$$

Post-selection

$$
\alpha \ll 1
$$

G.I.Taylor, Proc.Cambridge Phil.Soc.15, 114 (1909).

Post-selection

$$
\chi \ll 1
$$

> Down-conversion
> splits photons@2 ω
. . .photons@ ω

$$
|\phi>=|00>+\chi| 11>+\ldots
$$

Ghosh and Mandel, PRL, 59, 1903 (1987)

Post-selection

Ghosh and Mandel, PRL, 59, 1903 (1987)

Post-selection

Ghosh and Mandel, PRL, 59, 1903 (1987)

Post-selection

Ghosh and Mandel, PRL, 59, 1903 (1987)

See also: Santori, Fattal, Vuckovic, Solomon and Yamamoto, Nature, 419, 594 (2002)

Photon source: bright beam-like source

S. Takeuchi, Optics Letters 26, 843 (2001); C. Kurstsiefer et al., J. Mod. Opt. 48, 1997 (2001)

Photon source: bright beam-like source

- tune crystal to obtain good modes

Photon source: bright beam-like source

- tune crystal to
- spatially filter
with fibres
- frequency filter (~0.4 nm)
S. Takeuchi, Optics Letters 26, 843 (2001); C. Kurstsiefer et al., J. Mod. Opt. 48, 1997 (2001)

Different CNOT Experiments

- Pittman, Fitch, Jacobs, and Franson, PRA 68, 032316 (2003).
$\pi 3$ photon gate, operates in coincidence.
- O'Brien, Pryde, White, Ralph and Branning,

Nature 426, 264 (2003).
$\pi 2$ photon gate, operates in coincidence

- Gasparoni, Pan, Walther, Rudolph, and Zeilinger,

Phys. Rev. Lett. 93, 020504 (2004)
$\pi 4$ photon gate, operates in coincidence (though in principle could be heralded)

Photons as qubits

- We can encode qubits as the polarization states of single photons

$$
\alpha|\mathbf{H}>+\beta| \mathbf{V}>
$$

- Arbitrary one qubit operations can be realized with half and quarter wave-plates

CNOT Gate

Optical CNOT Gate

T.C.Ralph, N.K.Langford, T.B.Bell and A.G.White, PRA 65, 062324 (2002)

Optical CNOT Gate

T.C.Ralph, N.K.Langford, T.B.Bell and A.G.White, PRA 65, 062324 (2002)

Optical CNOT Gate

T.C.Ralph, N.K.Langford, T.B.Bell and A.G.White, PRA 65, 062324 (2002)
(\boldsymbol{x}^{*} L
single photons of arbitrary polarization simultaneously injected
:::/: QUANTUM COMPUTER
successful events
post-selected as
Optical CNOT Gate simultaneous clicks on photon counters

T.C.Ralph, N.K.Langford, T.B.Bell and A.G.White, PRA 65, 062324 (2002)

Optical CNOT Gate

Photon pairs
from down-
converter

State
beam
displacers

Preparation

Optical CNOT Gate

J.L.O’Brien, G.J.Pryde, A.G.White, T.C.Ralph, D.Branning, Nature 426, 264 (2003).

QபANTUM CDMPUTER
"Classical" CNOT Operation

Ideal operation

Truth Table

0,0	0,0
0,1	0,1
1,0	1,1
1,1	1,0

$:::: \%: \%$ QபANTUM CDMPபTER

Quantum CNOT Operation

Entanglement Production

$$
\begin{gathered}
(|0\rangle-|1\rangle)_{C}|1\rangle_{T} \\
\rightarrow|0\rangle_{C}|1\rangle_{T}-|1\rangle_{C}|0\rangle_{T}
\end{gathered}
$$

Ideal

CNOT Truth Table

 (average Fidelity = 92\%)Singlet state from CNOT
$|\mathbf{H}>|\mathbf{V}>-|\mathbf{V}>| \mathbf{H}>$
(Fidelity $=94 \%$)

Ideal

experimental: real

imaginary

Process Tomography

Process Tomography

Process Tomography

Process Tomography

Process Tomography

Process matrix

Process Tomography

and Quantum Information, Process matrix - determined by 256 Nielsen and Chuang measurement combinations

Process Tomography

O'Brien et al, to appear
Phys.Rev.Lett. (04) quant-ph/0402166

$$
\underset{\text { qenar }}{\varepsilon}(\rho)=\Sigma \mathrm{A} \rho \mathrm{~A}^{\dagger}
$$

Constraint 2: Trace preserving

O

Process matrix - determined by 256 measurement combinations

Process Tomography

Process Tomography

$$
\varepsilon(\rho)=\mathbf{U}_{\text {cnot }} \rho \quad \operatorname{cnot}^{\dagger}
$$

$\left.\mathbf{U}_{\text {cnot }}=\mathbf{0 . 5 (I I}+\mathbf{I X}+\mathbf{Z I}-\mathbf{Z X}\right)$

Process Tomography

$$
\varepsilon(\rho)=\mathbf{U}_{\text {cnot }} \rho \quad \operatorname{cnot}^{\dagger}
$$

$$
\left.\mathbf{U}_{\text {cnot }}=\mathbf{0 . 5 (I I}+\mathbf{I X}+\mathbf{Z I}-\mathbf{Z X}\right)
$$

Process Tomography

> average fidelity $=\left(d F_{p}+1\right) /(d+1)=90 \%$ purity $=\mathbf{0 . 8 3}$ maximum increase in tangle $=0.73$

O'Brien, Pryde, Gilchrist, James, Langford, Ralph, White, PRL, 93, 080502 (2004)

Process Tomography II

*Model gate including spatio-temporal structure *Perform tomography on the model - equivalent result for process with less data P.P.Rohde, J.L.O'Brien, G.J.Pryde,T.C.Ralph, quant-ph/0411144

Error Correction

Z-measurement Error Correction

$$
\alpha(|\mathrm{HH}>+| \mathrm{VV}>)+\beta(|\mathrm{VH}>+| \mathrm{HV}>)
$$

Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

Z-measurement Error Correction

$$
\alpha(|\mathbf{H H}>+| \mathbf{V V}>)+\beta(|\mathbf{V H}>+| \mathbf{H V}>)-\quad \text { " } \underbrace{}
$$

$$
\alpha|\mathbf{H}>+\beta| \mathbf{V}>
$$

Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

Z-measurement Error Correction

$$
\alpha|\mathbf{V}>+\beta| \mathbf{H}>
$$

Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

Z-measurement Error Correction

$$
\alpha|\mathbf{V}>+\beta| \mathbf{H}>
$$

Teleported gates fail by making a Z-measurement

Knill, LaFlamme and Milburn, Nature 409, 46 (2001)
Pittman, Jacobs and Franson, PRA, 64, 062311 (2001)

Z-measurement Error Correction

$$
\alpha|\mathbf{V}>+\beta| \mathbf{H}>
$$

Teleported gates fail by making a Z-measurement

Knill, LaFlamme and Milburn, Nature 409, 46 (2001)
Pittman, Jacobs and Franson, PRA, 64, 062311 (2001)

Nielsen, PRL, 93, 040503 (04)

Z-measurement Error Correction

$$
\alpha|\mathbf{H}>+\beta| \mathbf{V}>\text { or } \alpha|\mathbf{V}>+\beta| \mathbf{H}>
$$

Photon Loss
error
correction

$$
\left|\Phi>_{L L}=\alpha\right| 0>_{L}\left|0>_{L}\right| 0>_{L}+\beta\left|1>_{L}\right| 1>_{L} \mid 1>_{L}
$$

Experimental

Z-measurement Error Correction

(i) Encoding

Non-deterministic CNOT

Experimental

Z-measurement Error Correction

(i) Encoding

Input:
|0>
$|0>+| 1>$
$|0>+i| 1>$

Average Fidelity $88 \pm 3 \%$
(ii) Decoding

"H" or "V"

|H>

|V>
$|\mathbf{H}>+| V>$

$|H>-| V>$
imaginary superpositions

Experimental

Z-measurement Error Correction

(ii) Decoding

|H>

real superpositions
$|\mathbf{H}>+| \mathbf{V}>$

$|H>-| V>$
imaginary superpositions

QபANTUM COMPUTER

Experimental

Z-measurement Error Correction

Syndrome measured but not corrected

Average Fidelity 96 ± 3 \%

O'Brien, Pryde White and Ralph, quant-ph/0408064

Linear Optics QC~3 main ideas of KLM

*Non-deterministic gates.
*Don't always work, but heralded when they do.

Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

Linear Optics QC~3 main ideas of KLM

*Non-deterministic gates.
*Don't always work, but heralded when they do.
*Non-deterministic teleported gates. When they don't work they
 measure the qubit.

Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

Linear Optics QC~3 main ideas of KLM

 measure the qubit.

Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

Linear Optics QC~3 main ideas of KLM

 measure the qubit.

*Error encoding against qubit measurment

Linear Optics QC~3 main ideas of KLM

thanks

