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We discuss the transition from a fully decoherent to a �quasi�condensate regime in a harmonically trapped
weakly interacting one-dimensional �1D� Bose gas. By using analytic approaches and verifying them against
exact numerical solutions, we find a characteristic crossover temperature and crossover atom number that
depend on the interaction strength and the trap frequency. We then identify the conditions for observing either
an interaction-induced crossover scenario or else a finite-size Bose-Einstein condensation phenomenon char-
acteristic of an ideal trapped 1D gas.
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One-dimensional �1D� Bose gases are remarkably rich
physical systems exhibiting properties not encountered in 2D
or 3D �1–3�. Here we study the 1D model of bosons inter-
acting via a repulsive �-function potential, which plays a
fundamentally important role in quantum many-body phys-
ics. The reason is that the model is exactly solvable �2,3� and
it is now experimentally realizable with ultracold alkali-
metal atoms in highly anisotropic trapping potentials �see
Ref. �4� for a review�. This means there are unique opportu-
nities for accurate tests of theory that were previously un-
available, in turn leading to the development of fundamental
knowledge of interacting many-body systems in low dimen-
sions.

In this paper, we analyze the properties of the 1D Bose
gas in the weakly interacting regime, where the dimension-
less interaction parameter �=mg / �n�2� is small, n being the
linear density, m the atom mass, and g the 1D coupling con-
stant. This is opposite to Girardeau’s regime of “fermioniza-
tion” �1� achieved in the limit of strong interactions and the
subject of many recent studies �5�. Our motivation for the
study of the weakly interacting regime is to reveal the nature
of the transition to a Bose-condensed state in a harmonically
trapped system.

For a uniform weakly interacting 1D Bose gas, one has a
smooth interaction-induced crossover to a quasicondensate
which is a Bose-condensed state with a fluctuating phase.
This occurs when the temperature T becomes smaller than
Td

�� �6–9�, where Td=�2n2 /2m is the temperature of quan-
tum degeneracy �in energy units, kB=1�. For a harmonically
trapped 1D gas with weak interactions a similar crossover
scenario is expected �7�. However, due to the presence of the
trapping potential the interaction-induced crossover enters
into a competition with Bose-Einstein condensation �BEC�
predicted to occur in the ideal gas limit �10� as a macro-
scopic occupation of the ground state. For a given atom num-
ber N, this condensation phenomenon occurs at temperature
TC�N�� / ln�2N�. It is a purely finite-size effect and disap-
pears in the thermodynamic limit �11� where N tends to in-
finity while the peak density n0 is kept constant �this implies

that the trap oscillation frequency � tends to zero in such a
way that N�=const�. The interaction-induced crossover to a
quasicondensate, on the other hand, persists in the thermo-
dynamic limit.

Thus, for sufficiently weak confinement one expects to
observe an interaction-induced crossover to a quasiconden-
sate, rather than a finite-size BEC. The situation is reversed
for strong confinement. Here, we identify the parameters of
the interaction-induced crossover and find the conditions that
enable the realization of either of these two competing sce-
narios.

We start by briefly reviewing the physics of a uniform 1D
Bose gas in the thermodynamic limit, in the case of very
weak interactions ��1. For T�Td

��, the gas is in the qua-
sicondensate �Gross-Pitaevskii� regime where the density
fluctuations are suppressed and the gas is coherent on a dis-
tance scale smaller than the phase coherence length: Glaub-
er’s local pair correlation function is reduced below the ideal
gas level of 2 and is close to 1 �6–9�. In this regime the
chemical potential is positive and well approximated by �
�gn. For T�Td

��, the gas is in the fully decoherent regime:
interactions between the atoms have a small effect on the
equation of state and the local pair correlation is close to that
of an ideal Bose gas �6�. This regime contains the quantum
decoherent domain Td

���T�Td. In the decoherent regime,
the chemical potential � is negative and the equation of state
is well approximated by that of the ideal Bose gas:

n = �
−�

� dk/�2	�

e��2k2/2m−��/T − 1
=� mT

2	�2�
j=1

�
ej�/T

j1/2 . �1�

The crossover between the decoherent and the quasicon-
densate regimes �T	Td

��� corresponds to the density of the
order of nco= �mT2 /�2g�1/3. Using the crossover density nco is
convenient for analyzing the properties of the gas at a con-
stant temperature and varying n. In this sense, the quantum
decoherent regime corresponds to nd�n� t1/6nd�nco, where
t=T /Td�2=2�2T /mg2 is a dimensionless temperature param-
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eter which is independent of the density and is large, and
nd=�mT /� is the density of quantum degeneracy at a given
T. The width of the quantum decoherent region in terms of
densities increases with t.

In Fig. 1 we illustrate the properties of the weakly inter-
acting uniform gas by plotting the linear density as a
function of the chemical potential for three different values
of the temperature parameter t. The exact numerical results
�6� based on the finite-temperature solution �3� to the
Lieb-Liniger model �2� are compared both with the ideal
Bose gas equation of state �1� in the region of �
0 and with
the quasicondensate equation of state corresponding to
��gn�0. For a given temperature, the crossover from the
decoherent regime to the quasicondensate corresponds to
� going from negative to positive. We obtain n��=0,T�
�0.6nco within 20% accuracy as long as t�103. Note that
values of t as high as 103 are required to ensure that the gas
is highly degenerate at the crossover.

We now turn to the analysis of a harmonically trapped 1D
gas and find the crossover temperature Tco and crossover
atom number Nco around which the gas enters the quasicon-
densate regime. For small trap frequencies �, the density
profile of the gas can be described using the local density
approximation �LDA� �7�. In this treatment, the 1D density
n�z� as a function of the distance z from the trap center is
calculated using the uniform gas equation of state in
which the chemical potential � is replaced by its local value
��z�=�0−m�2z2 /2, where �0 is the global chemical poten-
tial. Within the LDA, the uniform results remain relevant and
imply, in particular, that the gas enters the quasicondensate
regime in the trap center once �0 changes sign. In addition,
as long as the peak density n0=n�0� satisfies the condition
n0�nco the entire gas is in the decoherent regime and the
equation of state is well approximated by Eq. �1� in which n
and � are replaced by n�z� and ��z�. Integrating n�z� over z
and taking the sum over j gives a relation between the total
atom number and �0:

N = −
T

��
ln�1 − e�0/T� ��0 
 0� . �2�

As mentioned above, for very large values of t the
crossover to the quasicondensate occurs under conditions
where the gas is highly degenerate in the center, with
n0�nd=�mT /�. Assuming that this is the case and taking
into account that the degeneracy condition is equivalent to

�0
 /T�1, Eq. �2� can be rewritten as

N �
T

��
ln� T


�0
� . �3�

Under these conditions, as Eq. �1� reduces to n
��mT2 /2�2
�
 for 
�
�T, the density profile develops a
sharp central peak which is well approximated by

n�z� ��mT2

2�2

1
�
�0
 + m�2z2/2

, �4�

and extends up to distances 
z
�RT=�2T /m�2.
The analysis made above is valid as long as n0�nco. Us-

ing Eq. �4� and the expression for nco, the condition
n0�nco can be rewritten as


�0
 � m1/3�gT/��2/3. �5�

Using Eq. �3� to relate �0 to the total atom number, Eq.
�5� leads to the condition that the gas is in the decoherent
regime as long as N�Nco, where

Nco �
T

��
ln� �2T

mg2�1/3

=
T

3��
ln� t

2
� �6�

is the characteristic atom number at the crossover. As we
mentioned earlier, one should have t�103 for obtaining a
highly degenerate gas at the crossover. Under this condition,
Eq. �6� can be approximately inverted to yield, for a given N,
a crossover temperature

Tco �
N��

ln�N�3�/mg2�1/3 . �7�

We emphasize that our results are obtained within the
LDA, which is valid if the characteristic correlation length lc
of density-density fluctuations is much smaller than the typi-
cal length scale L of density variations. The correlation
length is lc�� /�m
�0
 in both the quantum decoherent and
quasicondensate regimes �6,7�. Approaching the crossover
from the decoherent regime we replace 
�0
 by the right-hand
side of Eq. �5�, while approaching it from the quasiconden-
sate regime we use �0�gnco. In both cases, one obtains
lc��4/3 / �m2gTco�1/3. The length scale L can be estimated as
the distance from the trap center where the density is halved
compared to the peak density n0. Approaching the crossover
from the decoherent side, Eq. �4� gives L��
�0
 /m�2

��gTco/m��3�1/3. On the quasicondensate side, we use the
Thomas-Fermi parabola and obtain L��2ncog /m�2, which
gives approximately the same result. One then easily sees
that the condition of validity of the LDA, lc�L, is reduced to

� � �co 
 �mg2T2/�5�1/3. �8�

If this inequality is not satisfied then the LDA breaks
down and one has to take into account the discrete structure
of the trap energy levels. In this case, analytic approaches
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FIG. 1. Equation of state of the uniform weakly interacting 1D
Bose gas for three different values of the temperature parameter t
=2T�2 /mg2. The exact numerical result �solid line� is compared
with the behavior in the quasicondensate regime �dash-dotted lines�
and with the ideal Bose gas result of Eq. �1� �dashed lines�. The
straight dotted lines correspond to the classical �Boltzmann� ideal
gas.

BOUCHOULE, KHERUNTSYAN, AND SHLYAPNIKOV PHYSICAL REVIEW A 75, 031606�R� �2007�

RAPID COMMUNICATIONS

031606-2



incorporating both the finite-size effects and small but finite
interaction strength are absent in the vicinity of the transition
to a quasicondensate, and we adopt the ideal gas treatment of
Ref. �10�. For a fixed temperature, this treatment predicts a
finite-size BEC at a critical atom number NC
=T / ����ln�2T /���. It is clear that the finite-size BEC phe-
nomenon will prevail the interaction-induced crossover sce-
nario if NC
Nco. In fact, the opposite inequality, NC�Nco, is
equivalent to that of Eq. �8�, which makes our analysis self-
consistent and implies that the condition of validity of the
LDA, ���co, serves as the simultaneous criterion for ob-
serving the interaction-induced crossover, while the opposite
condition corresponds to finite-size condensation. At a con-
stant N, the criterion for observing the interaction-induced
crossover can be obtained from Eq. �8� by replacing T with
N�� / ln�2N�. The opposite criterion leading to the finite-size
BEC has been previously found in Ref. �12� from the condi-
tion gn0���.

In the following, we analyze the properties of the
interaction-induced crossover, subject to inequality �8�. Since
t�103 in the regime of interest, Eq. �6� written as
Tco=3N�� / ln�tco/2� shows that the crossover temperature is
lower than the characteristic temperature of quantum degen-
eracy of a harmonically trapped gas N��. Thus, Tco repre-
sents a more accurate and lower estimate of the crossover
temperature to the quasicondensate regime compared to the
inequality T�N�� given in Ref. �12�. For extremely large
values of t, the present treatment identifies an intermediate
temperature interval Tco�T�N�� which accommodates the
decoherent quantum regime. Here the gas is degenerate and
is well described within the ideal Bose gas approach.

Figure 2 shows density profiles for different values of the
chemical potential at a fixed temperature parameter
t=2�2T /mg2=105. Figure 2�e� corresponds to the quasicon-
densate regime. Figure 2�c� shows the density profile at the
crossover, and we find that the corresponding atom number
N�3.78T /�� is in good agreement with the value
Nco�3.61T /�� predicted by Eq. �6�. The decoherent regime
is clearly seen in Figs. 2�a� and 2�b�. Although the inequality
Tco�N�� is barely satisfied, the features of the quantum
decoherent regime are seen in Fig. 2�b�: the density profile is
described to better than 10% by the ideal Bose gas approach
and differs strongly from the classical Boltzmann distribu-
tion.

To provide a better connection with experimentally mea-
surable quantities we plot in Fig. 3 the peak density n0 versus
N�� /T for three different values of the temperature param-
eter t. In all cases we give the comparison with the classical
Boltzmann gas, the ideal Bose gas, and the quasicondensate
predictions. The ideal Bose gas prediction connects the Bolt-
zmann behavior n0=N��m /2	T to the degenerate behavior
n0= ��mT /��exp�N�� /2T�, whereas in the quasicondensate
regime n0 scales proportionally to N2/3. The scaling of the
peak density n0 as a function of N and the sequence of
changes between power laws and an exponential can serve as
a signature of the transitions between different regimes. This
includes the quantum decoherent regime, which becomes
more pronounced when increasing the parameter t and is
already seen for t=105.

The sufficient condition for realizing the 1D regime in a
harmonically trapped, weakly interacting gas is T����,
where �� is the transverse oscillation frequency. If the os-
cillator length l�=�� /m�� is much larger than the 3D scat-
tering length a, the 1D coupling is given by g�2�2a /ml�

2

�13�. The condition for the interaction-induced crossover,
���co, can then be rewritten as

� � ���T/����2/3�a/l��2/3. �9�

Taking �� /2	 in the range from 1 to 30 kHz and
T�0.2��� �T is ranging from 10 to 300 nK�, one can see
that for most of the alkali-metal atoms with typical scattering

0 0.5 1 1.5
0

2

4

z/R
T

n(
z)
h2

/m
g

(a)
µ
0
/T= -3.43

Nhω/T=0.0331
_

|

0 0.5 1 1.5
0

100

200

300

z/R
T

(b)
µ
0
/T= -0.171

Nhω/T=1.81
_

0 0.5 1 1.5
0

500

1000

z/R
T

(c)
µ
0
/T= 0

Nhω/T= 3.78
_

0 0.5 1 1.5
0

500

1000

1500

z/R
T

(d)
µ
0
/T= 0.0257

Nhω/T= 4.84
_

0 0.5 1 1.5
0

5000

10000

z/R
T

(e)
µ
0
/T= 0.171

Nhω/T=30.8
_

FIG. 2. Density profiles of a 1D Bose gas in a harmonic trapping potential for five different values of the ratio �0 /T and a fixed value
of the temperature parameter t=2�2T /mg2=105. The exact numerical solution �solid line� is compared with the ideal Bose gas distribution
�dashed line�, classical Boltzmann distribution �dotted line�, and Thomas-Fermi distribution in the Gross-Pitaevskii regime �dash-dotted
line�. The resulting values of the dimensionless ratio N�� /T, following the exact solutions, are also shown. The distance from the trap center
z is in units of RT= �2T /m�2�1/2. All calculations are done within the LDA using the equation of state for the homogeneous gas shown in Fig.
1, with �0 and n�0� in �b�–�e� being the same as � and n indicated by the points �b�–�e� in Fig. 1.
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FIG. 3. Peak density n0 �in units of mg /�2� of a trapped gas
versus N�� /T for three values of t=2�2T /mg2. The three black
dots show the respective crossover values of Nco�� /T from Eq. �6�.
The different lines are as in Fig. 1.
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lengths in the range of a few nanometers, the inequality �9� is
well satisfied with � of a few hertz commonly used in prac-
tice. Thus, the conditions for realizing the interaction-
induced crossover are relatively easy to satisfy, unless the
scattering length is extremely small �a
0.1 nm�. On the
other hand, the condition to observe the quantum decoherent
regime before the interaction-induced crossover is more de-
manding as it requires, in addition to Eq. �9�, a very large
value of the parameter t. Rewriting the 1D inequality
T���� as a� l� /�2t we immediately see that even at
t=105, where one only starts to see the features of this re-
gime, one needs to use light atoms �large l�� and/or a very
small scattering length in order to satisfy a�2
10−3l�.

A favorable system for satisfying these conditions is a 1D
gas of 7Li atoms in the F=1, m=−1 hyperfine state, where
the scattering length can be tuned from very large to
extremely small values using an open-channel-dominated
Feshbach resonance �14�. By taking, for example,
� /2	�4 Hz, �� /2	�4 kHz, T�0.2��� �40 nK�, and
varying a from 20 to 0.2 nm, one can increase t from
60 to 6
105 and see how a direct interaction-induced cross-
over from a classical gas to a quasicondensate regime trans-
forms to accommodate the intermediate quantum decoherent
regime. The same system can also be used to observe the
finite-size BEC scenario, which requires the inequality oppo-
site to Eq. �9� and hence a reduction of the scattering length
to a�0.01 nm.

In conclusion, we have identified the conditions for real-

izing either a finite-size BEC phenomenon or an interaction-
induced crossover to a coherent, quasicondensate state in a
harmonically trapped 1D Bose gas. In the latter case, we
distinguish between a direct crossover from the classical de-
coherent regime and a crossover through the intermediate
quantum decoherent regime. Furthermore, one can expect
that the physics of the interaction-induced crossover remains
approximately valid for T	���, where the gas is no longer
in the 1D regime but is near the 3D-1D boundary. This con-
jecture is supported by the results of recent experiments
�15,16�. In Ref. �15� a gas at T�2��� was produced with a
density profile well described within a degenerate ideal gas
approach. This means that the crossover to a quasicondensate
was likely to involve the features of the decoherent quantum
regime. Finally, we note that the interaction-induced cross-
over through a well-pronounced decoherent quantum regime
would be easier to produce in a quartic or boxlike potential
�17�.
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