ALL OPTICAL QUANTUM GATES T.C.Ralph Centre for Quantum Computer Technology Department of Physics University of Queensland ralph@physics.uq.edu.au

LOQC People

<mark>Staff</mark> T.C.Ralph A.G.White G.J.Milburn

Postdocs J.L.O'Brien G.J.Pryde A.Gilchrist H.Jeong K.Pregnell

Students N.K.Langford T.Weinhold A.Hayes A.Lund P.Rohde R.Dalton

Collaborators

D.F.V.James ~ Los Alamos S.Bartlett ~ University of Queensland C.Myers ~ University of Waterloo M.Nielsen ~ University of Queensland D.Branning ~ University of Illinois

LOQC People

Staff T.C.Ralph A.G.White G.J.Milburn

Postdocs J.L.O'Brien G.J.Pryde A.Gilchrist H.Jeong K.Pregnell

Students N.K.Langford T.Weinhold A.Hayes A.Lund P.Rohde R.Dalton

Collaborators

D.F.V.James ~ Los Alamos S.Bartlett ~ University of Queensland C.Myers ~ University of Waterloo M.Nielsen ~ University of Queensland

Overview

Introduction
 Optical CNOT gate

 How it works in theory
 How it works in practice

Overview

Introduction
Optical CNOT gate

How it works in theory
How it works in practice

Process Tomography
Error correction
Future - scale-up

single spatio-temporal mode \equiv transform limited

single spatio-temporal mode \equiv transform limited If there is exactly 1 quanta of energy in the mode it is a single photon state

single spatio-temporal mode \equiv transform limited If there is exactly 1 quanta of energy in the mode it is a single photon state

|1>

single spatio-temporal mode \equiv transform limited If there is exactly 1 quanta of energy in the mode it is a single photon state

|11>

Experimental Reality Check

- Presently there are no sources of single photon states as just described
- Best that can be done:

$$\rho = P_0 |0\rangle \langle 0| + P_1 |1\rangle \langle 1| \qquad P_1 \approx 60\%$$

A.I.Lvovsky, H.Hansen, T.Aichele, O.Benson, J.Mlynek, and S.Schiller Phys. Rev. Lett. 87, 050402 (2001)

Experimental Reality Check

- Presently there are no sources of single photon states as just described
- Best that can be done:

$$\rho = P_0 |0\rangle \langle 0| + P_1 |1\rangle \langle 1| \qquad P_1 \approx 60\%$$

 Also need detectors that can count photons with high efficiency - currently ~ 90% efficiency

$$|\alpha\rangle = |0\rangle + \alpha |1\rangle + 0.5 \alpha^2 |2\rangle + \dots$$

α << 1

$$|\alpha\rangle = |0\rangle + \alpha |1\rangle + 0.5 \alpha^2 |2\rangle + \dots$$

α << 1

 $|\alpha\rangle = |0\rangle + \alpha |1\rangle + 0.5 \alpha^2 |2\rangle + \dots$

G.I. Taylor, Proc. Cambridge Phil. Soc. 15, 114 (1909).

Down-conversion	
splits photons @ 2ω	
photons @	ω

$$|\phi> = |00> + \chi |11> + \dots$$

χ << 1

Ghosh and Mandel, PRL, 59, 1903 (1987)

Ghosh and Mandel, PRL, 59, 1903 (1987)

Ghosh and Mandel, PRL, 59, 1903 (1987)

Ghosh and Mandel, PRL, 59, 1903 (1987)

See also: Santori, Fattal, Vuckovic, Solomon and Yamamoto, Nature, 419, 594 (2002)

Photon source: bright beam-like source

S. Takeuchi, Optics Letters 26, 843 (2001); C. Kurstsiefer et al., J. Mod. Opt. 48, 1997 (2001)

Photon source: bright beam-like source

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

tune crystal to
 obtain good modes

S. Takeuchi, Optics Letters 26, 843 (2001); C. Kurstsiefer et al., J. Mod. Opt. 48, 1997 (2001)

Photon source: bright beam-like source

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

 tune crystal to
 spatially filter
 frequency filter obtain good modes with fibres

(~0.4 nm)

S. Takeuchi, Optics Letters 26, 843 (2001); C. Kurstsiefer et al., J. Mod. Opt. 48, 1997 (2001)

Different CNOT Experiments

Pittman, Fitch, Jacobs, and Franson, PRA 68, 032316 (2003).
3 photon gate, operates in coincidence.
O'Brien, Pryde, White, Ralph and Branning, Nature 426, 264 (2003).
2 photon gate, operates in coincidence
Gasparoni, Pan, Walther, Rudolph, and Zeilinger, Phys. Rev. Lett. 93, 020504 (2004)
4 photon gate, operates in coincidence (though in principle could be heralded)

Photons as qubits

We can encode qubits as the polarization states of single photons

α |H> + β |V>
 Arbitrary one qubit operations can be realized with half and quarter wave-plates

CNOT Gate

Optical CNOT Gate

Optical CNOT Gate

Optical CNOT Gate

J.L.O'Brien, G.J.Pryde, A.G.White, T.C.Ralph, D.Branning, Nature **426**, 264 (2003).

"Classical" CNOT Operation

Truth Table

0,0	0,0
0,1	0,1
1,0	1,1
1,1	1,0

Quantum CNOT Operation

Entanglement Production

 $(|0\rangle - |1\rangle)_C |1\rangle_T$

 $\rightarrow |0\rangle_{c}|1\rangle_{T}-|1\rangle_{c}|0\rangle_{T}$

*Model gate including spatio-temporal structure *Perform tomography on the model - equivalent result for process with less data P.P.Rohde, J.L.O'Brien, G.J.Pryde, T.C.Ralph, quant-ph/0411144

Error Correction

"0" "1" α (|HH> + |VV>) + β (|VH> + |HV>)

 α |V> + β |H>

Teleported gates fail by making a Z-measurement

Knill, LaFlamme and Milburn, Nature 409, 46 (2001) Pittman, Jacobs and Franson, PRA, 64, 062311 (2001)

 $\alpha |V> + \beta |H>$

Teleported gates fail by making a Z-measurement

Knill, LaFlamme and Milburn, Nature 409, 46 (2001) Pittman, Jacobs and Franson, PRA, 64, 062311 (2001)

LOQC cluster states

Nielsen, PRL, 93, 040503 (04)

 $\alpha |H> + \beta |V> or \alpha |V> + \beta |H>$

Photon Loss error correction

Knill, LaFlamme and Milburn, Nature 409, 46 (2001)

 $|\Phi\rangle_{LL} = \alpha |0\rangle_{L} |0\rangle_{L} |0\rangle_{L} + \beta |1\rangle_{L} |1\rangle_{L} |1\rangle_{L}$

(i) Encoding

Experimental

Z-measurement Error Correction

(i) Encoding

(ii) Decoding

(ii) Decoding

*Non-deterministic gates. *Don't always work, but heralded when they do.

*Non-deterministic gates. *Don't always work, but heralded when they do.

*Non-deterministic teleported gates. When they don't work they measure the qubit.

thanks