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Recent advances in ultracold atomic Fermi gases make it possible to achieve a fermionic superfluid with
multiple spin components. In this context, any mean-field description is expected to fail, owing to the presence
of tightly bound clusters or molecules that consist of more than two particles. Here we present a detailed study
of a strongly interacting multicomponent Fermi gas in a highly elongated or quasi-one-dimensional harmonic
trap, which could be readily obtained in experiment. By using the exact Bethe ansatz solution and a local
density approximation treatment of the harmonic trap, we investigate the equation of state of the multicom-
ponent Fermi gas in both a homogeneous and trapped environment, as well as the density profiles and low-
energy collective modes. The binding energy of multicomponent bound clusters is also given. We show that
there is a peak in the collective mode frequency at the critical density for a deconfining transition to a
many-body state that is analogous to the quark color superconductor state expected in neutron stars.
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I. INTRODUCTION

Recent experimental progress achieved in trapped ultra-
cold atomic gases provides a great opportunity for exploring
strongly interacting many-body physics. Owing to the mo-
lecular Feshbach resonance �1�, the strength of the interac-
tions between atoms in different hyperfine states �or species�
can be arbitrarily changed from strong to weak coupling in a
well-controlled manner. Moreover, interactions can be effec-
tively tuned by using optical lattices with a varying tunneling
barrier �2�. Consequently, a number of many-body models in
condensed matter physics and nuclear physics can be readily
accessed in the ultracold atomic gases. In the past few years,
considerable interest has been focused on trapped two-
component Fermi gases close to a broad Feshbach resonance.
In particular, the crossover from Bardeen-Cooper-Schrieffer
�BCS� fermionic superfluidity of Cooper pairs to Bose-
Einstein condensation �BEC� of tightly bounded molecules
has been explored in great detail �3–18� .

Multicomponent Fermi gases with more than two species
can be easily trapped and manipulated as well. For this type
of Fermi gas, bound multibody clusters are expected to ap-
pear above a critical interaction strength �19�, in addition to
the formation of Cooper pairs due to two-body “pairing cor-
relations.” As is well known, a landmark theoretical result in
quantum physics is Efimov’s prediction of a universal set of
bound trimer states appearing for three identical bosons with
a resonant two-body interaction �20�. The existence of such
an Efimov resonance greatly changes the properties of dilute
Bose gases, as observed recently in an ultracold gas of ce-
sium atoms �21�. Similarly, multibody clusters are of funda-
mental importance to fermionic superfluidity in multicompo-
nent Fermi gases. While Cooper pairs are dominant in the
weak coupling limit, an exotic superfluid state with bound
multibody clusters should emerge in the strong coupling re-
gime. In between, a quantum phase transition is then antici-
pated to take place �as specified for the three component case

in Ref. �22��, in contrast to the smooth crossover observed in
the two-component case �3�.

This issue is relevant to outstanding problems in nuclear
and particle physics. The quark model of nuclear matter at
low density describes nucleons as three fermion clusters: Tri-
quark bound states. At sufficiently high density and pressure,
it is conjectured that a phase transition occurs to a decon-
fined color superfluid phase of quark matter �23,24�. This is
believed to occur in the interior of neutron stars and possibly
in heavy-ion collisions. While quark matter has many other
features, it is interesting to find that a physically accessible
system of interacting ultracold fermions is also expected to
display these features of multibody fermion clusters and
quantum phase transitions. Ultracold atoms could provide a
means to test these theoretical predictions. If confirmed, this
would lend support to current ideas in particle theory and
astrophysics.

The description of multibody bound states is beyond the
generally adopted mean-field framework, which treats com-
petition between two-body correlations among different atom
pairs. This, however, is of importance only in the weak cou-
pling limit. For strong coupling, the use of numerical Monte
Carlo techniques is hampered by the fermionic sign problem
�25�. It is therefore of great importance to have an analyti-
cally soluble model of multicomponent Fermi gases, and to
study both the weakly and strongly interacting regimes on an
equal footing. An exact analysis is provided in this paper for
the case of multicomponent Fermi gases in one dimension
�1D�, where multibody bound clusters are always present,
regardless of the interaction strength. Although the one-
dimensional analysis gives a smooth crossover rather than a
true phase transition, we believe that considerable insight
may be obtained for a three-dimensional gas as well.

As well as being exactly soluble, the 1D problem has
great experimental relevance. A quantum degenerate trapped
two-component Fermi gas in quasi 1D has been demon-
strated recently by loading an ultracold Fermi gas into a
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two-dimensional optical lattice �26� of trapping “tubes.” In
this configuration, the radial motion of atoms perpendicular
to each tube is frozen to zero-point oscillations due to tight
transverse confinement, while axial motion is only weakly
confined. One then obtains an array of effective 1D systems,
each in an axial harmonic trap. The manipulation of more
than two species in 1D is within reach of present-day tech-
nology, and is likely to be achieved soon in experiments.

A typical example of these developments is lithium gas
�27�, which has favorable collisional properties among
its lowest three hyperfine spin states, denoted �1�, �2�, and
�3�, respectively. A recent accurate measurement of the
scattering lengths between these hyperfine states shows that
the background interactions are anomalously large �27�,
with background scattering lengths about −1500a0, where a0
�=0.052 917 7 nm� is the Bohr radius. There are also three
broad s-wave Feshbach resonances located at the positions
B=834,811, and 690 G for �1,2�, �2,3�, and �3,1� channels,
respectively. These peculiar collisional properties are useful
to cool the gas down to the quantum degenerate regime.
Ideally, one expects experimentally accessible lowest tem-
peratures for this three-state mixture to be in the same range
as for two-component ensembles, i.e., T�0.05TF, where TF
is the Fermi temperature of an ideal Fermi gas. Thus a dif-
ferent fermionic multicomponent superfluid may be antici-
pated. For this reason, three-component lithium gas has at-
tracted a great deal of theoretical interest, including analysis
of mean-field states �28–32� as well as phase diagrams
�22,33–39�.

Here, we report on properties of a multicomponent Fermi
gas in 1D. First, using the exact Bethe ansatz solution
�40–43�, we investigate the exact ground state of a homoge-
neous gas with attractive interactions at zero temperature. To
make contact with experiments, we then consider an inho-
mogeneous Fermi gas under harmonic confinement, within
the framework of the local density approximation �LDA�.
The equation of state of the system in both the uniform and
trapped case are investigated in detail. Particular attention is
drawn to the density profiles and low-lying collective modes
of the trapped cloud, which are readily measurable in experi-
ment. We show that the gas becomes more attractive as the
number of species increases, demonstrating the strongly in-
teracting nature of multibody bound clusters.

A 1D multicomponent Fermi gas in an optical lattice was
considered recently by Capponi et al. �37�, using both the
analytic bosonization approach and the numerical density
matrix renormalization group method. This lattice version of
the 1D Fermi gas resembles the system we consider here. In
particular, it also features a molecular superfluid phase in the
low density limit with a strongly attractive interaction �37�.

The paper is organized as follows. In the following sec-
tion, we outline the theoretical model for a 1D multicompo-
nent Fermi gas. Of particular relevance for an experimental
realization is our calculation of the effective 1D coupling
constant for the three-component lithium gases. In Sec. III,
we present the exact Bethe ansatz solution and discuss the
equation of state and the sound velocity of a uniform system
at zero temperature. In Sec. IV, using the LDA method we
investigate the density profile and the equation of state in the
trapped environment. Also, we describe the dynamics of

trapped gases in terms of 1D hydrodynamic equations and
develop a different algorithm to solve these equations. The
behavior of low-lying collective modes is then obtained and
discussed. We end with some concluding remarks in Sec. V.
An Appendix is used to outline the details of the algorithm
used in solving the 1D hydrodynamic equations.

II. MODELS

A quasi-1D multicomponent Fermi gas in a highly elon-
gated trap can be formed using a two-dimensional optical
lattice �26�. By suitably tuning the lattice depth, the aniso-
tropy aspect ratio �=�z /�� of two harmonic frequencies can
become extremely small. This means that the Fermi energy
associated with the longitudinal motion of the atoms is much
smaller than the energy level separation along the transverse
direction, i.e., N��z���� and kBT����, where N is the
total number of atoms. In this limit, the transverse motion
will be essentially frozen out, and one ends up with a quasi-
one-dimensional system.

A. Interaction Hamiltonian

We study a gas with pseudospin S= ��−1� /2, where
� ��2� is the number of components. From now we shall
assume that the fermions in different spin states attract each
other via the same short-range potential g1D��x�. Denoting
the mass of each fermion as m, with a total fermion number
N=�l=1

� Nl �where Nl is the number of fermions with pseu-
dospin projection l� the first quantized Hamiltonian for the
system is therefore

H = H0 + �
i=1

N
1

2
m�2xi

2. �2.1�

Here

H0 = −
�2

2m
�
i=1

N
�2

�xi
2 + g1D�

i	j

��xi − xj� �2.2�

represents the part of Hamiltonian in free space without the
trapping potential m�2x2 /2, while �=�z is an oscillation
frequency in the axial direction. There is an interparticle at-
traction between any two fermions with different quantum
numbers.

In an elongated trap, the 1D effective coupling constant
g1D is related to the 3D scattering length a3D. It is shown by
Bergeman et al. �44,45� that

g1D =
2�2a3D

ma�
2

1

�1 − Aa3D/a��
, �2.3�

where a�=	� / �m��� is the characteristic oscillator length in
the transverse axis. The constant A=−
�1 /2� /	2�1.0326
is responsible for a confinement induced Feshbach resonance
�46�, which changes the scattering properties dramatically
when the 3D scattering length is comparable to the
transverse oscillator length. It is convenient to express
g1D in terms of an effective 1D scattering length, g1D
=−2�2 / �ma1D�, where
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a1D = −
a�

2

a3D

1 − A

a3D

a�
� � 0. �2.4�

Note that in this definition of the 1D scattering length, our
sign convention is opposite to the 3D case.

In the homogeneous case, we measure the interactions
by a dimensionless coupling constant �, which is the ratio of
the interaction energy density eint to the kinetic energy
density ekin �40�. In the weak coupling, eint�g1Dn and ekin
��2k2 / �2m���2n2 /m, where n is the total linear density of
the gas. Therefore, one finds

� = −
mg1D

�2n
=

2

na1D
. �2.5�

Thus ��1 corresponds to the weakly interacting limit, while
the strong coupling regime is realized when �1.

B. Cluster states

In the case where all the fermions are distinct—which is
only possible if the number of fermions is less than or equal
to �—the spatial wave function can be completely symmet-
ric. This allows one to construct eigenstates with identical
symmetry to the exact solutions already known for a one-
dimensional Bose gas with attractive interactions �47�. This
exceptionally simple limiting case gives useful physical in-
sight into the multiparticle clusters. These will be an essen-
tial feature in the physical properties of more general solu-
tions. Accordingly, we may consider as a trial solution the
localized quantum soliton state with wave function

��x1 . . . x�� = exp− c�
i�j

�xi − xj�� . �2.6�

On calculating the effect of the many-body Hamiltonian,
we find that

H0� = E�� + �2�2c

m
+ g1D��

i�j

��xi − xj��� , �2.7�

where the energy E� is

E� =
− �2c2���2 − 1�

6m
. �2.8�

This symmetric state with an asymptotic exponentially de-
caying wave function in each coordinate direction is the fun-
damental bound cluster. The requirement for this to be an
eigenstate is simply

c =
− mg1D

2�2 =
1

a1D
� 0. �2.9�

In terms of this characteristic length scale of a1D=1 /c, one
finds that the fundamental cluster binding energy can be
written as

�B =
�2���2 − 1�

6ma1D
2 . �2.10�

These bound clusters can have either a fermionic or
bosonic character, depending on whether � is odd or even.

The binding energy scales quadratically with the Hamil-
tonian coupling, and cubically with the number of bound
fermions, �. Clusters are localized relative to the center of
mass, with a characteristic length scale of a1D. One may
reasonably expect some kind of physical transition to occur
when the linear density exceeds 1 /a1D, since at high density
the Pauli exclusion principle will not allow independent clus-
ters to form.

Thus we can expect this type of symmetric bound state to
predominate at low density, with a transition to a radically
different behavior at high density. This transition due to the
Pauli exclusion principle is a unique feature of a 1D attrac-
tive Fermi gas, and does not occur in a 1D attractive Bose
gas. By contrast, in an attractive Bose gas, clusters or quan-
tum solitons can form with arbitrary particle number. They
have been already observed with up to for N=107 for pho-
tons in optical fibers �48�, and N=103 in the case of ultracold
atoms �49�. However, clearly this is not to be expected in the
case of fermions, where the spin multiplicity limits the size
of this type of symmetric cluster.

For �=3, here is a close analogy between the symmetry
properties of these bound clusters and the color symmetry
properties of quark models in particle physics. In the case of
quark matter, free nucleons are three-quark bound states.
However, at high density, it is conjectured that there is a
quantum phase transition to a deconfined color supercon-
ductor state �23,24�. This is expected physically at the core
of massive neutron stars or in heavy-ion collisions. Although
we are interested mainly in the one-dimensional case, where
mostly a crossover would be expected due to dimensionality,
we will show that a similar type of deconfining “transition”
occurs here also.

C. Harmonic trap

In the presence of a harmonic trap, we may characterize
the interactions using the dimensionless coupling constant at
the trap center �0. For an ideal Fermi gas with equal spin
population in each component, the total linear density is

nideal�x� = nTF,�
0 �1 −

x2

�xTF,�
0 �2�1/2

, �2.11�

in the large-N Thomas-Fermi �TF� limit, where

nTF,�
0 =

�2N��1/2

�
aho

−1, �2.12�

xTF,�
0 = 
2N

�
�1/2

aho �2.13�

are the center linear density and the TF radius, respectively.
Here aho=	� / �m�� is the characteristic oscillator length in
the axial direction. We therefore find that

�0 = 
 2

�
�1/2

�� 1

N1/2
 aho

a1D
�� . �2.14�

To remove the dependence on the number of components �,
we define a dimensionless parameter
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� = �N
a1D

2

aho
2 �−1/2

�2.15�

to describe the interactions. Note that the parameter � de-
pends inversely on the total number of particles. Hence,
somewhat counterintuitively, the gas becomes increasingly
nonideal with a decreasing number of atoms.

D. Parameter values

For experimental relevance, we now estimate interaction
parameters for the on-going experiments on 1D lithium
gases. Consider a gas of 6Li atoms in 2D optical lattice with
a typical lattice spacing periodicity d=532 nm. The trans-
verse oscillator length a� is related to d via a�=d / ��s1/4�
�50�, where s is the ratio of the lattice depth to the recoil
energy. Taking s=10, this equation yields a��95 nm. Em-
pirically, the 3D scattering length of 6Li gases at these broad
resonances is given by

a3D = ab�1 + W/�B − B0���1 + ��B − B0�� . �2.16�

Detailed values of the background scattering length ab, reso-
nance position B0, resonance width W, and leading-order cor-
rection � have been measured precisely by Bartenstein et al.
�27� for all three channels. As an example, we take a trapping
frequency of �=�z=2��400 Hz, which gives rise to aho
=2052 nm. The number of atoms in one tube of the lattice
can be approximately of order N�100. Given these param-
eters, we use Eqs. �2.4� and �2.15� to calculate �. The esti-
mated dimensionless coupling constants are shown in Fig. 1.
Here, we focus on the BCS side of the resonances, and thus
take a magnetic field B�834 G. We find that ��O�1�, i.e.,
the gas is in an intermediate interacting regime. The differ-
ence in the interactions between different channels turns out
be small above 1000 G. This justifies our choice of the same
contact interaction potential between different hyperfine spin
states.

III. HOMOGENEOUS MULTICOMPONENT
FERMI GASES

We first consider a uniform multicomponent Fermi gas in
one dimension with symmetric intercomponent interactions.
In this case, the model is exactly soluble via the Bethe ansatz
�40–43,45,51–57�. For simplicity, we assume that each com-
ponent has the same number of particles, i.e., Nl�N /� �l
=1,2 , . . . ,�=2S+1�.

A. Ground state

In the ground state, the particles partition into groups of �
fermions. In each group, the fermions all have different
quantum numbers, and are bound together to form a �-body
cluster. Introducing a linear number density, n=N /L, where
L is the size of the system, the ground state energy Ehom, in
the thermodynamic limit is given by �43,56�

Ehom

L
=

�2

2m
�

−Q

Q

d�
��2 −
���2 − 1�

3
c2����� , �3.1�

where the coupling c=n� /2=1 /a1D and ���� is the quasi-
momentum distribution of �-body clusters with a cutoff ra-
pidity Q. The quasimomentum distribution is determined by
an integral equation �43,56�,

���� =
�

2�
− �

l=1

�−1 �
−Q

Q

d��
2lc�����

�2lc�2 + �� − ���2 , �3.2�

and is normalized according to

n = ��
−Q

Q

d� ���� , �3.3�

which fix the value of the cutoff rapidity. The last term in
Ehom is simply the contribution from �-body bound states
and is equal to −�n /����b, with binding energy identical to
that given in the single-cluster result of Eq �2.10�:

��b �
�2

2m

���2 − 1�
3

c2 =
���2 − 1�

6

�2

ma1D
2 . �3.4�

We note that the binding energy of multicomponent clusters
increases rapidly with an increasing number of species �. In
particular, when ��3 it is larger than the pairing energy of
���−1� /2 Cooper pairs. In other words, if the binding en-
ergy was solely due to Cooper pairing, one would expect
�CP=���−1��2b /2, where �2b=�2 /ma1D

2 is the two-body
binding energy. The increase above this level is due to
�-body correlations: � particles interact more strongly with
each in a cluster than as isolated pairs of particles.

B. Sound velocity

Once the ground state energy is obtained, we calculate the
chemical potential �hom=�Ehom /�N and the corresponding
sound velocity chom=	n���hom /�n� /m. The sound velocity
will be utilized later for predicting measurable collective
mode frequencies. For numerical purposes, it is convenient

G

FIG. 1. �Color online� One-dimensional interaction parameters
for a three-component lithium gas in a two-dimensional optical lat-
tice above the Feshbach resonances. Above a magnetic field B
=1000 G, the difference of interaction parameters between different
channels becomes very small, i.e., ��12−�23� /�12	0.06 and ��12

−�13� /�12	0.16. As a result, a three-component lithium gas can be
well described by our exactly soluble model of 1D Fermi gases with
a symmetric interaction.
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to rewrite these in a dimensionless form that depends on the
dimensionless coupling constant � only,

Ehom

L
�

�2n3

2m
�e��� −

��2 − 1�
12

�2� , �3.5�

�hom �
�2n2

2m
����� −

��2 − 1�
12

�2� , �3.6�

chom �
�n

m
c��� . �3.7�

These are related by

���� = 3e��� − �
�e���

��
, �3.8�

c��� = ���� −
�

2

�����
��

. �3.9�

It is easy to see that for an ideal multicomponent Fermi gas,

Ehom
ideal

L
=

�2n3

2m

 �2

3�2� , �3.10�

�hom
ideal =

�2n2

2m

�2

�2 � , �3.11�

chom
ideal =

�n

m

�

�
� . �3.12�

Therefore, as units of energy and sound velocity, we define a
Fermi energy �F,����2n2 / �2m����2 /�2� and a Fermi veloc-
ity �F,����n /m��� /��.

C. Numerical solutions

The integral equation for the quasimomentum distribution
has to be solved numerically. This was partly carried out by
Schlottmann in the �=4 case, but for restricted values of the
linear density n and coupling c �57�. Here, for completeness,
we solve the integral equation for a general coupling con-
stant �. The asymptotic behavior in the weak and strong
coupling limits, not explored in literature so far, will be dis-
cussed in detail.

To make the equation dimensionless, let us change vari-
ables as follows �40�:

� � Qx, 2c � Q�, ���� = g�x� . �3.13�

In terms of the new variables the quasimomentum distribu-
tion, normalization condition, and ground state energy be-
come, respectively,

g�x� =
�

2�
− �

�=1

�−1
�

�
�

−1

+1

dx�
�g�x��

����2 + �x − x��2 ,

� = ���
−1

+1

dx g�x� ,

e��� =
�3

�3��
−1

+1

dx x2g�x� . �3.14�

To obtain better numerical accuracy for the chemical poten-
tial, it is useful to calculate the derivative of e��� directly.
With this goal, we introduce �d=d� /d� and gd�x�
=dg�x� /d�, which satisfy the coupled equations

gd�x� = − �
�=1

�−1
�

�
�

−1

+1

dx� �gd�x��
����2 + �x − x��2

−
�dg�x��− ����2 + �x − x��2�

�����2 + �x − x��2�2 � ,

�d =
�

�
+ ���

−1

+1

dx gd�x� . �3.15�

The derivative of e��� is then obtained from

de

d�
=

�3�

�3 �
−1

+1

dx x2�
 3

�
−

3�d

�
�gd�x� + g�x�� .

�3.16�

Numerically, the two sets of integral equations, Eqs. �3.14�
and Eqs. �3.15�, have been solved by decomposing the inte-
grals on a grid with M =1024 points �xi ;xi� �−1, +1��. For
g�x�, we start from a set of trial distributions g�0��xi�, with
corresponding parameters of ��0�. Using the standard method
for the integrals �40�, we obtain a new distribution g�xi�, and
update � accordingly. We iterate this procedure until g�xi�
agrees with the previous distribution within a certain toler-
ance, and finally calculate the energy function e��� using Eq.
�3.14�. The integral equation of gd�x� can be solved in the
same manner, and finally Eq. �3.16� gives the derivative of
the energy function de /d�. We find that these iterative pro-
cedures for solving the integral equations are very stable. To
obtain the sound velocity, the derivative of the chemical po-
tential has been calculated accurately as a numerical deriva-
tive.

For an illustrative purpose, we show in Fig. 2 the quasi-
momentum distribution function g�x� as a function of the
coupling constant �Fig. 2�a�� or as a function of the number
of components �Fig. 2�b��. As g�x� is an even function, we
plot only the part with a positive x. For a large interaction
strength, it approaches � /2�, while in the weak coupling
limit, it reduces to 1 / �2��. Below we discuss this limiting
behavior in detail.

D. Strong coupling limit

For a strongly interacting or, equivalently, a low density
gas, in which the dimensionless coupling constant �1, the
value of � in Eq �3.15� is extremely large. Thus the integral
kernel l� /� / ��l��2+ �x−x��2� becomes essentially a constant,
1 / �����. In addition, the quasimomentum distribution func-
tion g�x��g0. Then, the integral equation reduces to
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g0 =
�

2�
− �

�=1

�−1 
 1

�
� 2

��
g0. �3.17�

At the same time, �=2��g0. Denoting S�= �1 /�2���=1
�−1�−1,

we find that up to the order 1 /�3,

g�x� =
�

2�

1 −

2S�

�
� + O
 1

�3�, � → � . �3.18�

Note that the factor S� decreases rapidly as the number of
components increases, and goes like S�� ln � /�2 when �
1. It is then straightforward to obtain that

e��� =
�2

3�4
1 +
4S�

�
+

12S�
2

�2 � ,

���� =
�2

�4 
1 +
16S�

3�
+

20S�
2

�2 � ,

c��� =
�2

�4 
1 +
8S�

�
+

40S�
2

�2 � , �3.19�

and, in dimensional form,

Ehom

N
= − 
 ��b

�
� +

�2n2

2m

�2

3�4�1 +
4S�

�
+

12S�
2

�2 � ,

�hom = − 
 ��b

�
� +

�2n2

2m

�2

�4�1 +
16S�

3�
+

20S�
2

�2 � ,

chom =
�n

m

�

�2�1 +
8S�

�
+

40S�
2

�2 �1/2

. �3.20�

The first term on the right-hand side of the total energy and
chemical potential is simply the binding energy per particle
of a 1D bound cluster from Eq �2.10�, while the second term
arises from interactions between clusters. These are strongly
repulsive due to the Pauli exclusion principle between iden-
tical fermions. In the infinite coupling constant limit, the
system behaves like a spinless Tonks-Girardeau gas of bound
clusters with hard-core repulsive interactions. This is shown
schematically in Fig. 3.

Each cluster has a density n /� and mass �m �58�, giving
rise to a chemical potential �2�2�n /��2 / �2�m�= ��2 /
2m���2 /�3�. This is exactly � times the second term in the
chemical potential �hom. It is worth emphasizing that the
compressibility of the system remains positive for �→� as
indicated by the first term in the sound velocity chom,
��n /m��� /�2�. This means that a 1D multicomponent Fermi
gas is mechanically stable, even in the strongly attractive
regime. In contrast, the mechanical stability of a strongly
interacting 3D multicomponent gas with ��3 is not known
exactly. It may experience collapse for sufficient large num-
ber of components, as suggested by Heiselberg �59�. The
parity of the number of species � may also play an important
role on influencing the stability in this limit. For the stable,
1D case treated here, this low-density regime is analogous to
the regime of isolated nucleons in QCD.

E. Weak coupling limit

The asymptotic behavior in the weak coupling limit is
more subtle. Numerical calculation in the small � limit sug-
gests that g�x�→1 / �2�� and ���→0. We then expand the
quasimomentum distribution,

g�x� =
1

2�
+ f�x� , �3.21�

where f�x�=O����1 satisfies

f�x� =
� − 1

2�
− �

�=1

�−1
�

�
�

−1

+1

dx�
�

����2 + �x − x��2

1

2�

− �
�=1

�−1
�

�
�

−1

+1

dx�
�

�l��2 + �x − x��2 f�x� . �3.22�

As �→0, to the leading order �� /� / �����2+ �x−x��2�
���x−x��. Thus

FIG. 2. �Color online� Quasimomentum distributions �a� as a
function of the dimensionless coupling constant or �b� as a function
of the number of components. The distribution approaches � /2�
for a large interaction strength. While in the weak coupling limit, it
goes to 1 / �2��, but with a sharp increase at the boundary of x
= �1.

FIG. 3. �Color online� Schematic diagram of interacting bound
clusters for �=3, in the low density limit.
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f�x� =
1

2��
�� − 1 − �

�=1

�−1 �
−1

+1 dx����/��
����2 + �x − x��2� .

�3.23�

For small �, the integral in f�x� is well approximated by

�

�
�

−1

+1

dx�
�

����2 + �x − x��2 � 1 −
2

�

��

1 − x2 . �3.24�

We find then to the order of �,

f�x� =
� − 1

2�2

�

1 − x2 , �3.25�

which diverges at the boundary x= �1. It is straightforward
to show that

�
−1

+1

dx g�x� =
1

�
−

� − 1

2�2 � ln� + ¯ , �3.26�

�
−1

+1

dx�1 − x2�g�x� =
2

3�
+

� − 1

�2 � + ¯ . �3.27�

Substituting these results into the energy function e���, it
is easy to obtain

e��� =
�2

3�2 −
��� − 1�

�2 � −
�� − 1�2

4�2 �2 ln2� . �3.28�

Recall that �=���−1
+1g�x���� /�. The equation of state and

the sound velocity are finally given by

Ehom

N
=

�2n2

2m
� �2

3�2 −
�� − 1�

�
� −

�� − 1�2

4�2 �2 ln2�� ,

�hom =
�2n2

2m
��2

�2 − 2
�� − 1�

�
� −

�� − 1�2

4�2 �2 ln2�� ,

chom =
�n

m

�

�
�1 −

��� − 1�
�2 ��1/2

, �3.29�

where the first terms on the right-hand side are identical to an
ideal �noninteracting� multicomponent Fermi gas, as one
might expect. Note that the binding energy of bound clusters
is of second order in �, and therefore is not included in the
above expressions. Two-body correlations are dominant in
the weakly interacting limit, and give rise to the mean-field
Hartree-Fock attractive corrections in the second term on the
right-hand side. The nonperturbative terms of order �2 ln2�
are beyond mean-field theory. This regime is analogous to
the color-superconductor regime expected in quark matter.

F. Numerical results

In Fig. 4, we give the equation of state and the sound
velocity as a function of the dimensionless coupling constant
�, obtained by numerically solving the integral equations.
The ground state energy per particle and the chemical poten-
tial are measured in units of one-third of the Fermi energy

and the Fermi energy, respectively, while the sound velocity
is in units of the Fermi velocity. We consider a number of
components ranging up to �=5 to show the overall trend.

Starting from the ideal gas results, the thermodynamic
and dynamic quantities decrease with increasing coupling
constant, and finally saturate to the Tonks-Girardeau �repul-
sive� gas limit, as already anticipated. The rate of decrease is
much faster as the number of components � increases. This
implies that the gas becomes more attractive when the num-
ber of particles in the bound cluster increases. We show also
in the figure the asymptotic behavior in the two limiting
cases for �=2 by thin solid lines. These fit fairly well with
the full numerical results, apart from a small intermediate
interaction region about ��1.

It is worth noting that in the strongly interacting limit, the
properties of the uniform gas do not exhibit any �even-odd�
parity dependence on the number of species �, because of
Tonks-Girardeau fermionization, as mentioned earlier. For a
1D multicomponent gas in an optical lattice, however, an
entire different picture emerges �37�. Due to the localization
of the lattice in the strong attractive regime, the system either
becomes an ideal Fermi gas for odd �, or an ideal Bose gas
for even �, exhibiting a distinct parity effect.

FIG. 4. �Color online� �a� Dependence of the uniform ground
state energy per particle, �b� the chemical potential, and �c� the
velocity of sound on the dimensionless coupling constant �, at sev-
eral number of species as indicated. The energy and sound velocity
are in units of the Fermi energy �F,����2n2 / �2m����2 /�2� and the
Fermi velocity �F,����n /m��� /��, respectively. Thin solid lines
are the analytic results in the two limiting cases for �=2, as de-
scribed in Eq. �3.20� and Eq. �3.29�.
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IV. MULTICOMPONENT TRAPPED FERMI GAS

To make quantitative contact with ongoing experiments, it
is crucial to take into account the external harmonic trapping
potential Vtrap�x�=m�2x2 /2, which is necessary to prevent
the fermions from escaping. For a large number of fermions,
which is likely to be N�100 experimentally, an efficient
way to take the trap into account is by using the local density
approximation �LDA�. Together with the exact homogeneous
equation of state of a 1D multicomponent Fermi gas, this
gives an asymptotically exact results as long as N1.

The basic idea of the LDA is that an inhomogeneous gas
of large size can be treated locally as infinite matter with a
local chemical potential. We may then partition the cloud
into many blocks, in each of which the number of fermions
is much greater than unity. Provided the variation of the trap
potential across each block is negligible compared with the
local Fermi energy, any interface effects may be safely ne-
glected. Thus each block is uncorrelated with the others. We
note that in 1D the interface energy scales as N−1 compared
to the total energy, and thus the LDA becomes valid provided
N1.

In detail, the LDA amounts to determining the chemical
potential � from the local equilibrium condition �45,51,52�,

�hom�n�x�� +
1

2
m�2x2 = �g, �4.1�

under the normalization restriction,

N = �
−xTF

+xTF

n�x�dx , �4.2�

where n�x� is the total linear number density and is nonzero
inside a Thomas-Fermi radius xTF. We have used the sub-
script “g” to distinguish the global chemical potential �g
from the local chemical potential �hom. Rewriting �hom into
the dimensionless form ����x��, where ��x�=2 / �n�x�a1D�,
we find that

−
��2 − 1��2

6ma1D
2 +

�2n2�x�
2m

����x�� +
1

2
m�2x2 = �g. �4.3�

The first term on the left-hand side is simply the binding
energy, and causes a constant shift to the chemical potential.
To solve the LDA equations, it is simplest to transform into a
dimensionless form, by defining

�̃g = �g

ma1D
2

�2 +
��2 − 1�

6
, �4.4�

x̃ =
a1Dx

aho
2 , �4.5�

ñ = na1D, �4.6�

where the binding energy is now absorbed in the redefinition
of chemical potential. Thus the local equilibrium condition
becomes

ñ2�x̃�
2

����x̃�� +
x̃2

2
= �̃g, �4.7�

where the dimensionless coupling constant now takes the
form, ��x̃�=2 / ñ�x̃�. Accordingly, the normalization condition
is given by

�
−x̃TF

+x̃TF

dx̃ ñ�x̃� = N
a1D

2

aho
2 =

1

�2 , �4.8�

where � is the interaction parameter for a trapped gas defined
earlier in Eq. �2.15�. It is clear that the LDA equations are
controlled by a single parameter �: ��1 corresponds to the
weakly coupling limit, while �1 corresponds to the
strongly interacting regime.

The numerical procedure of solving the LDA equations is
straightforward. For a given interaction parameter �, and ini-
tial guess for �̃g, we invert the dimensionless local equilib-
rium equations to find ��x̃� and the linear density ñ�x̃�
=2 /��x̃�. The chemical potentials �̃g are then adjusted to
enforce the number conservation, giving a better estimate for
the next iterative step. The iteration is continued until the
number normalization condition is satisfied within a certain
range.

A. Density profiles and the equation of state

The asymptotic behavior of density profiles can be deter-
mined analytically in the strong and weak coupling limits. In
the strong interaction regime of �1, ����= ��2 /�4��1
+16S� / �3���, and the local equilibrium condition is given by

ñ2�x̃�
2

�2

�4�1 +
16S�

3��x̃�� +
x̃2

2
= �̃g. �4.9�

In the infinite coupling limit of Tonks-Girardeau gas, where
��x̃�→� and therefore the second term in ���� vanishes, the
density profile takes the form

ñTG�x̃� =
	2�

��

1 −

�2�2

2
x̃2�1/2

, �4.10�

and the global chemical potential is

�̃g
�0� =

1

�2�2 . �4.11�

The inclusion of the next order of 1 /� in ���� leads to a
density variation �ñ�x̃�, as well as a change in the chemical
potential ��̃g. Linearizing the local equilibrium condition,
we find that

�ñ�x̃� =
�4

�2

��̃g

ñTG�x̃�
−

8S�

3
�ñTG�x̃��2. �4.12�

Number conservation �dx̃ �ñ�x̃�=0 yields

��̃g =
64	2S�

9�2��3 . �4.13�

Restoring the equations to dimensional form, the density pro-
file of a strongly interacting gas becomes
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n�x��1 = nTG�x� + �n�x� , �4.14�

where

nTG�x� = 	�nTF,�
0 �1 −

�x2

�xTF,�
0 �2�1/2

�4.15�

is the profile of a spinless Tonks-Girardeau gas and the den-
sity variation

�n�x� =
32	2�3/2S�

9�2�
nTF,�

0 �1 −
�x2

�xTF,�
0 �2�−1/2

−
3�

4
�1 −

�x2

�xTF,�
0 �2�� . �4.16�

Accordingly, the chemical potential takes the form

�g
�1 = −

��2 − 1��2

6ma1D
2 +

N��

�2 �1 +
64	2�S�

9�2

1

�
� ,

�4.17�

where the first term on the right-hand side is again from the
binding energy, while the second term corresponds to the
chemical potential of a spinless Tonks-Girardeau gas of
bound clusters. For later reference, we calculate the mean-
square size of the cloud �x2�=�dx x2n�x� /N using the
strongly interacting density profile n�x��1 and find that

�x2��1 =
N

2�2aho
2 +

32	2S�

15�2�
N3/2a1Daho. �4.18�

The density profile of a weakly interacting gas can be
calculated in the same manner. The leading order contribu-
tion is simply the ideal gas result, nideal�x�, and the Hartree-
Fock correction to the chemical potential gives rise to a den-
sity variation which is proportional to the interaction strength
g1D. Explicitly, we find that

n�x���1 = nideal�x� + �n�x� , �4.19�

where

�n�x� =
2��� − 1�

�2a1D
�1 −

2/�
	1 − x2/�xTF,�

0 �2� . �4.20�

The chemical potential is given by

�g
��1 =

N��

�
�1 −

4	2��� − 1�
�2 �� . �4.21�

The mean-square size of the cloud is found to be

�x2���1 =
N

2�
aho

2 −
4

3
	2

�

� − 1

�2 N1/2 aho
3

a1D
. �4.22�

Figure 5 plots numerical results for the density profiles at
three interaction parameters and at different number of spe-
cies as indicated. The linear density and the coordinate are in
units of the peak density nTF,�

0 and Thomas-Fermi radius
xTF,�

0 of an ideal gas, respectively. With increasing interaction
parameter � �from Figs. 5�a� to 5�c��, the density profiles
change from an ideal gas distribution to a strongly interact-

ing Tonks-Girardeau profile. At the same interaction param-
eter, the density profiles become sharper and narrower as the
number of species � increases. We display also the Thomas-
Fermi radius of the cloud in Fig. 6 as a function of the
interaction strength. It decreases monotonically from the
ideal gas result xTF,�

0 to the Tonks-Girardeau prediction
xTF,�

0 /	� as the interaction parameter increases, thus increas-
ing the compressive force of the attractive interactions.

FIG. 5. �Color online� Density profiles of a 1D trapped multi-
component Fermi cloud at three interaction parameters �a� �=0.1,
�b� �=1.0, and �c� �=10. The linear density and the coordinate are
in units of the peak density nTF,�

0 and Thomas-Fermi radius xTF,�
0 of

an ideal gas, respectively.

FIG. 6. �Color online� Thomas-Fermi radius, in units of xTF,�
0 , as

a function of the interaction parameter, at several number of com-
ponent as indicated.
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Figure 7 reports the dependence of the chemical potential
on the interaction strength, at several numbers of species as
indicated. Here, for clarity we have subtracted the binding
energy part of the chemical potential. For �=2, we show the
asymptotic behavior given by Eqs. �4.17� and �4.21� by thin
solid lines. They fit very well with the numerical results,
except at the intermediate interaction regime.

B. Low-lying collective modes

Experimentally, a useful way to characterize an interact-
ing system is to measure its low-lying collective excitations
of density oscillations. For a uniform gas, the low-lying col-
lective excitations are simply the sound waves with energy
��k�=c �k� for a given momentum k	kF, which is gapless
as k→0. In traps, however, the spectrum becomes discrete,
due to the finite cloud size of the gas that is of order xTF,�

0 .
There is a minimum value of the momentum kmin�1 /xTF,�

0 .
Taking a sound velocity at the trap center c���nTF,�

0 /
m��� /��, one finds that

��kmin� �
�nTF,�

0

m

�

�

1

xTF,�
0 = � , �4.23�

comparable to the energy level of the harmonic trap.
Since the charge degree of freedom of the gas falls into

the Luttinger liquid universality class, quantitative calcula-
tions of the low-lying collective excitations in traps can be
carried out based on the superfluid hydrodynamic description
of the dynamics of the 1D Fermi gas �51,60�. In such a
description, the density n�x , t� and the velocity field v�x , t�
satisfy the equation of continuity

�n�x,t�
�t

+
�

�x
�n�x,t�v�x,t�� = 0 �4.24�

and the Euler equation

m
�v
�t

+
�

�x
��hom�n� + Vtrap�x� +

1

2
mv2� = 0. �4.25�

We consider the fluctuations of the density and the velocity
field about the equilibrium ground state, �n�x , t�=n�x , t�
−n�x� and �v�x , t�=v�x , t�−v�x�=v�x , t�, where n�x� and

v�x��0 are the equilibrium density profile and velocity field.
Linearizing the hydrodynamic equations, one finds that �60�

�2

�t2�n�x,t� =
1

m

�

�x
n

�

�x
� ��hom�n�

�n
�n�x,t��� .

�4.26�

The boundary condition requires that the current j�x , t�
=n�x��v�x , t� should vanish identically at the Thomas-Fermi
radius x= �xTF. Considering the nth eigenmode with
�n�x , t�=�n�x�exp�i�nt� and removing the time dependence,
we end up with an eigenvalue problem, i.e.,

1

m

d

dx
n

d

dx
� ��hom�n�

�n
�n�x��� + �n

2�n�x� = 0. �4.27�

We develop a powerful multiseries-expansion method to
solve the above 1D hydrodynamics equation, as outlined in
detail in the Appendix. The resulting low-lying collective
mode can be classified by the number of nodes in its eigen-
function, i.e., the number index “n.” The lowest two modes
with n=1,2 have very transparent physical meaning. These
are respectively the dipole and breathing �compressional�
modes, which can be excited separately by shifting the trap
center or modulating the harmonic trapping frequency. The
dipole mode is not affected by interactions according to
Kohn’s theorem, and has an invariant frequency precisely at
�1=�.

The low-lying hydrodynamic modes of a two-component
Fermi gas in the weak and strong coupling limits have been
discussed analytically by Minguzzi �61�. In both limits, the
cloud behaves like a spinless ideal Fermi gas. Therefore, the
frequency �n of the mode “n” is fixed to n�. This result
applies to a multicomponent 1D Fermi gas as well.

Figure 8 shows the interaction dependence of frequencies
of the breathing mode for a multicomponent gas with differ-
ent numbers of components. Here, to stress the role of inter-
actions, the deviation of the mode frequency from its ideal
result, ��B=�B−2�, has been plotted. As a function of the
interaction parameter, a peak in ��B emerges at the interme-
diate interaction regime ��1. The peak value increases with

FIG. 7. �Color online� Chemical potential as a function of the
interaction parameter �. It is in units of EF,�=N�� /�. Thin solid
lines are the analytic results in the two limiting cases for �=2, as
described in Eqs. �4.17� and �4.21�.

FIG. 8. �Color online� Frequency corrections �with respect to
the ideal gas value� of the lowest breathing modes ��B as a function
of the dimensionless coupling parameter �, at several number of
species as indicated.
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increasing the number of components �. This peak is a clear
signature of the cross-over from a regime of multiparticle
clusters to a color quasisuperconductor.

Figure 9 shows the frequency correction ��n=�n−n� of
the low-lying modes of a three-component gas as a function
of the interaction strength. The dipole mode frequency is
always �, as expected, while all other modes show a non-
trivial peak structure, similar to that of the breathing mode. It
is evident that the higher mode index “n” is, the larger fre-
quency correction.

As an alternative to the numerical solution of the 1D hy-
drodynamic equation, the frequency of the breathing mode
may be obtained by applying the compressibility sum rule.
As long as the breathing mode exhausts all the weights in the
dynamic structure factor, the mode frequency can be calcu-
lated according to �45,60�,

�B
2 = − 2

�x2�
d�x2�/d�2 . �4.28�

We have performed such calculations. The resulting fre-
quency agrees extremely well with that from solving the 1D
hydrodynamic equation, with a relative difference less than
10−4. Such a good agreement gives strong support to the
application of the sum rule. To gain further insight of the
breathing mode frequency, we use the sum-rule to obtain
analytically the first order correction to the frequency for the
weak and strong coupling limits. This can be done by sub-
stituting the expression for the mean-square size of the cloud
in Eqs. �4.18� and �4.22� into the sum-rule formalism �4.28�.
Replacing aho=	� /m� and taking the derivative with respect
to �2, we find that

�B
�1 = 2�
1 +

16	2�S�

15�2

1

�
� , �4.29�

for the strongly interacting limit, and

�B
��1 = 2��1 +

2	2��� − 1�
3�2 �� , �4.30�

for the weak coupling regime. Thin solid lines in Fig. 9 show
the resulting analytic expansions for ��B for a three-
component Fermi gas. These expansions describe very well
the breathing mode frequency over a fairly large range of
interaction strengths, but break down at the intermediate cou-
pling regime ��1.

V. CONCLUSION

In conclusion, we have investigated the properties of 1D
attractive multicomponent Fermi gases, based on the Bethe
ansatz exact solution, in a homogeneous environment. This
was extended to include a harmonic trap, by using the local
density approximation. The equation of state of the system
has been discussed in detail, as well as some dynamical
quantities, including the sound velocity and low-lying collec-
tive modes.

We have drawn attention to the formation of multibody
bound clusters, which are always present in a 1D attractive
multicomponent gas. These clusters are not well understood,
as their description is beyond the mean-field theory. We have
found that such multibody clusters have significant impact
on the equation of state and dynamic behavior of the sys-
tems. In particular, as the number of particles in the clusters
increase, the gas turns out to be increasingly attractive com-
pared to a simple Cooper-pairing scenario. This is suggestive
of the strongly interacting nature of the bound clusters.

There is a close analogy between the proposed properties
of QCD at high density, and the results we calculate for a
three-component Fermi gas in 1D. In both cases there is a
transition between discrete multiparticle clusters �nucleons�
to a coherent quasisuperfluid �color superconductor�, as the
density increases. For the 1D case, both the high and low
density limits result in free particle dynamics, with different
multiplicities. This gives simple collective mode behavior in
either limit. However, the transition region with ��1 can
show very strong evidence of a transition. This is due to an
easily observed peak in the collective breathing mode fre-
quency.

Our results should be useful for the future experiments on
1D multicomponent atomic Fermi gases. An example of par-
ticular interest is three-component lithium gas, which has
three broad Feshbach resonances. Our estimate of the rel-
evant parameters suggests that an ultracold gas of 6Li atoms
in an optical lattice, above a magnetic field B=1000 G, can
be nearly described by the current model. Our prediction of
the density profiles and low-lying collective modes, provide
a useful characterization of an interacting 1D three-
component Fermi gas. We expect this to be testable in a
future experiment.
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FIG. 9. �Color online� Interaction strength dependence of the
frequency corrections ��n=�n−n� of the low-lying collective
modes of a 1D three-component Fermi gas. Thin solid lines are the
analytic sum-rule expansions for the weakly and strongly interact-
ing limits, as described in Eqs. �4.29� and �4.30�, respectively.
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APPENDIX

In this appendix, we outline the procedure of solving the
1D hydrodynamic equation,

1

m

d

dx
n

d

dx
� ��hom�n�

�n
�n�x��� + �n

2�n�x� = 0, �A1�

with the boundary condition that the current j�x�
��x��n�x���hom�n�x�� /�n�x�� must vanish at x= �xTF.

It is convenient to introduce a function,

f�x� �
��hom�n�x��

�n�x�
�n�x� , �A2�

and rewrite the hydrodynamic equation in the form

x
d2f

dx2 + x
d ln�n�x��

dx

df

dx
+ 
�m

�
�2 �2x

c2�x�
f = 0, �A3�

where c�x�= �n�x���hom�n�x�� /�n�x� /m�1/2 is the local sound
velocity at position x. Let us introduce A�x�� ln�n�x��,
A1�x��−�2x /c2�x�, and �m��m /�. Then the above equa-
tion becomes

x
d2f

dx2 + x
dA

dx

df

dx
− �m

2 A1�x�f = 0. �A4�

Here the variable x� �−xTF, +xTF�. Note that for our specific
case, A1�x�=dA�x� /dx, due to the local equilibrium condi-
tion.

To solve the equation, one may wish to change x to a new
variable y� �0,1�. This can be done by two steps. First, we
define f�x��xl��x�, where l=0 or 1 corresponds to the parity
of the modes. Translating to ��x�, we have �now x� �0,
+xTF��,

x
d2�

dx2 + 
2l + x
dA

dx
�d�

dx
− ��m

2 A1 − l
dA

dx
�� = 0. �A5�

At the second step, we define y��x /xTF�2 and change to the
new variable y. After some straightforward calculations, we
obtain the following equation for ��y�,

y�1 − y�2 d2�

dy2 + �1 − y�2�� + y
dA

dy
� d�

dy

+
1

2
�1 − y�2�l

dA

dy
− �m

2 Ã1�y��� = 0 �A6�

where �� l+1 /2 and Ã1�y��A1�y� / �2y1/2�. In practice, the
value of dA /dy can be calculated as follows:

dA

dy
� −

m�2xTF
2

2
� 1

n � �hom�n�/�n
�

n=n�x=xTF
	y�

. �A7�

Note that in our case Ã1�y�=dA /dy. Here, we multiply a
factor of �1−y�2 on both sides of Eq. �A6�, in order to re-

move the singularity of dA /dy and Ã1�y� at point y=1.
We develop a multiseries-expansion method to solve the

eigenvalue problem Eq. �A6�. As the current vanishes at the

Thomas-Fermi boundary, the eigenfunction of Eq. �A6�
should not be singular at y=1. As well, we require that the
eigenfunction has to take a finite value at y=0. As we shall
see, these two boundary conditions give rise to a set of the
discrete spectrum, as well as a complete set of the eigenfunc-
tions.

To apply the boundary conditions, we divide the whole
region �0,1� into many pieces, for example, M parts, �0,1�
= �y0=0 ,y1�� �y1 ,y2�� ¯ � �yM−1 ,yM =1�. We look for the
solution in the form,

��y� = �
n=0

�

ain�y − yi�n, if y � �yi,yi+1� . �A8�

Hence the two boundary conditions translate to the require-
ment of a well-convergent series of �ain� at both the starting
region �y0=0 ,y1� and the ending region �yM−1 ,yM =1�. The
basic idea of solving the eigenvalue problem is then clear.
We use the strategy of try and test. Given the parity l, we
make an initial guess for �m, and setup the series �ain� at the
starting region �y0=0 ,y1�, and then propagate it to the ending
region of �yM−1 ,yM =1�. If the series converges at y=1, then
we find a correct eigenvalue and eigenfunction of the prob-
lem. Otherwise, we scan the value of �m, until all the re-
quired low-lying eigenvalues are found.

In greater detail, we apply the try and test strategy as
follows. �A� At first, let us approximate, at each region
�yi ,yi+1�,

− �1 − y�2dA

dy
= p̃0 + p̃1y + p̃2y2, �A9�

− �1 − y�2Ã1�y� = q̃0 + q̃1y + q̃2y2. �A10�

To make the expansion accurate, generally we take M �30.
By introducing a new variable z=y−yi, at the region �yi ,yi+1�
we can cast the Eq. �A6� into the form


�
j=0

3

rjz
j� d2�

dy2 + 
�
j=0

3

pjz
j� d�

dy
+ 
�

j=0

3

qjz
j�� = 0,

�A11�

where the coefficients �ri�, �pi�, and �qi� can be calculated
directly from �p̃i� and �q̃i� in the program. We then substitute
the solution ��z�=�n=0

� ainzn into the above equation to obtain
the iterative relation �without confusion, here we denote an
�ain for this region�,

an+2 = −
�n + 1��nr1 + p0�
�n + 2��n + 1�r0

an+1 −
�n�n − 1�r2 + np1 + q0�

�n + 2��n + 1�r0
an

−
��n − 1��n − 2�r3 + �n − 1�p2 + q1�

�n + 2��n + 1�r0
an−1

−
��n − 2�p3 + q2�
�n + 2��n + 1�r0

. �A12�

We need to classify two cases. �i� In the starting region
of y0=0, we have r0=0 due to the boundary condition. Up
to an overall irrelevant factor, we can set a0=1 and then
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a1=−q0 / p0. �ii� In the other regions, a0 and a1 are deter-
mined by the continuous conditions as stated below. Once a0

and a1 are known, we could obtain all the values of an by Eq.
�A12� since a−1=a−2=0. Usually it is already sufficiently ac-
curate to keep n�nmax=16. �B� The series �ain� at different
regions are connected by the requirement that the function
��y� and its first derivation ���y� should be continuous at the
point �yi�, where the index i runs from 1 to M −1. �C� In this

way, we can finally obtain the series �ain� at the region
�yM−1 ,yM�. We judge the convergence by checking whether
the value of aM,nmax

is sufficiently small or not.
In practice, the above procedure of solving the 1D hydro-

dynamic equation of a multicomponent Fermi gas is very
efficient and accurate. It can be applied as well to other 1D
systems, such as the 1D interacting Bose gas, and to the 3D
systems in spherical harmonic traps.
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