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Uncertainty relations for the realization of macroscopic quantum
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E. G. CAVALCANTI and M. D. REID*

ARC Centre for Excellence for Atom-Optics, School of Physical Sciences,
The University of Queensland, Brisbane, Australia

(Received 10 March 2007; in final form 14 August 2007)

We present a unified approach, based on the use of quantum uncertainty
relations, for arriving at criteria for the demonstration of the EPR paradox and
macroscopic superpositions. We suggest to view each criterion as a means to
demonstrate an EPR-type paradox, where there is an inconsistency between the
assumptions of a form of realism, either macroscopic realism (MR) or local
realism (LR), and the completeness of quantum mechanics.

1. Introduction

Schrödinger [1] raised the question of whether there could be a superposition of
macroscopically distinct states. The issue at hand [2] is that where we have a
quantum superposition of two states, the system cannot be thought of as being in
one state or the other until a measurement is performed that would distinguish the
states.

The concept of the quantum superposition is intrinsically associated with the
concept of a fundamental quantum indeterminateness, that we are limited in the
precision to which we can ever predict outcomes of measurements that are performed
on the system. This follows because if we have a superposition of two eigenstates
x1 and x2 of an observable x̂, where x2 � x1 is large, then by our interpretation, the
system is not predetermined to be in either state, so we have an indeterminacy in x
that is at least of order x2 � x1.

This indeterminacy is of a fundamentally different nature to that of classical
theory, where lack of knowledge of an outcome is understood in terms of a statistical
theory in which there is a probability for the system to be in a certain state,
which will have a certain probability of outcome for x. Such probabilistic
interpretations are generally referred to as classical mixtures. In quantum mechanics,
the indeterminacy that arises from a quantum superposition is not represented
this way.
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 The concept of a macroscopic superposition is therefore linked with that of a

macroscopic quantum indeterminateness, which manifests as a macroscopic spread in

outcomes x that cannot be explained using statistical mixtures of ‘smaller’ states, that

is, states whose predictions give a smaller spread of outcome. The issue of macro-

scopic quantum indeterminateness is fundamental to quantum mechanics, in that

any pure state can be written in terms of eigenstates of any observable, and it is

always the case that the uncertainty principle will apply to prevent absolute

predetermination of another observable. Put another way, an eigenstate of momen-

tum when written in terms of position eigenstates will be a superposition

j i ¼
P

i cijxii of a macroscopic—in fact infinite—range of position eigenstates jxi.
In terms of Schrödinger’s concern, we are left to question the real existence of

macroscopic quantum indeterminateness, since this would imply a superposition of

eigenstates with an inherently macroscopic range of prediction of x. Following [3],

this is still a paradox. We consider two regions of outcome (denoted �1) that are

macroscopically separated, and denote the region of intermediate outcomes by 0, as

shown in figure 1. The mixture � ¼ P1�1 þ P2�2, where �1 encompasses outcomes

x < x2 and �2 encompasses outcomes x > x1 (P1=2 are probabilities), imposes a

‘‘macroscopic reality’’, in the sense that the system can be interpreted to be in

possibly one (but never both) of two macroscopically separated regimes. The

macroscopic superpositions defy this assertion.
We present a unified approach for constructing criteria for macroscopic super-

positions and EPR entanglement. We first review some experimental signatures [3]

for determining the extent of ‘quantum fuzziness’. These signatures are based on the

use of quantum uncertainty relations. Next, we show how one can easily construct

from single-system uncertainty relations new such signatures that apply to bipartite

entangled systems. These new signatures result by simply substituting one of the

variances of the original uncertainty relation with the variance of an inferred

observable. Finally we show that the simple further amendment of the uncertainty

relations so that all variances are replaced by inferred variances will result in criteria

for the original EPR paradox [4].

P(x)

x1 x x2

ρ1 ρ2

S

−1 +10

Figure 1. Consider three regions of outcome �1, 0 for measurement x. Density operator �1
encompasses outcomes x < x2 and �2 encompasses outcomes x > x1.

2374 E. G. Cavalcanti and M. D. Reid
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 2. Macroscopic realism, local realism and the completeness of quantum mechanics

The assumption we seek to test is macroscopic realism (MR) [2]—that physical
systems can always be described at any given time as being in one or other of two
macroscopically distinct states. This can (in principle) coexist with a lack of such
realism at the microscopic level.

EPR [4] argued against the completeness of quantum mechanics—the notion that
quantum mechanics is a complete theory in the sense that there are no further facts
about physical systems which are not captured by a quantum description. In
particular, quantum observables obey uncertainty relations and the assumption of
completeness implies that the values of those observables are not defined beyond that
precision. EPR showed how this assumption of completeness of quantum mechanics
clashed with that of local realism (LR).

This assumption of the completeness of quantum mechanics does not seem
a priori to clash with MR—an argument could be made that the uncertainty
principle imposes only a microscopic limitation on the predetermination of obser-
vables. We show that this could be a misleading argument, in that quantum
mechanics predicts the existence of eigenstates of an observable (this observable is
said to be squeezed) and thus implies infinite spreads in ‘quantum fuzziness’ for
conjugate observables. This prediction we wish to test.

3. Criteria for S-scopic superpositions

3.1 Continuous variable case

We consider a system A for which an observable x̂ displays a macroscopic range of
values. We denote by p̂ the observable conjugate to x̂, so that (in appropriate units)
�2x�2p � 1.

Leggett and Garg [2] defined macroscopic realism (MR) as the assumption:
‘A macroscopic system with two or more macroscopically distinct states available
to it will at all times be in one or the other of these states’. If we do not want to
restrict a priori what states are available to the system, we must assume that all
possible superpositions of eigenstates of x̂ are available. If two states each localized
around macroscopically distinct values of x indicate two macroscopically distinct
states, then each (pure) quantum state allowed by MR can only have a microscopic
(or non-macroscopic) range of outcomes.

In applying MR to situations where more than two states are available, we thus
postulate that MR asserts the system to be describable as a statistical mixture of
states �ðsÞi each of which predicts a small (non-macroscopic) spread of outcomes for
x̂. We now assume that the ‘states’ are quantum states, and call this premise
macroscopic quantum realism. In this case, denoting the spread in the prediction
for x for the state �ðsÞi by S, we can write the density matrix as

� ¼
X
i

Pi�
ðSÞ
i : ð1Þ

Macroscopic quantum superpositions and EPR paradoxes 2375
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 Here,

P
i Pi ¼ 1 and for each �ðSÞi , jx1 � x2j � S for all values of outcomes x1 and x2

which have a non-zero probability. This assumption leads [3] to constraints on the
minimum fuzziness in the conjugate observable p. Specifically, it follows, since each
�ðSÞi is itself a quantum state and since the variance predicted by a mixture cannot be
less than the average of the variances of its components, that �2p � 4=S2.

The experimental observation of squeezing in p such that �p < 2=S therefore
implies the failure of mixtures of quantum states that can only have a spread in their
prediction for x of S or less. Thus, necessarily the system exists with some probability
in a pure superposition state of spread, or size, S where

S > 2=�p: ð2Þ

The squeezed state [5] j i ¼ exp ½rða2 � ay2Þ� 0j i (a is the boson operator for a field
mode at A and 0j i is the vacuum state) is the simplest model for squeezed variances,
defined as �p < 1 (figure 2). Here measurements are: x̂ ¼ ðay þ aÞ, p̂ ¼ iðay � aÞ. The
squeezed state predicts �2x ¼ � ¼ exp ð2rÞ, so that x has eventually a macroscopic
quantum indeterminacy, while p is squeezed, so that �2p ¼ 1=� ¼ exp ð�2rÞ.
Experiments [6–8] using optical fields have confirmed the existence of squeezed
states. Values reported are of order �p ¼ 0:4 to confirm a quantum superposition of
eigenstates jxi with S¼ 4, which is twice that of the coherent state.

3.2 Discrete case

We present new criteria for the extent of quantum indeterminateness for spin states
with discrete outcomes. We use �JX�JY � jhJZij=2. Suppose � to be a mixture of
superpositions of the eigenstates of JX that have an extent S or less. This leads to the
constraint �JY � jhJZij=S. Thus, if we measure a value �JY we can infer existence of
superpositions of size S where

S > jhJZij=�JY: ð3Þ

The inequality is interesting in that the bound jhJZij itself is not intrinsically
restricted in size. This means that it is possible to deduce existence of superpositions

x

P(x)

∆x

S=2∆x

Figure 2. Squeezed states predict a Gaussian distribution for x with variance �x ¼ exp ðrÞ.
The measurement of a �p would imply superpositions of jxi that have a range (or size) S,
where S > 2=�p. For the squeezed state, S > 2�x.

2376 E. G. Cavalcanti and M. D. Reid
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 of spin eigenstates which have a macroscopic extent of indeterminateness, even if this

extent is small relative to the quantum limit itself.
One example is the observation of squeezing in ‘spin’ observables constructed via

the Schwinger formalism. We define JAX ¼ ða�a
y
þ þ ay�aþÞ=2, J

A
Y ¼ ða�a

y
þ � ay�aþÞ=2i,

JAZ ¼ ðayþaþ � ay�a�Þ=2, where a� are boson operators for field modes. The physical
measurements are of photon number differences, the JX and JY measurements being
performed by first combining the fields with appropriate phase shifts. Thus, we define
aX� ¼ ðaþ � a�Þ=2

1=2 and aY� ¼ ðaþ � ia�Þ=2
1=2 to get JX ¼ ðayXþaXþ � ayX�aX�Þ=2

and JY ¼ ðayYþaYþ � ayY�aY�Þ=2. Squeezing of spin variables for the macroscopic
regime where outcomes become effectively continuous has been observed, in experi-
ments [7–10] based on polarization and atomic-spin squeezing.

4. Criteria for S-scopic superpositions in bipartite systems

4.1 Continuous variable case

We consider two subsystems A and B, and define observables x, p for A, and xB, pB

for B, where �xB�pB � 1 . We derive an uncertainty relation that will be useful in
deriving signatures for superpositions of entangled systems.

Theorem 1: For any quantum state

�x�infp � 1: ð4Þ

We define the average variance in the inference of p given a measurement ÔB at B
as �2

infp ¼
P

OB PðOBÞ�2ðpjOBÞ: �2ðpjOBÞ is the variance of the conditional distri-
bution PðpjOBÞ and PðOBÞ is the probability of OB, the result for observable ÔB.
In general, where we have a quantum uncertainty relation of type
�O1�O2 � jh½O1,O2�ij=2, or

P
I �

2OI � D, we can construct another quantum
relation that applies to bipartite systems by substituting one of the variances, �2O
say, for the system A, with the variance �2

infO of the inferred value for the
observable.

Proof: The variance �2x is calculable from the density operator for A which is
�A ¼ TrB � ¼

P
OB PðOBÞ�BOB where �BOB is the reduced state of A conditional on the

result OB for the measurement ÔB at B. We thus get �2x �
P

OB PðOBÞ�2
OB ðxjO

BÞ,
since the variance of a mixture cannot be less than the average of the variances of its
components. Here we denote �2

OBðxjO
BÞ as the variance of the conditional PðxjOBÞ.

Now using the Cauchy Schwarz inequality

�2x�2
infp �

X
OB

PðOBÞ�2ðxjOBÞ
X
OB

PðOBÞ�2ðpjOBÞ ð5Þ

�
X
OB

PðOBÞ�ðxjOBÞ�ðpjOBÞ

" #2

� 1: ð6Þ

Similar reasoning holds for the more general uncertainty relation except that one
uses �ðO1jO

BÞ�ðO2jO
BÞ � jhCjOBij=2, where C ¼ ½O1,O2� and hCjOBi denotes the

Macroscopic quantum superpositions and EPR paradoxes 2377
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 average of P(C jOB), and the fact that in general

P
z PðzÞjhxjzij �

P
z PðzÞhxjzi ¼P

z PðzÞ
P

x xPðxjzÞ ¼ hxi. The result for the sums of variances can be proved in a
similar fashion.

The assumption that � can be expressed as a mixture of only S-scopic super-
positions jxi will imply, following the logic outlined in section 3, the constraint
�infp � 2=S. The observation of a �infp allow us to deduce the existence of a
superposition of eigenstates jxi with a spread S, where

S > 2=�infp: ð7Þ

An arbitrary amount of squeezing �infp is predicted for the two-mode squeezed state
[11, 12] j i ¼

P1

n¼0 cnjniAjniB, where cn ¼ tanhn r= cosh r. Here, �x ¼ � ¼ cosh 2r
while �infp ¼ 1= cosh 2r. The inference variance �infp has been measured and
recorded in experiments [13] that are designed to test for the EPR paradox. Values
as low as �infp � 0:7 have been achieved.

4.2 Discrete case

We now consider where spin measurements J� and JB� can be performed. Application
of Theorem 1 leads to the following inequality satisfied by all such quantum systems:
�JX�infJY � jhJZij=2. The observation of a certain inference variance �infJY will
lead to the conclusion of a superposition of eigenstates of JX with spread

S > jhJZij=�infJY: ð8Þ

Measurements of �infJY have been reported by Bowen et al. [14].

5. Criteria for the EPR paradox

We consider quantum uncertainty relations for system A of a bipartite system. For
example we may have �O1�O2 � jh½O1,O2�ij=2, where ½O1,O2� evaluates as another
observable which we denote C. Alternatively, we may have [15]

P
i �

2Oi � D, where
D is a constant. Because we have a second system B, we can define the inferred
variances �2

infOi. The following result allows an immediate writing down of criteria
to confirm EPR’s paradox [4].

Theorem 2: Where we have such a quantum uncertainty relation that holds for all
quantum states, we can substitute the variances �2O by average inference variances
�2

infO, and the mean jhCij by jhCijinf, the average inference of the modulus of the mean
as defined by jhCijinf, ¼

P
OB PðOBÞjhCjOBij, where hCjOBi is the mean of the con-

ditional distribution PðCjOBÞ. The resulting inequality is an ‘EPR inequality’ that if
violated is a demonstration of the EPR paradox.

Proof: We follow the treatment given by EPR [4] and the modifications [12, 16] to
conclude the existence of an ‘element of reality’ �Oi that predetermines the result of
measurement for observable Oi. The probability distribution for the prediction of
this element of reality is precisely that of the conditional PðOijO

BÞ where OB is the
result of a measurement performed at B, to infer the value of Oi. EPR’s local realism

2378 E. G. Cavalcanti and M. D. Reid
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 (LR) implies a joint probability distribution P(�) for the �i, or for further underlying

parameters. For the product of the inference variances we get, assuming LR

�2
infO1�

2
infO2 ¼

X
O1

PðOB
1 Þ�

2ðO1jO
B
1 Þ

X
O2

PðOB
2 Þ�

2ðO2jO
B
2 Þ ð9Þ

�
X
�

Pð�Þ�ðO1j�Þ�ðO2j�Þ

" #2

ð10Þ

�
X
�

Pð�ÞjhCj�ij=2

�����
�����
2

� jhCij2inf=4 ð11Þ

and for the sum one obtains

�2
infðO1Þ þ�2

infðO2Þ ¼
X
O1

PðOB
1 Þ�

2ðO1jO
B
1 Þ þ

X
O2

PðOB
2 Þ�

2ðO2jO
B
2 Þ ð12Þ

¼
X
�

Pð�Þ½�2ðO1j�Þ þ�2ðO2j�Þ� � D: ð13Þ

We have used [12] that if the ‘elements of reality’ can be written as quantum states,
then the variances predicted by the elements of reality � must satisfy the quantum
uncertainty relations. This leads to the result [11] once it is realized that increasing
the number of variables � can only decrease the average modulus of the mean. The
violation of (11) or (13) thus implies inconsistency of LR with the completeness of
quantum mechanics, which asserts the underlying states to be quantum states.

The ‘EPR inequalities’

�2
infx�

2
infp � 1, �infJX�infJY � jhJZiinfj=2 ð14Þ

(the latter implies the inequality [14] �infJX�infJY � jhJZij=2) have been derived
previously [12] and in some cases used to demonstrate an EPR paradox [13, 14]. One
can also use Theorem 2 to derive EPR inequalities from uncertainty relations
involving sums of variances, so that for example �2JX þ�2JYþ �2JZ � j=2 as
used by Hoffmann et al. [15] leads to the EPR inequality
�2

infJX þ�2
infJY þ�2

infJZ � j/2.

6. Conclusion

The criteria we have derived are based on the assumption that the systems can be
described as mixtures of underlying quantum states, which therefore satisfy uncer-
tainty relations. This means that these criteria can be viewed in a unified way as
conditions for demonstration of general EPR-type paradoxes. In the case of the
criteria for macroscopic superpositions, we assume macroscopic realism (MR) to infer
that the system be described as a probabilistic mixture of states with a microscopic
lack of predetermination only. The assumption that these underlying states be
quantum states leads to our inequalities. An experimental violation of the inequalities
confirms existence of macroscopic superpositions, but does not falsify macroscopic
realism itself, since one may propose alternative theories in which the underlying

Macroscopic quantum superpositions and EPR paradoxes 2379
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 states are not quantum states. Hence, we have extended the EPR paradox to

demonstrate an inconsistency between completeness of quantum mechanics and

macroscopic realism.
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