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We review phase-space techniques based on the Wigner representation that
provide an approximate description of dilute ultra-cold Bose gases. In this
approach the quantum field evolution can be represented using equations of
motion of a similar form to the Gross–Pitaevskii equation but with stochastic
modifications that include quantum effects in a controlled degree of approxima-
tion. These techniques provide a practical quantitative description of both
equilibrium and dynamical properties of Bose gas systems. We develop versions
of the formalism appropriate at zero temperature, where quantum fluctuations
can be important, and at finite temperature where thermal fluctuations dominate.
The numerical techniques necessary for implementing the formalism are discussed
in detail, together with methods for extracting observables of interest. Numerous
applications to a wide range of phenomena are presented.
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1. Introduction

The dilute ultra-cold Bose gas presents a rare opportunity for theoretical physics: it has

well-characterized interactions, and it is feasible to begin with the full quantum theory and

subsequently use well-controlled approximations to develop formalisms suitable for

calculations. These systems can be precisely manipulated and observed in experiments and

offer a unique chance to compare computational quantum field theories directly with

experiments.
Several aspects of experiments present challenges for theory. First, the experiments are

usually non-equilibrium with long relaxation times and are well beyond any sort

of linearized treatment. Second, the harmonic trapping potentials used in experiments

complicate the traditional many-body methods which are more suitable for uniform

systems. The low-energy collective dynamics and numerous finite-sized aspects of this

system critically rely on the external potential being treated as a primary consideration of the

theory.
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At zero temperature an almost pure Bose–Einstein condensate (BEC) forms, and for

a wide range of situations its dynamics are well described by the time-dependent Gross–

Pitaevskii equation (GPE); see, e.g., [1,2]. This approach assumes that all of the atoms are

well represented by a single condensate wavefunction, and the GPE describes the coherent

evolution of this wavefunction neglecting all spontaneous and incoherent processes.

However, experiments routinely operate in regimes where such processes are important and

theGPE provides an inadequate physical description, andwe provide some examples below.

. At higher temperatures, approaching the condensation temperature, Tc, a sizable

thermal cloud will be present. Experiments examining collective oscillation

frequencies of BECs found that for temperatures higher than about 0.6Tc the

GPE, owing to its neglect of the interplay between the condensate and thermal

cloud, incorrectly predicts the collective mode frequencies and damping [3–5].
. Two nearly-pure BECs colliding produce a halo of atoms scattered onto

a spherical shell in momentum space [6]. Provided that the phase-space density

of the scattered atoms is low, this can be viewed as incoherent scattering of the

individual atoms in the condensates, and the GPE can be augmented [7] to

account for these. However, at higher scattered densities Bose stimulation

becomes important, and a theory which includes both Bose stimulation as well as

incoherent scattering is required.

In order to treat these examples and many others it is necessary to formulate a description

of Bose gases that combines coherent and incoherent physics in a general, yet tractable

manner. The key to a successful theoretical approach is the recognition that in all of these

examples, even when there is no BEC, one or many modes of the system have an

occupation which is much larger than one quantum. The systems are then highly Bose

degenerate, and the matter-wave field behaves much like a classical field. A set of

theoretical approaches relying on the existence of significant Bose degeneracy, known

generically as c-field methods, provide a comprehensive solution to this problem.
An example simulation demonstrating such a scenario is shown in Figure 1.

The averaged momentum density of a c-field simulation (see Section 3) which describes

many degenerate modes of a trapped Bose gas is shown for a range of temperatures

spanning the critical temperature. The condensate is seen to emerge from the broad

thermal cloud as the temperature decreases below Tc.
There are two main unifying features of the c-field techniques we present in this review.

The first is that the modes of the field theoretic description are divided into two regions.

Figure 1. Momentum space density (logarithmic) for classical field simulations at various
temperatures. Emergence of the condensate is visible as a prominent spike at temperatures below Tc.
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The precise way this is done depends on the approach, but generically we have the
following two regions.

C: c-field region. This region is of primary importance in the description of the system and
is so-named because it is simulated using classical stochastic field equations. In the theories
we develop here this region is chosen to contain not only the condensate, but all other
highly Bose-degenerate modes. It may also contain modes of low occupation in which
important dynamics occur.
I: Incoherent region. This region consists of the remaining modes which will individually be
sparsely occupied (high-energy) thermal or vacuum modes. Depending on the temperature
and the density of states this region may contain a significant or even dominant fraction of
the total number of particles in the system. However, they have only a weak influence on
the dynamics of the c-field region. In the techniques we develop in this review the static
and dynamical properties of this region will be approximated as being incoherent.

The second common feature to the c-field techniques is that their evolution equations
are of similar form to the GPE, but with important modifications. This is the primary
advantage of the formalism: its computational tractability and capability to simulate
experimentally realistic parameter regimes.

This review is organized as follows. We begin in Section 2 where we outline the
background theory relevant to the application of c-field techniques1. We then identify
three separate implementations of the c-field techniques for different physical regimes,
which are subsequently described in their own sections.

These techniques are as follows.

(i) Projected GPE (PGPE). In all c-field approaches the GPE-like evolution is strictly
limited to the C region. This is implemented using a projection operator, and
when this is the sole modification of the GPE we refer to the evolution equation
as the projected GPE (PGPE).
The PGPE is used to simulate the c-field region as amicrocanonical system, i.e. as

an isolated system of fixed energy and number, with all couplings to the incoherent
region neglected. This approach is valid for high temperatures (T�Tc) where the
energy cutoff is chosen so that all c-field region modes are highly occupied, and
quantum fluctuations can be neglected. This theory is discussed in Section 3, along
with applications of this formalism to finite temperature phenomena.

(ii) Truncated Wigner PGPE (TWPGPE). When there are modes with low occupation
in the c-field region, additional noise terms must be included in the initial
conditions to model the quantum-mechanical vacuum fluctuations. Inclusion of
quantum fluctuations cannot be done exactly, but can be well approximated by
stochastic sampling of a Wigner distribution for the initial state of the system.
The method introduces spontaneous processes which are absent in the pure GPE
theory for which all scattering is stimulated. This formalism underlies all of the c-
field techniques and is presented in Section 2.3, with applications of the theory to
the non-equilibrium dynamics of systems at T�Tc considered in Section 4.

(iii) Stochastic PGPE (SPGPE). When exchange of energy and matter between the
c-field region and the incoherent region is important, additional noise terms
appear in the theory as well as in the initial conditions, via the truncated Wigner
function method as above.
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This approach is applicable in the same temperature regime as the PGPE,

however it differs from that formalism in that scattering processes, which couple

to the incoherent region, are included. The theory is implemented by solving the

PGPE with additional dissipative and stochastic terms. This transforms the

description of the c-field region to a grand canonical form which includes the

exchange of particles and energy between the regions. This method, discussed in

Section 5, is well suited for modelling the dynamics of evaporative cooling and,

for example, vortex formation during Bose–Einstein condensation.

In all of the above c-field techniques it is important to ensure that the numerical

solutions of the equations inside the c-field region do not develop components outside that

region. Significant research has gone into developing numerical methods for efficiently

evolving projected equations, particularly the challenge of implementing a projection

operator efficiently and without compromising the tractability of the equation compared

with the usual GPE. This is discussed further in Appendix A and Appendix B. In this

review we show that a wide range of problems can be solved using these methods, and that

accurate and reliable quantitative results can be computed.

2. Background formalism

2.1. Effective field theory for the dilute Bose gas

In this section we develop the basic formalism for the review. We begin by restricting the

full Hamiltonian to a low-energy subspace, L, for which an effective field theory provides

an accurate description of the gas with a contact interaction. We then further divide this

subspace into the C and I regions central to our development of the c-field techniques. Our

basic approach here follows the derivation given in [8].
Our starting point for describing a system of bosonic atoms interacting via an

interatomic potential U(x) is the second quantized Hamiltonian

Ĥ ¼

Z
d3x �̂

y
ðxÞHsp�̂ðxÞ þ

1

2

Z Z
d3x d3x0 �̂

y
ðxÞ�̂
y
ðx0ÞUðx� x0Þ�̂ðx0Þ�̂ðxÞ, ð1Þ

where �̂ðxÞ is the bosonic field operator, and

Hsp ¼ H0 þ �Vðx, tÞ, ð2Þ

H0 ¼ �
�h2r2

2m
þ V0ðxÞ, ð3Þ

are the single particle and basis Hamiltonians, respectively, with V0(x) the external

potential. These Hamiltonians differ by the inclusion of a ‘perturbation potential’ �V(x, t),
which we include for generality. The basis Hamiltonian,H0, is so-named because we use its

eigenstates as a basis for the low-energy description of the system, in particular to define

the c-field region in Section 2.2. The inter-atomic potential, U(x), has a size characterized

by the effective range parameter, r0, and only depends on the relative separation of

the atoms.
In typical ultra-cold atom experiments the length scales of interest are much greater

than r0, and the full details of the inter-atomic potential are unnecessary. It is desirable,
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therefore, to develop a theory that eliminates the need to consider such small length scales,

and hence the microscopic details of the collisional interaction can be parameterized

in terms of the S-wave scattering length alone: such an approach is known as an effective

field theory.
Formally this procedure can be implemented by restricting our attention to a low-

energy subspace, L, that is spanned by single-particle states of energy less than an

appropriately chosen energy cutoff Emax. This eliminates all momentum states with

momentum exceeding �h�ðxÞ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEmax � V0ðxÞÞ

p
at x, and in doing so effectively

‘coarse grains’ our description to a length scale of 1/�(x). While our choice of Emax is

in principle arbitrary, the following criteria ensure a simple and accurate effective field

theory emerges.

(i) We have Emax � h2=2mr20, so that we eliminate the need to include short-

wavelength components of the wavefunction that occur in the interaction region.

Integrating out these high-energy states allows the inter-atomic interaction to be

replaced by the two-body T-matrix, which in the zero energy limit becomes [8,9]

Tð0Þ ! g ¼
4�as�h

2

m
, ð4Þ

where as is the S-wave scattering length.
(ii) We have Emax� kBT, �, where � is the chemical potential, so that the eliminated

states will not be occupied by thermal or interaction effects. This requirement

ensures that the T-matrix does not depend on the population of states that are

eliminated in the theory, i.e. avoiding the need to consider a many-body T-matrix.

As long as these conditions are satisfied, the effective field theory derived should be

insensitive to the precise value of Emax used.
We can introduce a coarse-grained field operator,  ̂ðxÞ, which only contains modes in

L, and is described by the effective Hamiltonian

Ĥeff ¼

Z
d3x  ̂

y
ðxÞHsp ̂ðxÞ þ

u

2

Z
d3x  ̂

y
ðxÞ ̂
y
ðxÞ ̂ðxÞ ̂ðxÞ: ð5Þ

It must be emphasized that this resulting field theory has a cutoff, so that the commutation

relations of these new field operators are not precise delta functions:

½ ̂ðxÞ,  ̂
y
ðx0Þ� ¼ �Lðx� x0Þ: ð6Þ

In Equation (5), we have introduced the coupling constant

u ¼
g

1� g
R
L
d3k ð�h2k2=ð2�Þ3mÞ

, ð7Þ

where the integral is taken over the momentum space of the L-region and accounts for the

cutoff dependence of the coupling constant (see, e.g., [10, Appendix A]).
For the special case where the potential is slowly varying compared with the local cutoff

wavevector �(x), we have �L(x� x0)’ sin(�(x)jx0 �xj)/2�2jx0 �xj3. The function �L
plays the role of a kind of coarse-grained delta function which in general has a spatially

dependent width; however, it is also a projector into the subspace of non-eliminated modes.
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Using the commutation relation (6) the Heisenberg equation of motion for the

corresponding field operator takes the form

i�h
@ ̂ðxÞ

@t
¼

Z
d3x0 �Lðx� x0Þ Hsp ̂ðx

0Þ þ u ̂
y
ðx0Þ ̂ðx0Þ ̂ðx0Þ

� �
: ð8Þ

The main purpose of the methods discussed in this review is to simulate this equation in

various regimes.

2.2. Projection into the c-field region

2.2.1. Projection operators

In Section 2.1, we developed an effective field theory description of the cold-atom

Hamiltonian derived by eliminating states outside of the L region. The resulting effective

Hamiltonian (5) and equation of motion (8) are restricted to this space.
We now turn to a quantitative definition of the L region. This is accomplished by

expanding the coarse-grained field operator as

 ̂ðxÞ ¼
X
n2L

ân�nðxÞ, ð9Þ

where �n(x) are single-particle eigenstates of the basis Hamiltonian with energy �n, i.e.

�n�nðxÞ ¼ H0�nðxÞ: ð10Þ

The operators ân satisfy the usual Bose commutation relations, [âi, âj]¼ 0, and ½âi, â
y
j � ¼ �ij.

The restriction of the summation in (9) to modes in L is defined by L¼ {n : �n�Emax}.

Figure 2. Schematic view of the c-field region, the incoherent region and eliminated states for
a harmonic trap. The c-field atoms require a quantum description and incoherent atoms may be
treated using quantum kinetic theory.
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In general the requirements put on Emax for a useful effective field theory to emerge

lead to an L-space that is far too large to simulate. Furthermore, the validity conditions for

the c-field methods typically restrict their application to describing a subsystem of L. Thus,

it is necessary to further subdivide L into two regions as follows (see Figure 2).

(i) The c-field region (C)2, which will normally consist of the lowest energy modes

in L and will be numerically simulated using classical fields.
(ii) The incoherent region (I), consisting of all of the modes of L not in C. The choice

of I will be such that any atoms occupying this region will be best described by

a particle-like description.

For all cases considered in this review, these regions are defined by a single-particle

energy �cut, such that C is spanned by the single-particle modes with energy �� �cut and I

is spanned by the single-particle modes with energy �cut5 �5Emax. We define projectors

for these regions as

PCfFðxÞg �
X
n2C

�nðxÞ

Z
d3x0 �	nðx

0ÞFðx0Þ, ð11Þ

PIfFðxÞg �
X
n2I

�nðxÞ

Z
d3x0 �	nðx

0ÞFðx0Þ, ð12Þ

where C¼ {n : �n� �cut} and I¼ {n : �cut5 �n�Emax}, such that L¼Cþ I and PIPC� 0.
We define quantum field operators for the c-field and incoherent regions as

 ̂CðxÞ � PCf ̂ðxÞg ¼
X
n2C

ân�nðxÞ, ð13Þ

 ̂IðxÞ � PIf ̂ðxÞg ¼
X
n2I

ân�nðxÞ, ð14Þ

 ̂ðxÞ ¼  ̂CðxÞ þ  ̂IðxÞ: ð15Þ

Most of the theoretical developments in this review are made in terms of the  ̂CðxÞ and

 ̂IðxÞ operators.

Properties of projectors. It is important to note that the kernel of the PC-projector, namely

�Cðx, x
0Þ �

X
n2C

�nðxÞ�
	
nðx
0Þ, ð16Þ

is the commutator of the c-field operator, i.e.

½ ̂CðxÞ,  ̂
y
Cðx
0Þ� ¼ �Cðx, x

0Þ: ð17Þ

The function �C plays the role of a Dirac-delta function for any function in C, e.g.,Z
d3x0�Cðx, x

0Þ Cðx
0Þ ¼  CðxÞ, ð18Þ
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which also follows from the idempotence property, PCPC�PC. The imposition of
an energy cutoff thus has major consequences for the field theory. Imposing a cutoff in
momentum leads to a discretized form of the continuous field theory with �C(xj, xk)¼
�jk/�V for a lattice representation with volume �V per lattice point. Imposing it in another
basis leads to a field theory with a position-dependent commutator (16).

2.2.2. The Hamiltonian and equation of motion

The effective Hamiltonian can now be rewritten in terms of  ̂C and  ̂I, and because the
projection is in terms of eigenfunctions of the single-particle Hamiltonian, cross terms in
the result will appear only in the quartic interaction term. The different ways of
approaching the implementation of the c-field theory depend on the how these cross terms,
which connect C and I, are dealt with. The three cases are as follows.

(i) PGPE. The cross terms are dropped, but it is assumed that all mode occupations
in C are significantly greater than one throughout the dynamical evolution. Thus,
there is significant occupation of I, but this is taken as fully thermalized, and
conditions are chosen so that when the motion in C reaches equilibrium it matches
smoothly to I.

(ii) TWPGPE. Here one deals with processes in which many modes in C are
unoccupied, including all of the higher modes. In this case I is unoccupied, and
the effect of the cross terms is negligible, and they are dropped. However, the
quantum fluctuations in C have a significant effect, and this is taken into account
by including a random element corresponding to half a quantum occupation in
each mode.

(iii) SPGPE. Here one accounts for interactions between C and I by assuming that I
is thermally occupied, and by using quantum stochastic techniques, terms which
involve dynamic noise and damping are introduced. When the TWPGPE is also
used, the resulting equation of motion is a modified PGPE with noise and
damping.

These methods differ in both their conditions for validity and in the details of their
numerical implementation. We stress that, in general, a system may evolve from a regime
where (ii) is the best description (zero-temperature BEC), through to a regime where (i) is
applicable (a thermalized classical field), and finally through sufficient heating, to the
realm where (iii) may be appropriate. The parameters determining this crossover, and
therefore the appropriate definition of C and I, are the mode occupancies, strength of
interactions and temperature of the system which are, in general, time dependent. Thus,
some care must be taken when applying the methods and we return to this point when
discussing validity criteria in Section 2.3.9.

2.3. Wigner formalism and the truncated Wigner approximation

The justification for all three c-field techniques can be made using a Wigner distribution
methodology. A discussion of the properties of the Wigner distribution can be found in
many places (see, for example, [11,12]). Here we provide an introduction to the theory
using the single mode case in Sections 2.3.1 and 2.3.2, before discussing the quantum field
case in Section 2.3.3.
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2.3.1. Wigner representation of a single quantum mode

The Fourier transform of a classical probability distribution is known as its characteristic

function, and moments of the distribution are proportional to derivatives of the

characteristic function. This same procedure can be generalized to a system described

by a quantum density operator: for a single bosonic mode with density operator �̂, the
symmetrically ordered3 characteristic function is defined as

�Wð	, 	
	Þ ¼ trf�̂e	â

y�		 âg, ð19Þ

where 	 is a complex variable. The symmetrically ordered moments are given by the

derivative of �W at 	¼ 0, i.e.

âs ây
� �rn o

sym

� �
¼

@

@	

	 
r

�
@

@		

	 
s

�Wð	, 	
	Þ
��
	¼0

, ð20Þ

where {
}sym means a symmetrical product of the operators, which is an average of all ways

of ordering the operators, e.g.

âây
� 

sym
¼

1

2
âây þ âyâ
� 

, ð21Þ

â2 ây
� �2n o

sym
¼

1

6
ây
� �2

â2 þ âyââyâþ âyâ2ây þ â ây
� �2

âþ ââyâây þ â2 ây
� �2n o

: ð22Þ

The Wigner function was introduced by Wigner in 1932 [13] and is defined as a Fourier

transform of the symmetrically ordered quantum characteristic function

Wð
,
	Þ ¼
1

�2

Z
d2	 e	

	
�	
	�Wð	, 	
	Þ: ð23Þ

The Wigner function exists for any density matrix (see [11] for a proof), and in

Section 2.3.7 we give the Wigner functions for several standard quantum states.
Integrating Equation (23) by parts we see thatZ

d2

sð
	ÞrWð
,
	Þ ¼
@

@	

	 
r

�
@

@		

	 
s

�Wð	, 	
	Þ
��
	¼0
: ð24Þ

Thus, (from Equation (20)) the moments of the Wigner function give symmetrically

ordered operator averages

hfâsðâyÞrgsymi ¼ 

sð
	Þr �

Z
d2
 
sð
	ÞrWð
,
	Þ, ð25Þ

where we have introduced the notation Fð
, 
	Þ for averaging a function of phase-space

variables F(
,
*) over the Wigner distribution. This suggests that the Wigner function

acts like a probability distribution, indeed W(
,
*) is commonly referred to as a quasi-

probability since it need not be positive. However, for many important classes of quantum

states the Wigner function is either positive (or is well approximated by a positive

function) and can be interpreted as a probability distribution. In these cases the average

Fð
, 
	Þ is equivalently calculated by statistically sampling 
 as a random variable from

this distribution and calculating the average of F(
,
*) over many such samples.

Advances in Physics 373

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
0
:
5
9
 
3
0
 
A
p
r
i
l
 
2
0
0
9



Correlation functions of experimental interest are often normally ordered, requiring

some tedious reordering in order to calculate them from symmetrically ordered Wigner

averages. However, for a normally ordered operator in the form

Oðâ, âyÞ �
X
n,m

cnmâ
ynâm, ð26Þ

it can be shown that the kernel, OW(
,
*), for the equivalent stochastic average over the

Wigner function, OWð
, 
	Þ ¼ hOðâ, â
yÞi is given by [14]

OWð
,

	Þ ¼

X
n,m

cnmð�1Þ
m @

@z
þ
z	

2

	 
n @

@z	
þ

z

2

	 
m

ez

	�z	


���
z¼z	¼0

, ð27Þ

giving, for example,

hâyâi ¼ j
j2 �
1

2
, ð28Þ

hây2â2i ¼ j
j4 � 2j
j2 þ
1

2
: ð29Þ

An explicit form for OW(
,
*) can also be found by evaluating the expression

OWð
,

	Þ ¼

1

2�

Z
d2� e�j�j

2=2Oð
� �=2, 
	 þ �	=2Þ, ð30Þ

which can be useful in certain circumstances, e.g. for reordering exponential operators [15].

For example, choosing O(â, ây)¼ âyâ, we obtain

OWð
,

	Þ ¼

1

2�

Z
d2� e�j�j

2=2ð
	 þ �	=2Þð
� �=2Þ ¼ j
j2 �
1

2
: ð31Þ

2.3.2. Operator correspondences and equations of motion

The equation of motion for the density operator under Hamiltonian evolution is von

Neumann’s equation

i�h
@�̂

@t
¼ Ĥ, �̂
h i

, ð32Þ

where Ĥ is the Hamiltonian. For typical Hamiltonians the right-hand side of

Equation (32) will involve products of operators and the density operator, and here we

discuss how this equivalently maps onto a differential operator acting on the Wigner

function. Consider, for example, the operator product â�̂. Using

e	â
y�		 â ¼ e	â

y

e�	
	 âe�j	j

2=2, ð33Þ

(e.g. see the discussion of the Baker–Hausdorff formula in [11]) and the invariance of the

trace under cyclic permutation we have (cf. Equation (19))

tr â�̂e	â
y�		â

n o
¼ tr �̂e	â

y

e�	
	 âe�j	j

2=2â
n o

ð34Þ

¼
1

2
	�

@

@		

	 

�Wð	, 	

	Þ: ð35Þ
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Fourier transforming Equation (35) and integrating by parts we obtain the correspondence

â�̂$ 
þ
1

2

@

@
	

	 

Wð
,
	Þ: ð36Þ

Similarly, the other correspondences are

ây�̂$ 
	 �
1

2

@

@


	 

Wð
,
	Þ, ð37Þ

�̂â$ 
�
1

2

@

@
	

	 

Wð
,
	Þ, ð38Þ

�̂ây $ 
	 þ
1

2

@

@


	 

Wð
,
	Þ: ð39Þ

We now have a set of mappings from operator equations involving the density matrix to

a partial differential equation for the Wigner function.

Application to the damped and driven harmonic oscillator.As a demonstration of the Wigner

formalism we consider the driven harmonic oscillator with Hamiltonian

Ĥ ¼ �h!âyâþ �hðgây þ g	âÞ, ð40Þ

where ! is the oscillator frequency, and g is the driving strength. Such a Hamiltonian arises

when considering a single mode of an optical resonator driven by a coherent laser field.

Damping to a vacuum field outside the cavity adds additional non-Hamiltonian terms,

leading to the master equation

@�̂

@t
¼ �

i

�h
½Ĥ, �̂� þ

�

2
2â�̂ây � âyâ�̂� �̂âyâ
� �

: ð41Þ

Using the operator correspondences (36)–(39) we obtain the equivalent equation of motion

for the Wigner function

@W

@t
¼

@

@

i!
þ

�

2

þ ig

� �
þ

@

@
	
�i!
	 þ

�

2

	 � ig	

� �� �
Wð
,
	, tÞ

þ
�

2

@2

@
@
	
Wð
,
	, tÞ: ð42Þ

This evolution equation is of the form of a Fokker–Planck equation (FPE) with a drift

(first derivative) term and a diffusion (second derivative) term. Here, an important tool

emerges which is central to the techniques in this review: if the initial Wigner distribution

W(
,
*, 0) is positive and our interest is in moments of the Wigner distribution at some

later time (e.g. Equation (25)), then we can avoid solving the partial differential

Equation (42) and instead simulate a large number of trajectories governed by the (Itô)

stochastic differential equation (SDE)

d
 ¼ �i!� �=2ð Þ
 dt� ig dtþ
ffiffiffiffiffiffiffiffi
�=2

p
dwðtÞ, ð43Þ
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with the initial conditions 
(0) sampled from W(
,
*, 0). Here the dissipative process has
generated a diffusive term in the SDE which is a complex Gaussian noise satisfying
dwðtÞ ¼ 0 and dw	ðtÞdwðtÞ ¼ dt. The justification for this procedure is the standard
mapping of a FPE onto a SDE [16]. In the case where dissipation is absent, the SDE
simplifies to an ordinary differential equation. This is the situation for much of the
work described in this review, but the reasons for the simplification to an ordinary
differential equation of motion are more subtle and are discussed in detail in Section 2.3.6.
The SDE (43) also contains the essential technical elements of the phase-space mapping
required for deriving the SPGPE described in Section 5. A more complete discussion of the
correspondence between SDEs and FPEs is presented in Appendix C. Moving to spatially
continuous, modally finite-dimensional field theories adds some further complexities
which are addressed in the following sections.

2.3.3. Adaption to quantum field theory in the c-field region

The extension from the single-mode case to quantum field theory is accomplished using the
projected functional generalization of the single-mode formalism. As there are only a finite
number of modes, the theory can be generalized in a form which involves minimal
additional calculus. For a system with M modes in the c-field region, we define the vector
of mode amplitudes a¼ [
0,
1, . . . ,
M�1]

T and the notationZ
d2a �

Y
n2C

Z
d2
n: ð44Þ

The multimode Wigner function is then given by

WCða, a
	Þ ¼

Z
d2k

�2M
exp kya� ayk

� �
�Wðk, k

	Þ, ð45Þ

where ay¼ (a*)T, and �W is the characteristic function for the c-field region density
operator, �̂C. Moments of the Wigner distribution give symmetrically ordered operator
averages, for example Z

d2a j
qj
2WCða, a

	Þ ¼
â
y
q âq þ âqâ

y
q

2

* +
: ð46Þ

Introducing the c-number c-field (cf. Equation (13))

 CðxÞ ¼
X
n2C


n�nðxÞ, ð47Þ

the field density average corresponding to Equation (46) isZ
d2a j CðxÞj

2WCða, a
	Þ ¼

 ̂
y
CðxÞ ̂CðxÞ þ  ̂CðxÞ ̂

y
CðxÞ

2

* +
, ð48Þ

¼  ̂
y
CðxÞ ̂CðxÞ

D E
þ
�Cðx, xÞ

2
: ð49Þ

The contribution from the projector in Equation (49) represents a central result of the
Wigner representation of quantum field theory. Physics beyond mean-field theory arises in
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the truncated Wigner method because of vacuum noise evident in the commutator term

�C(x, x) (17), which accounts for half a quantum per mode of noise present in the theory.

This noise mimics the role of vacuum fluctuations, but would render the theory ultraviolet

divergent if all physically allowed modes were included. However, the projection into the

c-field region involves a finite number of basis functions, so that in this situation the term

is a well-defined finite contribution to the stochastic average.

2.3.4. Functional derivative notation

There is a useful connection between projectors and functional calculus that greatly

simplifies multimode calculations while still including all of the necessary projectors into

low-energy modes. We define the projected derivative operators as

��
�� CðxÞ

�
X
n2C

�	nðxÞ
@

@
n
, ð50Þ

��
�� 	CðxÞ

�
X
n2C

�nðxÞ
@

@
	n
: ð51Þ

2.3.5. Operator correspondences

Using the projected functional derivatives, one then finds functional operator corres-

pondences between the density operator, �̂C, and the Wigner function [11]

 ̂CðxÞ�̂C !  CðxÞ þ
1

2

��
�� 	CðxÞ

 !
WC, ð52Þ

 ̂
y
CðxÞ�̂C !  	CðxÞ �

1

2

��
�� CðxÞ

	 

WC, ð53Þ

�̂C ̂CðxÞ !  CðxÞ �
1

2

��
�� 	CðxÞ

 !
WC, ð54Þ

�̂C ̂
y
CðxÞ !  	CðxÞ þ

1

2

��
�� CðxÞ

	 

WC, ð55Þ

which are used to map the equation of motion for the density operator to an equation of

motion for WC.

2.3.6. Truncated Wigner approximation

From Equation (5) we see that the time development of  ̂C in isolation4 is governed by the

Hamiltonian

ĤC ¼

Z
d3x  ̂

y
CðxÞHsp ̂CðxÞ þ

u

2

Z
d3x  ̂

y
CðxÞ ̂

y
CðxÞ ̂CðxÞ ̂CðxÞ: ð56Þ

Advances in Physics 377

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
0
:
5
9
 
3
0
 
A
p
r
i
l
 
2
0
0
9



The equation of motion for the density operator in C is then von Neumann’s equation

i�h
@�̂CðtÞ

@t
¼ ½ĤC, �̂CðtÞ�: ð57Þ

Using the operator correspondences (52)–(55), the Hamiltonian (56) generates the time
evolution equation

@WC

@t

�����
ĤC

¼

Z
d3x

�
iu

4�h

��
�� CðxÞ �� 	CðxÞ

 	CðxÞ
��

�� 	CðxÞ
þ h:c:

i

�h

��
�� CðxÞ

ðHsp þ u½j CðxÞj
2 � �Cðx, xÞ�Þ CðxÞ þ h:c:

�
WC,

ð58Þ

where h.c. represents the Hermitian conjugate. Equation (58) as it stands is very difficult to
solve. However, if we are able to neglect the first line of right-hand side terms, i.e. those
containing third-order derivatives, then progress can be made. This approximation, which
is referred to as the truncated Wigner approximation (TWA), is valid over a wide regime for
the quantum degenerate gas. The resulting description is also obtained formally in the
classical limit which we describe below. (We discuss the basic validity conditions for this
approximation further in Section 2.3.9.) As discussed in Appendix C, a mapping to
ordinary SDEs is not possible for Equation (58). However, when making the TWA, the
Wigner function evolution takes the form of a FPE with drift but no diffusion terms, i.e.

@WC

@t

�����
ĤC

�

Z
d3x

�
i

�h

��
�� CðxÞ

�
Hsp þ u½j CðxÞj

2 � �Cðx, xÞ�
�
 CðxÞ þ h:c:

�
WC: ð59Þ

The Fokker–Planck evolution can be equivalently mapped to a stochastic partial
differential equation [16] that describes the trajectory of a single realization of the field
 C(x), which we refer to as the TWPGPE

i�h
@ CðxÞ

@t
¼ PC

�
Hsp þ u½j CðxÞj

2 � �Cðx, xÞ�
�
 CðxÞ

n o
: ð60Þ

The lack of a diffusion term in (59) means that no explicit noise term appears in the
TWPGPE, however, as we discuss further in Section 2.3.7 the initial conditions are
stochastic and need to be appropriately sampled from the initial Wigner function. We
remark that the equation of motion (59) is also known as a Liouville equation. A formal
property of the Liouville equation is that the distribution function is constant along any
trajectory in phase space. This can be seen by applying the method of characteristics
to (59), which shows that, within the TWA, the Wigner function is constant along classical
trajectories given by (60).

Classical limit. While we consider the validity conditions for the truncation in Section
2.3.9, here we show that the truncation is exact in the classical limit, which we define as

NC !1, u! 0, uNC ¼ constant, ð61Þ

where NC is the number of c-field region particles

NC ¼

Z
d3xj CðxÞj

2 (classical limit): ð62Þ
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This expression for NC is only valid in the classical limit, and the general case, obtained
from Equation (49), is NC ¼

R
d3x½j CðxÞj

2 � �Cðx, xÞ=2�. The integral
R
d3x�C(x, x)/2¼

M/2, representing the half quantum per mode vacuum noise included in the Wigner
description.

Renormalizing the c-field according to �C ¼
ffiffiffiffiffiffiffi
NC

p
 C, Equation (58) becomes

@WC

@t

����
ĤC

¼

Z
d3x

�
iu

4�hNC

��
���CðxÞ ���	CðxÞ

�	CðxÞ
��

���	CðxÞ
þ h:c:

i

�h

��
���CðxÞ

�
Hsp þ uNCj�CðxÞj

2
�
�CðxÞ þ h:c:

�
WC: ð63Þ

In the classical limit we have u/NC! 0, so that the third-order derivatives vanish in
Equation (63), and the TWPGPE (60) is the asymptotically exact equation of motion for
the system. However, stochastic initial conditions are still present, reflecting quantum or
thermal fluctuations, or uncertainties in the initial data of the problem.

A purely deterministic classical description is recovered when the initial state
approaches a delta function in phase space which is precisely the limit obtained for
a zero-temperature BEC in a coherent state. For NC atoms in a single mode coherent state
with mode function 0(x), the renormalized field can be written as �C(x)¼ 
0(x), with
phase-space distribution

Wð
,
	Þ ¼
2NC

�
exp �2NC 
�


0ffiffiffiffiffiffiffi
NC

p

����
����2

 !
, ð64Þ

where j
0j
2
¼NC. In the classical limit W(
,
*)! �(2)(
� 1), giving the TWPGPE for

the system dynamics with non-stochastic initial conditions. In general, thermal
fluctuations will be present even in the classical limit, and the problem remains stochastic,
subject to deterministic evolution. We note that in the classical limit vacuum noise is
unimportant, but it can play an important role in BEC physics where NC� 103–109.
Indeed, the effect of zero-point fluctuations can be rather striking and even the dominant
effect in certain circumstances. An important example is given by the dynamics of
condensate collisions, described in Section 4.2.

Classical mechanics treatment. For future reference, we note that replacing the field
operator by the classical field  C in Hamiltonian (56) yields the Hamiltonian

HC ¼

Z
d3x 	CðxÞHsp CðxÞ þ

u

2

Z
d3xj CðxÞj

4, ð65Þ

which we also refer to as the energy functional for the field  C. The classical equation of
motion can then be found by defining the Poisson bracket {F,G} for any two functionals
F and G of the classical field  C(x) as

F,Gf g ¼

Z
d3x

��F
�� CðxÞ

��G
�� 	CðxÞ

�
��F

�� 	CðxÞ

��G
�� CðxÞ

: ð66Þ

The equation of motion is then found as

i�h
@ CðxÞ

@t
¼  CðxÞ,HC

� 
¼

��HC

�� 	CðxÞ
, ð67Þ
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which yields the PGPE

i�h
@ CðxÞ

@t
¼ PC Hsp þ uj CðxÞj

2
� �

 CðxÞ
� 

, ð68Þ

as the classical equation of motion of the system. This equation is equivalent to the
TWPGPE (60) in the classical limit where the �C term can be neglected. The theory can be
cast in standard Hamiltonian form by introducing the canonical position and momentum
variables

Qn ¼ 1=
ffiffiffiffiffiffiffi
2�n

p
ð
n þ 


	
nÞ, ð69Þ

Pn ¼ i
ffiffiffiffiffiffiffiffiffi
�n=2

p
ð
	n � 
nÞ, ð70Þ

where the 
n are the basis amplitudes of  C(x) (see (47)) and �n are the energies of the
modes comprising the basis. The Poisson bracket then takes the Hamiltonian form and
any function F(Pn,Qn, t) obeys the equation of motion

dF

dt
¼

1

�h

X
n

@F

@Qn

@HC

@Pn
�
@F

@Pn

@HC

@Qn

	 

þ
@F

@t
: ð71Þ

We emphasize that the Hamiltonian classical mechanics formulation is not only recovered
in the continuum limit, but holds generally as a consequence of including the projection
operator formally in the definition of the classical field  C(x). This Hamiltonian property
is used in Section 3.2.5 to determine microcanonical thermodynamic quantities of the
c-field.

2.3.7. Sampling the Wigner distribution

We have shown that by making the TWA, simulations of ultra-cold Bose gas dynamics
under the Hamiltonian ĤC (56) are reduced to simulations of the PGPE (or more
accurately the TWPGPE (60)) for an ensemble of samples of the initial state of the system.
The equation of motion is quite easy to solve, but sampling the Wigner distribution
for a general many-body system is difficult. However, sometimes this sampling issue
can be avoided, e.g., in the PGPE method a random initial field can be used and allowed to
thermalize by evolution (see Section 3.2.2).

Bogoliubov formalism. Here, our basic aim is to present a procedure for sampling the
Wigner distribution for a cold (T�Tc) Bose condensed cloud in thermal equilibrium. In
this regime, the Bogoliubov method provides an appropriate many-body description of the
system, provided that the number of non-condensate particles, Nex�NC�N0, satisfies
Nex�NC. We briefly review the Bogoliubov formalism, and refer to the interested reader
[4,17–22] for a more complete discussion. The basic Bogoliubov approach is to expand the
field operator in the form

 ̂CðxÞ ¼
â0ffiffiffiffiffiffi
N0

p 0ðxÞ þ
X
j40

ujðxÞb̂j þ v	j ðxÞb̂
y
j

h i
, ð72Þ

where 0 is the condensate mode normalized to N0 atoms, {uj(x), vj(x)} are the quasiparticle
amplitudes, and fb̂j, b̂

y
j g are quasiparticle operators that satisfy the usual Bose
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commutation relations. The standard procedure is to take the condensate mode as
a solution to the time-independent GPE

�0ðxÞ ¼ Hsp0ðxÞ þ u 0ðxÞ
�� ��20ðxÞ, ð73Þ

where � is the chemical potential, and then determine {Uj,Vj} and the quasi-particle
eigenvalues �Bj from the Bogoliubov–de Gennes equations

�Bj UjðxÞ ¼ Hsp þ 2u 0ðxÞ
�� ��2��h i

UjðxÞ þ u0ðxÞ
2VjðxÞ, ð74Þ

��Bj VjðxÞ ¼ Hsp þ 2u 0ðxÞ
�� ��2��h i

VjðxÞ þ u	0ðxÞ
2UjðxÞ: ð75Þ

The expansion in Equation (72) diagonalizes the many-body Hamiltonian (56) to quad-
ratic order in the quasiparticle operators, which is adequate in the regime of small
condensate depletion, so that the quasiparticle levels are thermally occupied according to

hb̂yi b̂ji ¼ �ij
1

e�
B
j =kBT � 1

, ð76Þ

¼ �ij �nj: ð77Þ

We note that the Bogoliubov modes, {Uj(x),Vj(x)}, are in general not orthogonal to the
condensate. Even though the correct eigenfrequencies are obtained, orthogonality is
automatic only for the special case of a uniform system. The correct modes for the
expansion of the field operator (72) can be recovered from (74) and (75) by taking
the projection orthogonal to the condensate [23]. Defining the projector

P0 ðxÞ ¼  ðxÞ �N�10 0ðxÞ

Z
d3x0	0ðx

0Þ ðx0Þ, ð78Þ

the orthogonal modes are given by fuiðxÞ, viðxÞg ¼ fP0UiðxÞ, ðP
	
0V
	
i ðxÞÞ

	
g.

Wigner sampling of the Bogoliubov state. By introducing the random variables 
0 and b

(an M� 1 element vector) in place of the operators â0 and fb̂jg, respectively, the Wigner
distribution for the Bogoliubov state is appropriately sampled as the stochastic c-field

 CðxÞ ¼

0ffiffiffiffiffiffi
N0

p 0ðxÞ þ
X
j40

ujðxÞ�j þ v	j ðxÞ�
	
j

h i
: ð79Þ

In the Bogoliubov theory outlined above, the condensate and quasiparticle occupations
are uncorrelated, i.e. the Wigner distribution is of the separable form WC ¼

W0ð
0,

	
0ÞWqpðb, b

	Þ, and in the following paragraphs we discuss how these can be
independently sampled. We note that within a number conserving Bogoliubov approach
additional correlations between the condensate and quasiparticles arise [10,24], providing
a better description of the low temperature many-body state of the gas.

Condensate mode: coherent state. To a good approximation the condensate can be regarded
as being in a coherent state, for which the Wigner function is

W0ð
,

	Þ ¼

2

�
exp �2j
� 
0j

2
� �

, ð80Þ
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where N0¼ j
0j
2. For large condensate occupation the finite width of W0 can be neglected

and for all samples of the condensate amplitude we can take 
0 �
ffiffiffiffiffiffi
N0

p
.

Quasiparticle modes: thermalized states. The quasiparticle levels are thermalized modes,

with a Wigner distribution of the form of a product of uncorrelated Gaussian

quasi-probability distributions, i.e.

Wqpðb, b
	Þ ¼

Y
j40

Wjð�j,�
	
j Þ, ð81Þ

Wjð�j,�
	
j Þ ¼

2

�
tanh

�Bj
kBT

 !
exp �2j�jj

2 tanh
�Bj
kBT

 !" #
: ð82Þ

This distribution is sampled by the Gaussian complex random variables, {�j}, with the

properties

�j ¼ �i�j ¼ 0, ð83Þ

�	i �j ¼ �ij �nj þ
1

2

	 

: ð84Þ

In practice, these variables can be generated as

�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nj þ 1=2

p xj þ iyjffiffiffi
2
p

	 

, ð85Þ

where xj, yj are normally distributed Gaussian random variables with mean zero and unit

variance. Sampling the field in this way, we recover the correct symmetrically ordered

moments, e.g.

 CðxÞ ¼ h ̂CðxÞi, ð86Þ

¼ 0ðxÞ, ð87Þ

j CðxÞj
2 ¼ hf ̂

y
CðxÞ ̂CðxÞgsymi, ð88Þ

¼ j0ðxÞj
2 þ

X
j40

1

2
ðh�̂
y
j �̂ji þ h�̂j�̂

y
j iÞðjujðxÞj

2 þ jvjðxÞj
2Þ: ð89Þ

Vacuum occupation. We note that even in the zero-temperature limit, where �nj ! 0, the

random variables �j have the finite variance j�jj
2 ¼ 1=2, i.e. each mode of the system has

on average half an atom of vacuum noise, necessary to ensure the symmetrically ordered

interpretation of Wigner moments. Thus, an attribute of the Wigner method is that for

a simulation with M modes, M/2 virtual particles (i.e. vacuum noise) are included in the

field in addition to the NC real particles.

2.3.8. Alternative methods for sampling the Wigner distribution

Efficient sampling of a number-conserving Bogoliubov state. Sinatra et al. have shown how

a number-conserving version of the Bogoliubov formalism can be implemented via
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a Brownian motion simulation. This approach, developed in [10,24,25], has the advantage
that it does not require diagonalization of the Bogoliubov–de Gennes equations.

Approximate ground-state construction. For a nearly pure condensate the appropriate
ground-state of the system is sampled as the T¼ 0 limit of expression (79). However, for
many non-equilibrium scenarios, the quasiparticle properties of the low-energy modes are
unimportant, and the vacuum noise can be added in any basis orthonormal to the
condensate. That is

 CðxÞ ¼

0ffiffiffiffiffiffi
N0

p 0ðxÞ þ
X
j

�jðxÞ
j, ð90Þ

where f �jðxÞg is an orthonormal basis. The condensate amplitude, 
0, is sampled as described
below Equation (80), and the other mode amplitudes are sampled as Gaussian random
variables with 
	j 
j ¼ �ij=2. This type of construction is useful in collision experiments where
the vacuum fluctuation of the high-energy modes drive scattering events.

Ideal gas ground state. In the absence of interactions, the ground state Wigner function can
be sampled as

 CðxÞ ¼
X
j

�jðxÞ
j, ð91Þ

where �n(x) are the single particle basis states and the 
 are sampled according to

0 ¼

ffiffiffiffiffiffiffi
NC

p
and 
	i 
j ¼ �ij=2, for i, j4 0.

Ideal gas high-temperature state. For temperatures above Tc expansion (91) also suffices to
describe the thermalized state of the system but with all 
j sampled as Gaussian random
variables with


	i 
j ¼ �ij �nBEð�jÞ þ
1

2

	 

, ð92Þ

where �nBEð�jÞ ¼ fexp½ð�j � �Þ=kBT � � 1g�1 is the Bose–Einstein distribution.

More general condensate states. It is possible to consider more general states for the
condensate, e.g. the number state jN0i, which has the Wigner function

W0ð
,

	Þ ¼

2ð�1ÞN0

�
exp �2j
j2

� �
LN0
ð4j
j2Þ, ð93Þ

where Ln(x) is the Laguerre polynomial. The number state Wigner function for N0¼ 10 is
shown in Figure 3(c). It is non-positive-definite, and is highly oscillatory for large numbers
which makes exact stochastic sampling difficult. However, for large N0 the radial
distribution is well approximated by a delta function [26]. A Gaussian approximation is
thus suitable in this regime and a method for sampling the number state Wigner function
has been developed and shown to reproduce all moments with error of approximately O(1/
N0) (see [27]). However, more simply we can take 
0 �

ffiffiffiffiffiffi
N0

p
ei�, where � is a uniformly

distributed random phase, � 2 [0, 2�]. Sampling � this way preserves the U(1) symmetry of
the system.

Other quantum states, such as squeezed states (see Figure 3(b)), and crescent states can
be sampled (see, e.g., [28]) to investigate their influence on the many-body dynamics.
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Adiabatic mapping. In [29], Polkovnikov and Wang sampled the Wigner function of an
ideal Bose gas in an optical lattice at T¼ 0. In the ideal case the bare modes, {�j(x)}, form
the appropriate basis and the Wigner function can be sampled as discussed below
Equation (91). The interactions are slowly ramped up to the desired value to generate
samples of the interacting system (justified by the quantum adiabatic theorem).

2.3.9. Validity criteria for the truncated Wigner method

The only approximation made in deriving the TWPGPE has been the neglect of third-order
derivatives in the evolution equation for the multimodeWigner function (58). The complete
set of validity conditions for the truncation is still the subject of current research.
Polkovnikov and Gritsev, who derived the TWA using a path integral method, have
obtained expressions for the next order corrections in quantum scattering processes [15,30]
that can be used to assess the validity of any simulation. This approach represents
a fundamental advance in the formulation and application of the truncatedWigner method:
it promotes the truncated Wigner method to a controlled approximation theory since
corrections to the TWA can, at least in principle, be calculated explicitly. In practice,
evaluating the corrections is a challenging task for large multi-mode problems,
and applications have thus far been restricted to discrete lattice systems where
the relative strength of interactions to linear system evolution is straightforwardly defined.
We also make note of comparisons that have been made between the TWA and exact results
[31–33] to characterize the limitations of the approach for quantum optical systems.

Several practical conditions for ensuring the reliability of truncated Wigner simulations
in a variety of regimes have emerged in the literature, and we summarize these here.
Broadly these conditions fall into two categories: (i) those required to ensure consistency of
short-time dynamics (relative to the thermalization timescale); and (ii) those required for
simulations over longer timescales where the system may thermalize.

Short-time evolution: quantum dynamics. The strict condition of validity of the TWPGPE is
that all modes of the c-field region are highly occupied, so that the classical limit discussed
in Section 2.3.6 is approached. In general, this condition is rather restrictive, especially for
systems well below the critical temperature.

Figure 3. Some possible Wigner functions for the condensate mode of a small BEC: (a) coherent
state; (b) squeezed state; and (c) number state. Wigner distribution for hN0i¼ 10 atoms and

¼ 
rþ i
i.
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Another criterion has been derived by Norrie et al. [34] for factorizable Gaussian
states. In particular, Norrie et al. considered the class of states with a Wigner function of
the form

WCða, a
	Þ ¼

Y
j

�j

�
exp ��jj
j � 
j0 j

2
� �

, ð94Þ

where the random variable 
j, with corresponding orthonormal basis mode j(x), has mean
value 
j0, and variance ��1j . A sufficient condition for the validity of the TWPGPE for
these states is

h ̂
y
CðxÞ ̂CðxÞi �

1

2
�Cðx, xÞ

����
�����X

j

�j

4
jjðxÞj

2, ð95Þ

i.e. the system must have sufficiently high density in position space. In general, this
condition is much more readily satisfied than the condition of high mode occupancy.

Sinatra et al. [10] have made detailed comparisons of the truncated Wigner and time-
dependent Bogoliubov approaches for a uniform Bose condensate in the regime T�Tc,
where the non-condensate population is much smaller than the condensate. They find that
the truncated Wigner predictions become inaccurate if the quantum noise sampled in the
initial condition dominates the number of particles in the system, i.e. the condition for
validity is

M

2
� NC: ð96Þ

We note that this condition can be rewritten in terms of the spatial density as n(x)�V� 1,
where n(x)¼NC/V and �V¼V/M. Since �C(x, x)¼ 1/�V and jjj

2
¼ 1/V for the uniform

gas, we see that results (96) and (95) are equivalent for this system.

Long-time evolution: Thermalization. As discussed earlier, when modelling a system of M
modes an additional half quantum per mode of noise is added on average to the initial
condition. This introduces M/2 virtual particles into the TWPGPE simulation which
should be subtracted to recover the correct operator averages. However, under evolution
these virtual particles may thermalize, and change the equilibrium properties of the system.

Sinatra et al. [10] have proposed the condition

jT� Tclassj � T, ð97Þ

to ensure the long-time validity of a truncated Wigner calculation for a system, where T is
the initial temperature of the system, and Tclass is the temperature once the noise has
thermalized. In practice, they found that Equation (97) is best ensured by limiting the
number of modes in the numerical calculation, and that an acceptable description is
obtained if the largest single-particle (quasiparticle) energy in the calculation is no more
than a few kBT.

Interactions and dimensionality. It is clear that the conditions listed above cannot be
considered complete as they do not explicitly involve interactions or dimensionality. In
regimes where interactions dominate the system can evolve into a strongly correlated state.
Important examples for ultra-cold atoms are the Mott-insulating and Bose-glass
states that emerge when a system of repulsive bosonic atoms is confined in a deep optical
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lattice [35,36]. Generally speaking the TWA does not provide a good representation for
such strongly correlated systems.

Another regime in which interactions play an important role is in the critical region
where the system undergoes strong fluctuations. These critical fluctuations are classical in
nature and thus amenable to the truncated Wigner treatment, however care is needed in
choosing C to describe this regime. Typically strong fluctuations occur in the infrared
modes up to the energy scale un where n is the density, above which the modes are well-
described by mean-field theory (see, e.g., the discussion in [37,38]). To provide an accurate
description the c-field region must be chosen to include these modes, i.e. we must have
�cut4 un, as shown schematically in Figure 4.

The occurrence of critical fluctuations can be identified by the Ginzburg criteria (see,
e.g., [39]), which predicts that fluctuations are important for the three-dimensional Bose
gas only in a narrow temperature range about Tc. Outside this range a pure mean-field
description provides a good description of the equilibrium system. In contrast, for low-
dimensional systems strong fluctuations prevail over a broad temperature range, and
inhibit the formation of phase coherence according to the Mermin–Wagner–Hohenberg
theorem [40,41]. For these systems a pure mean-field analysis is of limited use, yet a c-field
description of the low-energy modes (C region) with a mean-field description of the
high-energy states (I region) can be used to provide a comprehensive description
(see [38,42–44] and Section 3.4.2).

Low-dimensional systems exhibit several additional properties that make them well-
suited to simulation by c-field techniques. First, in lower dimensionality the rate of
thermalization is significantly reduced with respect to the three-dimensional case. This
suggests that the thermalization of the vacuum noise that occurs in truncated Wigner
evolution will happen more slowly and simulations in the low-temperature regime should
be valid over longer time scales. Second, the density of states increases more slowly with
energy as the dimensionality of the system decreases, and thus for one- and two-
dimensional systems at finite temperature a larger portion of atoms reside in low-energy,
highly occupied modes.

In general the study of one- and two-dimensional Bose gases is an active area of
research, and many aspects of their behaviour, particularly dynamics, are not well
understood. While the c-field techniques are widely applicable to describing these systems,
a significant challenge remains to develop techniques for sampling the Wigner distribution
when the Bogoliubov description fails. A few procedures have been developed for

Figure 4. Schematic view of the modes in a critical system showing the appropriate choice of �cut.
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quasi-one-dimensional lattice systems at T� 0 in [29], and for finite temperature quasi-
two-dimensional trapped gases in [45].

Role of projection in ensuring validity. Both the short-time and long-time validity conditions
are sensitive to the number of modes in the c-field region and the maximum energy of the
modes represented. For this reason it is essential to have a projector in the formal theory to
exert as much control as possible over the modes retained in the c-field description.

A natural question that arises is how dependent are the results of a simulation on the
energy cutoff we use to define the C and I regions? For the case of a system in the critical
regime it is clear that a lower bound for �cut is provided by the energy scale un as discussed
above (see Figure 4). More generally, this lower bound is also appropriate for
inhomogeneous systems outside the critical regime. This is because we have chosen to
implement the projector in the single-particle basis (see Section 2.2), which provides a good
representation of the low-energymodes and awell-defined energy cutoff onlywhen �cut4 un.

The criteria for setting an upper bound on �cut varies greatly according to the
application. A large value of �cut can be used for short-time simulations, subject to the
condition given in Equation (96). For equilibrium situations (or long-time simulations
where relaxation occurs) typically the condition �cut� kBT (see [10]) ensures that all of the
modes in the c-field region are occupied appreciably, and thus described accurately by
the Wigner approach (we discuss this case in more detail in Section 3).

Within the aforementioned guides for choosing the cutoff, there is still an appreciable
degree of freedom. For example, consider the situation shown in Figure 4, where
a particular choice of �cut is indicated that splits our system of interest into the C and I

regions, which we take to be described by c-field and mean-field descriptions, respectively.
In this case, it is clear that an appreciable number of modes appropriately described by
mean-field theory are included in the C region. Moderate shifts in the value of �cut result in
the transfer of some modes, well described by mean-field theory, between the regions.
Clearly this scenario will have no effect on the physical predictions for the complete system
as the modes shifted between the regions are equally well described by both formalisms.
However, large changes in �cut will lead to problems: if �cut is set too low, then strongly
fluctuating modes will inappropriately appear in the I region; if �cut is too high, then many
sparsely occupied modes will be included in C.

While the theoretical motivation for choosing the cutoff is clear, there are only a few
studies that have examined the dependence of simulation results on the cutoff. Of most
note are the following studies.

. Sinatra et al. [10] studied the damping rates for coherent excitations as the number
of C modes was varied by an order of magnitude. They found that the damping
rate varied by a factor of two over this range, and the best results (i.e. those
agreeing with the Beliaev–Landau damping result) were obtained for low cutoffs.

. Bradley et al. [46] derived Ehrenfest relations for a c-field system, which display
an explicit dependence on the projector. They also presented results showing
that the macroscopic properties of density distribution and the condensate
fraction varied appreciably when the numerical method used was changed from
a spectral approach using oscillator states (i.e. implementing the C region
using a well-defined energy cutoff in the single-particle basis) to a uniform grid
(i.e. implicit projection that only provides a momentum cutoff at the inverse of the
grid point spacing).
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2.3.10. Features and interpretation of the truncated Wigner method

Single trajectory interpretation. Phase-space methods provide a practical means for
calculating correlation functions, which can only be compared with the equivalent
quantities calculated as an ensemble average of experimental measurements. However, for
highly occupied fields, the behaviour observed in each trajectory of the TWA seems to be
typical of that seen in single realizations of experiments (see, e.g., the results in Sections 4.2
and 4.4). Thus, it is plausible that single realizations of Wigner trajectories should
approximately correspond to a possible outcome of a given experiment. This is no more
surprising than the observation that the GPE is a remarkably good predictor of the
dynamics of individual experimental runs, and follows from taking the classical limit of the
full quantum evolution, with the important addition of initial fluctuations.

Restriction to states with positive Wigner function. However, this is not the full story as the
Wigner function can be negative for some states (see Figure 3(c)). Negative Wigner
functions are not amenable to exact treatment by diffusive processes and so there are,
in fact, certain quantum states that are inaccessible to the stochastic sampling methods
described in this review. There are actually two points here. First, negative Wigner
functions are difficult to sample as an initial condition. Second, a positive Wigner function
will not become negative under diffusive TWA evolution. While it may predict the mean
fields accurately, it may not (and cannot) give the correct correlation functions for some
processes. These are, however, fairly rare with BEC. This restriction limits the
range of quantum phenomena to states with positive Wigner functions, ruling out
superpositions of number states and demonstrations of the non-locality of quantum
mechanics (violation of a Bell inequality).

Spontaneous scattering. The GPE is fundamentally a theory of stimulated (Bose-enhanced)
scattering, which does not include spontaneous processes. In particular, scattering into
initially unoccupied modes will not occur, although this may eventually occur in
computational simulations due to the gradual accumulation of numerical errors.
The Wigner method, however, sets an irreducible level of initial fluctuations in all
modes of the c-field, i.e. half an atom of vacuum fluctuations. In effect, spontaneous
scattering becomes modelled by weakly seeded stimulated scattering.

Multimode averaging. The c-field used in truncated Wigner simulations usually consists of
some large number of stochastically sampled modes M. Many observables of interest (e.g.
column density, cloud root mean square (rms) width) depend on the values of a significant
portion of these modes, so that the statistical fluctuations in the value of such observables
can be quite small. Often the behaviour and evolution of these observables exhibit little
difference between independent trajectories.

Long-time dynamics. Sampling the initial state introduces fictitious population into the
system, i.e. the vacuum noise. In ensemble-averaged calculations, this is subtracted when
constructing operator averages from trajectory averages. In single-trajectory dynamics of
the truncated Wigner method, the extra population becomes dynamically thermalized and
indistinguishable from the rest of the field. There are two effects at work here. First, the
truncation of the equation of motion means that quantum-mechanical corrections, which
prevent this thermalization, have been neglected. Second, by considering single
trajectories, the formal correspondence to operator averages is lost and the results must
be interpreted within the context of classical field theory. For long times, the advantage of
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the truncated Wigner method is that it provides a more complete physical picture of the
system evolution than the GPE, but it must be interpreted with some care. The primary
gain is the inclusion of spontaneous effects in the dynamics from the outset.

3. The PGPE

The PGPE formalism is valid for degenerate Bose gases at finite temperature, a system for
which many excited modes (in addition to the condensate) of the atomic field may have
a high mean occupation, i.e. satisfying the criterion hâyj âji � 1. In this section, we describe
the PGPE formalism, and show how it can be formulated to make quantitative
comparisons with experiments in this regime. Unlike the other c-field techniques described
in this review, the PGPE formalism can be described as a ‘classical field theory’ in the sense
of the classical limit taken in Section 2.3.6.

3.1. Classical field description of thermal Bose fields

The suggestion that the GPE could be used to describe the dynamical evolution of the Bose
field in the limit of large mode occupation was first made by Svistunov in 1991 [47], and
later by Kagan et al. in [48–50]. Damle et al. [51] were the first to investigate this using
numerical calculations in 1996. They used the homogeneous GPE with a very weak non-
linearity to study the phase-ordering kinetics of a Bose gas in two and three dimensions on
small grids, and performed a scaling analysis of the growth of the condensate fraction in
a temperature quench.

Subsequently, Marshall et al. [52] studied equilibration of a harmonically trapped Bose
gas in two dimensions using the GPE. They observed changes in the population
distribution of the bare harmonic oscillator states, and relaxation of the density profile
from an initial asymmetric form to a radially symmetric one, and interpreted these changes
as thermalization.

The introduction of a projection operator to restrict the modes represented by the
GPE was first reported by Davis et al. [53] for the case of a three-dimensional homogenous
gas. At a similar time thermalization for a homogeneous system was demonstrated by
Gòral et al. [54], who solved the equations of motion for the mode amplitudes explicitly in
the classical approximation.

3.1.1. Importance of the projector and numerical methods

It has long been known that applying classical field theory to the electromagnetic field
results in the ultraviolet (UV) catastrophe in which an infinite number of modes each have
the equipartition share of energy, kBT. Thus, it would seem that the effects of a UV
catastrophe would also have an impact on the classical field description of the Bose gas.
However, the manifestation of the catastrophe is rather different. The GPE is the equation
of motion for a classical microcanonical field in which the total energy and particle
number (field normalization) is conserved. In thermal equilibrium this energy is shared
equally (equipartitioned) between all system modes. Any numerical solution of the GPE is
constructed from some finite basis, e.g. choosing an equally spaced grid (equivalent to
choosing a basis of planewaves in the first Brillouin zone). Increasing the number of grid
points on which the thermally equilibrated GPE solution is constructed means the fixed

Advances in Physics 389

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
0
:
5
9
 
3
0
 
A
p
r
i
l
 
2
0
0
9



energy is now shared between a larger number of modes, so that the average energy per

mode (i.e. temperature of the system) will decrease. In this sense, the results of calculations

are dependent on the numerical basis, or more correctly the number and nature of the

modes contained in the calculation. However, as we discuss in Section 3.1.2, if the modes

of the calculation correspond to only the highly occupied modes of the physical system,

then a quantitative description of the system can be made. For this reason the use of an

explicit projector in the PGPE (68) is of great importance, because it precisely defines the

calculation without reference to the numerical implementation. In addition, great care

must be taken in implementing numerical methods for propagating the PGPE so that all

modes of the c-field region are evolved accurately in order to avoid spurious dynamics

which can lead to an incorrect representation of the physical system of interest. We note

that a classical field formalism has been developed using unprojected grid methods,

summarized by Brewczyk et al. [55]. While such an approach seems suitable for

investigating qualitative behaviour of Bose gases in various regimes, it has not been

applied to quantitative comparison with experiments.

Use of grid methods. Grid methods are ubiquitous in the solution of the GPE, but care

must be taken in using these methods as the basis of classical field simulations. For

example, the cubic non-linearity in the PGPE can generate momentum components up to

three times larger than those present in the classical field. In a grid representation of the

field this leads to aliasing, which corresponds to (unphysical) collisions between modes

that do not conserve momentum. Grid methods can be used effectively for numerically

solving the PGPE for a uniform gas, if several adjustments are made.

(i) The projector needs to be implemented explicitly. For example, the single-particle

energy cutoff, discussed in Section 2.2, can be implemented by setting all modes

outside a sphere of radius �hkcut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�cut
p

, to zero in momentum space.
(ii) A large number of momentum states outside the projected region need to be

retained to avoid the aliasing problem. The equivalent position space requirement

is that if kcut is the largest wavevector retained by the projector, then a spatial grid

of spacing �x¼�/2kcut needs to be used to evaluate the non-linear term, which is

twice as dense as the Nyquist sampling requirement, �xN¼�/kcut. An additional

discussion of these issues is given in Appendix B.

The experimentally relevant harmonically trapped system poses a more formidable

challenge since the natural modes of the grid representation (i.e. planewave modes) bear

little resemblance to the harmonic oscillator modes, making projection difficult. Also,

we note that in typical experimental regimes there should be of the order of 102–104modes in

the c-field region (see Section 3.1.2), whereas grid methods usually require more than about

105 points to accurately simulate the GPE in three dimensions. Details of an efficient

numerical algorithm for the PGPE in a harmonic trap is summarized in Appendix A.

3.1.2. c-field region for the PGPE: the ‘classical region’

For the PGPE formalism, the occupations of all of the modes of the c-field region satisfy

the mean occupation requirement

hâynâni � 

	
n
n � ncut, ð98Þ
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where ncut is a number of the order of one (typical choices range from about 1 to 10).

Loosely speaking, ncut is the degree of coherence of the mode, and should be compared

with the basic level of quantum fluctuations set by the Wigner function requirement

ð
	n
nÞvac ¼
1
2 for vacuum modes. We hence refer to the modes satisfying this condition as

constituting the classical region, in the sense that quantum corrections to c-field equation

of motion (68) for these modes are small (see Section 2.3.6).
A further justification for setting ncut can be obtained from Figure 5, where the mean

mode occupation is examined as a function of the scaled single-particle energy. When the

parameter (���)/kBT� 1, then the exponential in the quantum Bose–Einstein

distribution

�nBEð�Þ ¼
1

exp½ð�� �Þ=kBT � � 1
, ð99Þ

can be expanded to first order to give the classical equipartition distribution

�nEQð�Þ ¼
kBT

�� �
: ð100Þ

In Figure 5, it can be seen that these two distributions are in good agreement for

highly occupied modes, i.e. modes satisfying ���9 kBT with mean occupation �n01.
The properties and size of the classical region for typical experimental parameters are

not a priori obvious, especially for the case of an interacting gas. In Figure 6, we consider

the case of a harmonically trapped system and estimate the number of classical region

modes and the number of particles occupying those modes using a Hartree–Fock mean-

field calculation [56]. Those results reveal that the number of classical modes is maximum

at the condensation transition, with of the order of several thousand modes satisfying

condition (98) for the parameters of this calculation.

10–2
10–1

100

101

10–1

102

100

Bose-Einstein

Equipartition

M
ea

n 
oc

cu
pa

tio
n

(ε−μ)/kBT

Figure 5. Comparison of the quantum Bose–Einstein and classical equipartition predictions for the
mean occupation of a single-particle mode.
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Strictly, Equation (98) is only applicable to the non-interacting modes of the gas, but

can be generalized to the interacting system, e.g. by analysing the occupation of the natural

orbitals of the one-body density matrix. However, typically �cut is sufficiently large

compared with the interaction energy scale, that the highest-energy non-interacting modes

(i.e. �n(x) with �n� �cut) in C are a good approximation to the modes of the interacting

system. In this case Equation (98) can be applied directly to these high-energy modes.

3.1.3. PGPE formalism

The appropriate equation of motion for the c-field is the PGPE (68). Since all of the modes

in C are highly occupied, in a three-dimensional system we find an appreciable number of

atoms residing in the incoherent region. Thus, the detailed non-equilibrium dynamics of

the system will in general depend on the exchange of energy and particles between C and I.

A consistent formalism for including these processes is described in Section 5. However,

for the purposes of this section, we assume that for near equilibrium scenarios the C and I
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(b)

Number of classical region
modes for N=2x105

Number of classical region
modes for N=106

Number of classical region
modes for N=106

Number of classical region
modes for N=2x105

Excluding the
condensate mode

Tc for N=2x105
Tc for N=106

Figure 6. Size and population of the classical region for a harmonically trapped system. (a) Classical
region population including (line) and excluding (dashed) the condensate occupation. (b) Number of
classical region modes. Results: pink (grey) N¼ 2 105 atoms; and blue (black) N¼ 1 106 atoms.
Results calculated using Hartree–Fock theory (see [56]) for rubidium-87 atoms in an isotropic
harmonic trap of frequency 100Hz with ncut¼ 3 used to define the classical region. Colour refers to
the online version.
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regions are weakly coupled, and we can treat each region in isolation as long as we match
their temperatures and chemical potentials. Building on this assumption, in the remainder
of Section 3 we mainly concern ourselves with the properties and interpretation of the
PGPE (68) as a microcanonical means for describing the classical region of a finite
temperature Bose gas. In Section 3.2.6 we discuss a mean-field treatment of the incoherent
region, I, as a means to providing a quantitative description of the full system.

3.2. Hands-on introduction to the PGPE formalism

In this section we introduce the basic ideas of the PGPE formalism by example. To do this
we present a hands-on case study of how to prepare initial states and evolve them to
thermal equilibrium. We introduce various tools for analysing PGPE simulations as
needed.

3.2.1. Simulation parameters

To guide our presentation we illustrate the PGPE method using simulations for an
experimentally realistic system. We take this system to be a harmonically trapped gas of
rubidium-87 atoms in a potential

V0ðxÞ ¼
1

2
mð!2

xx
2 þ !2

yy
2 þ !2

zz
2Þ, ð101Þ

where {!x,!y,!z} are the oscillation frequencies (and with �V¼ 0). For definiteness we
take !x¼ 2� 120Hz, !y,z¼ 2� 30Hz, i.e. the trap has a fat pancake geometry with the
x-direction being tightly confined. For the calculations we fix the cutoff defining the c-field
region at �cut¼ 33�h!z, so that there are M¼ 1560 single particle modes in C. We take the
number of atoms in this region to be fixed at NC¼ 104 (see Equation (62)), and verify
a posteriori that all of the modes are highly occupied as required for the validity of the
PGPE formalism.

3.2.2. Initial state preparation

The non-linearity of the PGPE causes its evolution to be ergodic and many of the issues
involved with appropriate sampling of initial conditions in the truncated Wigner approach
can be avoided if we are only interested in the equilibrium properties of the system.

Thus, the generic method to study finite temperature regimes is to begin with
a randomized initial state with some definite energy, as specified by the c-field
Hamiltonian EC¼HC[ C] (see (65)). The c-field energy is a constant of motion for the
PGPE (68) and forms a convenient macroscopic constraint for specifying the thermal state
of the system. The procedure for making such energy states is rather arbitrary. We choose
to make use of the Thomas–Fermi approximation to the condensate mode

TFðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�TF � V0ðxÞ

u

r
� �TF � V0ðxÞð Þ, ð102Þ

where �(x) is the unit step function and

�TF ¼
�h �!

2

15aN0

�a

	 
2=5

, ð103Þ
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is the Thomas–Fermi chemical potential [57], with �!3 ¼ !x!y!z and �a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�h=m �!
p

. We can

generate a state of desired energy by superimposing the Thomas–Fermi state with a (high-

energy) randomized state, r(x), according to

EðxÞ ¼ p0TFðxÞ þ p1rðxÞ, ð104Þ

where the variables p0 and p1 are adjusted to obtain the desired energy. In practice, r is
approximately orthogonal to TF and we can take p1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jp0j

2
p

.
For reference, under the constraint of fixed c-field normalization, NC, the minimum

energy configuration corresponds to the zero-temperature case with all atoms residing in

the condensate mode 0(x) (i.e. N0¼NC), which can be obtained by solving the time-

independent GPE (73).

3.2.3. PGPE thermalization

Here, we present evidence for the thermalization of the PGPE in the trapped system. To do

this we consider two initial microstates of the c-field, ðaÞE ðxÞ and 
ðbÞ
E ðxÞ, which we refer to

as cases (a) and (b), respectively. Both of these initial states have the same energy

EC¼ 20.0NC�h!z, and are constructed according to the procedure outlined in Section 3.2.2

but with a modified choice of the Thomas–Fermi state, TF, as we discuss below. Such

initial states will not be equilibrium states, and during PGPE evolution will thermalize. To

emphasize the initial non-equilibrium dynamics and the role of thermalization we choose

to use distorted Thomas–Fermi states in (104): the initial state ðaÞE ðxÞ is produced using

a Thomas–Fermi state that has been squeezed in the x direction; the initial state ðbÞE ðxÞ is

produced using a Thomas–Fermi state that has been squeezed in the y direction. These two

initial states, while having the same energy, are clearly very distinct in spatial character as

revealed by the density slices shown in Figure 7(a1), (a2), (b1) and (b2). The final states

after PGPE evolution for 1000 ms are shown in Figure 7(a3), (a4), (b3) and (b4).
These results show that the system thermalizes, in the sense that the system evolves to

more-likely microstates. Indeed, while the states in Figures C7(a3), (a4), (b3) and (b4) are

not identical (differ by fluctuations), they are much more similar than their initial states.
To examine the dynamics of thermalization more carefully we show the x-widths of the

states, as characterized by the rms value xrms2 � hx
2it � hxi

2
t (where h
it is the expectation

at time t), in Figure 7(c) and (d). Initially, systems (a) and (b) exhibit large oscillations and

differ strongly in their width dynamics (see Figure 7(c)), reflecting the differences in the

initial non-equilibrium states. After approximately 20 ms the large-scale width oscillations

have damped significantly, leaving much smaller fluctuations. In Figure 7(d), we show the

width dynamics from 50 to 500 ms. Here, the width fluctuations are about an order of

magnitude smaller than the initial oscillations, and despite both systems beginning from

very distinct initial states, these dynamics are consistent with both systems thermalizing to

the same equilibrium, i.e. the same mean width and fluctuation properties.
There are a large variety of observables that we could compute to examine the

thermalization of the system. However, in general, we typically find that the system relaxes

towards equilibrium appreciably within a few trap periods. For typical simulations, where

we are interested in equilibrium properties and start from the (undistorted) initial state

described in Section 3.2.2, we evolve the c-field for several tens of trap periods to

thermalize before sampling for system properties.
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3.2.4. Equilibrium: ergodicity, correlation functions and condensate fraction

Ergodic averaging correlation functions. The c-field energy, given by the functional (65), is

a constant of motion under PGPE evolution. Indeed, the energy and other such constants

of motion, e.g. field normalization and angular momenta (when the trap has rotational

symmetry), take the form of the macroscopic constraints on the thermal state of the

system. In principle, the equilibrium properties of the system could be determined by

ensemble averaging over all fields consistent with these constraints. The non-linearity of

Equation (65) makes finding all functions  C, for a given normalization and energy,

impossible without approximation. If we were to move beyond the microcanonical

ensemble, some form of Monte Carlo sampling could be used, although we do not pursue

this possibility here.
In contrast, numerical methods for evolving the PGPE are well developed and

allow a different means to sample the ensemble: we can make use of the ergodic hypothesis
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Figure 7. Relaxation to equilibrium. Density slices of the two non-equilibrium initial states: (a1),
(a2) ðaÞE ðxÞ and (b1), (b2) ðbÞE ðxÞ; and the respective states they evolve to at t¼ 1000 ms, (a3), (a4) and
(b3), (b4). Both states have EC¼ 20.0NC�h!z. The rms width of the c-field in the x-direction (c) during
the first few trap periods and (d) after 15 trap periods. Width of simulation ‘case (a)’ (black line) and
the ‘case (b)’ (grey line). Note: the other parameters are given in Section 3.2.1 and the colourmap in
the density plots corresponds to log10 of the density measured in units of (mm)�3.
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(that a system will in time visit every accessible configuration in phase space without bias)

to sample microstates of the system. Thus, for an ergodic system, an ensemble average of

an observable, O, can be calculated by a time average over a sufficiently long period of

dynamical evolution, i.e.

hOi ¼ lim
�!1

�
1

�

Z �iþ�

�i

dt O

�
�

1

Ms

XMs

s¼1

OðtsÞ, ð105Þ

where {ts}2 [�i, �þ �i] is a set of Ms time instances at which the system evolution has been

sampled [58,59]. For this choice to be an accurate estimate of the ensemble average we

require Ms� 1, and the time span over which averaging is done to be long compared with

the slowest time scale in the problem, e.g. the longest harmonic oscillator period.
In general, the observables of interest are of the form of a correlation function of the

field, typically a product of quantum field operators such as

hÔi � h ̂yCðx1Þ . . .  ̂yCðxjÞ ̂Cðxjþ1Þ . . .  ̂CðxnÞi: ð106Þ

This expression could also be generalized to multi-time correlations, although we will not

do so here. Note that here the correlation functions only involve the c-field operator: we

discuss correlations involving incoherent region operators in Sections 3.2.6 and 3.4.3. To

evaluate (106) we make the substitution  ̂CðxÞ !  C ðxÞ, transforming the expression to

the general classical field form, and then replace the ensemble average with a time-average

according to (105). We note that this procedure is in accordance with that outlined for the

truncated Wigner approach (see Section 2.3.1) as we can neglect the commutation relations

of the operator fields for the highly occupied modes described by the PGPE.

Position space density. In Figures C8(a)–(c), we show the time-averaged density of the

c-field in the z¼ 0 plane, i.e.

nCðxÞ ¼ h ̂
y

CðxÞ ̂CðxÞi �
1

Ms

X
s

j C ðx, tsÞj
2: ð107Þ

While the instantaneous density (see, e.g., Figure 7(a3) and (a4)) exhibits spatial fluctuations

and a random appearance of no particular symmetry, the averaged density is smooth and

highly symmetric. The cases in Figure 8(a)–(c) vary from a condensate fraction of less than

around 0.5% (Figure 8(a)) to 56% (Figure 8(c)), yet the spatial density profiles change

rather gradually and do not provide clear evidence for condensation. We discuss our

procedure for quantifying the condensate later in this section. We also note the work of

Krauth who has developed a path integral quantum Monte Carlo scheme for the trapped

Bose gas in [60] and has computed density profiles for systems with up to 104 atoms.

Momentum space density. It is also desirable to be able to calculate correlation functions of

the momentum space field operator,

�̂CðkÞ ¼
1

ð2�Þ3=2

Z
d3x  ̂CðxÞe

�i k
x: ð108Þ

A particularly useful example is the momentum density,

nCðkÞ ¼ h�̂
y

CðkÞ�̂CðkÞi: ð109Þ
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The use of Fourier transforms to convert from the spatial to momentum representations of

the c-field makes evaluating such observables quite efficient.
In Figure 8(d)–(f), the momentum density in the kx¼ 0 plane is shown for the cases

corresponding to the position space densities in Figure 8(a)–(c). Noting that the

momentum density axis is logarithmic, we observe a strong peak forming as the

condensate fraction increases, providing an unambiguous signature of condensation.

In Figure 8(g), the momentum density for the case in Figure 8(f) is shown in the kz¼ 0

plane, where the anisotropy of the condensate mode (owing to the anisotropy of the

confinement potential in the xy-plane) is clearly apparent.

Condensate. It is important to quantify the amount and nature of condensate in the

system. Unlike the uniform system, where the condensate mode is always the zero-

momentum mode, particle interactions in the trapped system have a strong effect on the

shape of the condensate mode and cause it to be significantly different from the ideal case

(see Equation (73) for the regime T�Tc).
According to the criterion provided by Penrose and Onsager [61], the condensate

number N0 is identified as the largest eigenvalue of the one-body density matrix, defined

in terms of the field as

G1Bðx, x0Þ ¼ h 	CðxÞ Cðx
0Þi: ð110Þ

Figure 8. c-field position (a)–(c) and momentum (d)–(f) density. Simulation parameters:
(a), (d) EC¼ 24NC�h!z; (b), (e) EC¼ 22NC�h!z; (c), (f), (g) EC¼ 15NC�h!z. Other parameters:
NC¼ 104 87Rb atoms, simulations are evolved for t¼ 103�/!z, with Ms¼ 2500 samples taken
over the last half of the simulation used to time average. Trap parameters and cutoff are given in
Section 3.2.1.
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The corresponding eigenvector is associated with the condensate mode of the system,

0(x), i.e. Z
d3x0 G1Bðx, x0Þ0ðx

0Þ ¼ N00ðxÞ: ð111Þ

For the uniform system the one-body density matrix exhibits the property of off-diagonal

long-range order (ODLRO) when a condensate is present [62], i.e.

G1Bðx, x0Þ !
N0

V
as jx� x0j ! 1: ð112Þ

In this case the condensate orbital is 0ðxÞ / 1=
ffiffiffiffi
V
p

, where V is the system volume and the

thermodynamic limit is assumed.
Another widely used definition of the condensate ‘order parameter’ is given by

0ðxÞ ¼ h ̂ðxÞi, ð113Þ

based on the idea of spontaneously broken gauge symmetry. The time-averaged value of

h Ci in the c-field approaches is typically zero, and so this definition is of limited use for

quantifying condensate in this review. For a comprehensive discussion on the various

definitions of condensate we refer the reader to the review article of Leggett [63], who

shows preference to the Penrose–Onsager definition, and states (on the topic of the broken

symmetry definition) ‘. . .while possibly streamlining some calculations when judiciously

used, is liable to generate pseudoproblems and is best avoided’.
In our formalism, G1B(x, x0) is equivalently and much more efficiently computed in the

mode basis as G1B
mn ¼ h


	
m
ni, which is quite feasible to compute for the typical classical

region size (less than about 104 modes in C) using time averaging. In the spectral basis the

condensate mode is specified by a vector 
0n such that
P

n G
1B
mn


0
n ¼ N0


0
m.

In Figure 9, we show the time-averaged position density along two coordinate axes

obtained from a c-field simulation. In addition to the total c-field density nC, we also show

the condensate density j0(x)j
2. For reference, the condensate number, N0, for simulations

over a wide range of energies are given in Table C1. In the remainder of this section, we

develop techniques for extracting other thermodynamic quantities to attribute to these

calculations: temperature and chemical potential in Section 3.2.5 and incoherent region

atoms in Section 3.2.6.
We note that the correlation functions discussed so far only apply to the c-field region.

We return to this issue in Section 3.2.6, when we consider including contributions from the

incoherent region. We also mention that higher-order correlation functions, including

second-order (e.g. density fluctuations) correlations functions have been calculated using

the PGPE approach, see [64–66] (see also [67]). A procedure for calculating two-point

correlation functions is discussed in Section 3.4.3.

3.2.5. Thermodynamic quantities: temperature and chemical potential

It is desirable to find a means to attribute a temperature to the thermalized state of

a c-field simulation. Previous attempts to do this have been based on fitting the

occupation of high-energy modes to perturbative calculations for the spectrum based on

Hartree–Fock–Bogoliubov (HFB) theory [58,68] (see Section 3.3.1). For harmonically

398 P.B. Blakie et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
0
:
5
9
 
3
0
 
A
p
r
i
l
 
2
0
0
9



trapped gases, calculation of the HFB modes is much more difficult, and limits
temperature calculations to perturbative regimes. However, the temperature can be
crudely estimated by fitting the high-momentum components of the system to a non-
interacting distribution [59].

An alternative approach of general applicability is found by extending Rugh’s
dynamical definition of temperature for classical Hamiltonian systems [69] to the PGPE.
This scheme has the advantage that it is non-perturbative, and is quite accurate.

Rugh’s approach was formulated for a classical mechanical system, and it is convenient
to write the c-field Hamiltonian as HC¼HC(!), where !¼ {Qj,Pj} is the vector of the
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Figure 9. Equilibrium density for the c-field region description of a Bose gas. Condensate density
(dashed black line) and c-field region density (solid grey line) densities along (a) the x-axis (more
tightly confined direction) x and (b) the y-axis. Simulation for EC¼ 20NC�h!z with other parameters
given in Section 3.2.1.

Table C1. Summary of PGPE thermalization results for a c-field region with NC¼ 10,000 Rb-87
atoms. Other parameters: {fx, fy, fz}¼ {120, 30, 30} Hz and �cut¼ 33�h!z. For reference, the Thomas–
Fermi ground state energy is ETF ¼

5
7NC�TF � 9:04NC�h!z. Note: T and � are determined by the

average of two different choices of Rugh temperature (see [74]), one of which is shown in Figure 10.

EC (NC�h!z) T (nK) � (�h!z) N0 (10
3) N (103) nmin

14.0 117 7.81 6.41 180 1.34
15.0 141 7.60 5.59 303 1.66
16.0 165 7.34 4.79 477 1.97
17.0 189 7.07 4.02 712 2.27
18.0 214 6.81 3.33 1019 2.58
19.0 238 6.58 2.59 1400 2.88
20.0 265 6.25 1.91 1890 3.20
21.0 289 6.07 1.18 2450 3.50
22.0 315 5.73 0.569 3170 3.83
23.0 350 4.85 0.176 4280 4.18
24.0 420 1.41 0.050 7270 4.63
25.0 602 �9.99 0.024 20,600 5.32
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canonical position and momentum coordinates introduced in Section 2.3.6 (Equations (69)

and (70)). We also need to explicitly account for the c-field normalization functional (62),

N C¼
P

jj
jj
2, which is another constant of motion and can also be written as a function of

canonical coordinates, i.e. N C¼N C(!). The usual expression for the temperature of

a system in the microcanonical ensemble is given by

1

T
¼

@S

@EC

	 

NC

, ð114Þ

where the entropy is defined by

S ¼ kB ln

�Z
d! �½EC �HCð!Þ��½NC �N Cð!Þ�

�
, ð115Þ

with the delta functions ensuring our microcanonical description is one of fixed c-field

energy and normalization.
There are several issues with using Equation (114) to determine the temperature in the

PGPE approach. First, it is practically impossible to determine the entropy S when a large

number of modes are in the c-field region. Second, Equation (114) cannot be evaluated

using a single microcanonical ensemble average, since T depends on the derivative with

respect to energy. In 1997 Rugh made a fundamental contribution to statistical mechanics

by proving that a microcanonical average could be used to calculate the temperature. This

approach is now used extensively in the molecular dynamics community since the

microcanonical average can be replaced by a time average, as we do here.
Rugh’s result, proven using differential geometry methods, showed that the

temperature expression (114) could be equivalently written as

1

kBT
¼ hD 
 XTð!Þi, ð116Þ

rigorously shown to work for Hamiltonian systems at energies where the energy surface

is regular [69–71]. The components of the vector operator D are

Di ¼ ei
@

@�i
, ð117Þ

where ei can be chosen to be any scalar value, including zero, and the vector field XT

can also be chosen freely within the constraints

DHC 
 XT ¼ 1, DN C 
 XT ¼ 0: ð118Þ

Geometrically this means that the vector field XT has a non-zero component transverse to

the HC(!)¼EC energy surface, and is parallel to the N C(!)¼NC surface. A vector field

that satisfies these constraints is

XT ¼
DHC � 	NDN C

jDHCj
2 � 	NðDN C 
 DHCÞ

, ð119Þ

where we have introduced the parameter 	N¼DN C 
 DHC/jDN Cj
2. The expectation value

in (116) is over all possible states in the microcanonical ensemble and can be evaluated as

a time average for our ergodic c-field system. In the interests of brevity we do not discuss

400 P.B. Blakie et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
0
:
5
9
 
3
0
 
A
p
r
i
l
 
2
0
0
9



the additional technical details of how the matrix elements in Equation (119) are

evaluated, however we point out that a procedure for doing this exactly and efficiently is

given in [72].
It is worth giving an example to illustrate the formalism. Consider a simple system of

M degenerate oscillators described by HC ¼
P

j �
2
j , with no normalization constraint.

Taking Di¼ @/@�i we have that (XT)i¼DiHCjDHCj
2
¼�i/HC, where we have used that

jDHCj
2 ¼

P
j �

2
j ¼ HC. Finally, we have that 1/kBT¼hD 
XTi ¼ (M� 1)/EC, which is the

standard microcanonical result.
Similar to the discussion above, the chemical potential can be evaluated according to

�

kBT
¼ �

@S

@N C

	 

EC

¼ hD 
 X�ð!Þi, ð120Þ

where the conditions on the vector field X� are

DHC 
 X� ¼ 0, DN C 
 X� ¼ 1: ð121Þ

The appropriate vector field is of the same form as the right-hand side of Equation (119)

but with HC and N C interchanged.
In Figure 10, we show instantaneous values of the Rugh observables for temperature

(i.e. [kBD 
XT]
�1) and chemical potential (i.e. kBTD 
X�) evaluated from a PGPE

evolution. The time-averaged results for these parameters over a broad range of initial

energies are given in Table C1.

3.2.6. Including the incoherent region atoms

To relate the PGPE results back to an experimental system we need to account for the

sparsely occupied modes of the incoherent region, which we have so far ignored. To do this

0 500 1000
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200
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350

t [m s]

T
 [n

 K
]

m 
[n

 K
]

(a)

0 500 1000
0

2

4

6

8

t [m s]

(b)

Figure 10. Extracting dynamical thermal quantities. Instantaneous value of Rugh observable for (a)
temperature and (b) chemical potential shown as black lines evaluated over one second of evolution.
Average values of T and � shown as grey horizontal lines in (a) and (b), respectively. Simulation for
EC¼ 20NC�h!z, with other parameters given in Section 3.2.1.
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we take the classical region and the incoherent region to be weakly-coupled systems in
thermal and diffusive equilibrium (see Figure 11), i.e. with the same temperature and
chemical potential. The thermal cloud exists in the potential of the trap plus time-averaged
c-field density nC(x) determined from the PGPE simulations. To model the incoherent
region modes we use a Hartree–Fock approximation. As discussed in Section 2.3.9, the
mean-field approach provides a good description of the system away from the critical
region (e.g. see [73]), and of modes well above the energy scale unC (also see the discussion
in Section 3.2.7).

The average properties of the incoherent region can be calculated from the one-particle
Wigner distribution

FIðx, kÞ ¼
1

expð�½�HFðx, kÞ � ��Þ � 1
, ð122Þ

where

�HFðx, kÞ ¼
�h2k2

2m
þ V0ðxÞ þ 2uðnCðxÞ þ nIðxÞÞ, ð123Þ

is the Hartree–Fock energy, and � is the chemical potential. The one-particle Wigner
distribution is related to the one-body density matrix for the incoherent region (see
Equation (137)), and should not be confused with the multi-mode (many-body) Wigner
function discussed in Section 2.3.

In this semiclassical description, x and k are treated as continuous (commuting)
variables. However, care needs to be taken to ensure that (122) is only applied to the
appropriate region of phase space spanned by the incoherent region, i.e. single-particle
modes of energy exceeding �cut. Interpreted in phase-space coordinates, this region is

�I ¼ x, k :
�h2k2

2m
þ V0ðxÞ � �cut

� �
: ð124Þ

Figure 11. Schematic view of the coupling between the c-field region, described by the PGPE, and
the incoherent region. The systems are assumed to be weakly interacting and in thermal and diffusive
equilibrium.
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A quantity of particular interest for us to calculate is the incoherent region density

nIðxÞ ¼

Z
�I

d3k

ð2�Þ3
FIðx, kÞ ð125Þ

¼

Z 1
KcutðxÞ

dk

2�2
k2FIðx, kÞ, ð126Þ

where we have made use of the isotropic nature of the kinetic energy term and have

implemented the phase-space restriction, �I, as a spatially dependent lower cutoff on the

integral

KcutðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½�cut � V0ðxÞ�

p
�h

�ð�cut � V0ðxÞÞ, ð127Þ

where �(x) is the unit step function. The incoherent region atoms interact with those in the

c-field region, which can be accounted for by adding an effective potential �V¼ 2unI(x) to

the c-field description. To lowest order this shifts the system chemical potential by

��� 2unI(0). To ensure complete self-consistency, the c-field properties would need to be

re-simulated including the effective potential, however this is often unnecessary as the

incoherent region density is often quite small and approximately uniform in the spatial

region of overlap with the c-field atoms.
We can also calculate the momentum density of the system as

nIðkÞ ¼

Z
d3x

ð2�Þ3
FIðx, kÞ�

�h2k2

2m
þ V0ðxÞ � �cut

	 

: ð128Þ

Using the Hartree–Fock analysis we can now include the incoherent region atoms into

the PGPE simulation results presented in the previous sections. In Figure 12, we show the

typical profiles comparing the c-field and incoherent region density profiles, including

the total density

nðxÞ ¼ nCðxÞ þ nIðxÞ: ð129Þ

These results also allow us to ascribe the total number of atoms, N¼NCþNI, where

NI¼
R
d3x nI(x), to the simulated systems. Using this analysis of the incoherent region in

Table C1 we can attribute total particle number to our PGPE simulations. For

comparison, in Figure 12 we have also shown the result of a pure Hartree–Fock

analysis (as described above, but taking �cut! 0 so that all modes are treated using

mean-field theory). The pure Hartree–Fock result is for the same temperature and total

number as the c-field calculation, yet predicts no condensate, since the temperature is

a few nanokelvin above the mean-field critical temperature. Outside such critical

regimes the difference between mean-field and c-field calculations is generally much

smaller.
The results in Table C1 show that for fixed c-field region (i.e. fixed cutoff �cut and NC),

the temperature and total number of particles grow rapidly as the c-field energy increases.
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In general, this means that to simulate a fixed total number of particles for various

temperatures, we must appropriately manipulate the macroscopic parameters defining our

microcanonical system, i.e. �cut, NC and EC. We will see in Section 5 that use of the SPGPE

formalism greatly eases the effort required to calculate systems at definite temperature by

making use of a grand-canonical description.

3.2.7. Validity conditions

The high mode occupancy of c-field region described by the PGPE makes the validity

requirements of this approach somewhat different from those listed for the truncated

Wigner approach in Section 2.3.9. In particular, the dominance of classical fluctuations

means that the thermalization of quantum noise is not a concern. Thus, the conditions

for the PGPE method to provide an accurate description of the c-field region are as

follows.

(i) Good basis. The cutoff has to be sufficiently large that the single-particle modes

provide a good basis for describing the interacting c-field region modes. This

condition can be expressed in terms of the peak (central) c-field density as

�cut� �00 unC(0), where �0 is the ground single-particle energy. This condition

also ensures the validity of the separation into C and I regions in the critical

regime (see the discussion in Section 2.3.9).
(ii) High mode occupation. The mean occupation of the highest-energy single-particle

state is greater than unity. In general, we refer to this quantity, extracted from

simulations, as nmin which is also listed in Table C1 to demonstrate the validity of

those results.

0 5 10–10 –5
0

10

20

30

40

50

60

70(a)

0 20 40
0

10

20

30

40

50

60

70(b)

x [mm] y [mm]

D
en

si
ty

 [(
mm

)–3
]

D
en

si
ty

 [(
mm

)–3
]

–40–20

Figure 12. Total density profiles including the incoherent region. (a) Density along x-axis and (b)
density along y-axis. Black dashed line, condensate density; grey solid line, c-field region density;
black dots, incoherent region density; black solid line, total system density; and grey dashed line, the
pure Hartree–Fock result for the total density. Simulation for EC¼ 15�h!z, with other parameters
given in Section 3.2.1.
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3.3. Applications to the uniform Bose gas

3.3.1. Temperature and quasiparticle modes of the uniform system

In a sufficiently weakly interacting Bose gas, the Hamiltonian for the system can be

diagonalized approximately by a transformation to the Bogoliubov quasiparticle basis. For

the uniform gas, the interaction term only mixes modes of opposite momentum, and the

transformation from single-particle modes to Bogoliubov quasiparticles of a well-defined

momentum k depends only on the product of the interaction strength u and the condensate

number N0. This is a quantity that can be determined from the PGPE calculations, and

so the individual classical fields can be projected onto the Bogoliubov quasiparticle basis,

and the time-averaged quasiparticle occupations Nk can be determined accurately.
When the Bogoliubov quasiparticles form a good basis, we expect that at thermal

equilibrium the c-field method will result in the mean quasiparticle occupations being

given by the equipartition relation (100). If we define the condensate eigenvalue as �0� 	,
and require that the condensate occupation also be given by the equipartition relation

N0 ¼
kBT

	� �
, ð130Þ

then we can solve for the thermodynamic chemical potential5 �¼ 	� kBT/N0. By

substituting this result into (100) and rearranging we find

"k � 	

kBT
¼

1

Nk
�

1

N0

	 

, ð131Þ

where the numerator of the left-hand side is the quasiparticle energy relative to the

condensate. This suggests a prescription for determining the temperature of a simulation.

The right-hand side can be measured accurately by ergodic averaging in c-field

simulations, and the left-hand side can be evaluated using theoretical predictions of the

spectrum (�k� 	) with the temperature forming a single fit parameter. This procedure was

developed by Davis et al. [58,68] before the application of the method of Rugh for

determining the temperature as described above in Section 3.2.5. We also note the non-

projected classical field study of Brewczyk et al. [75].

Bogoliubov spectrum. In the limit of large condensate fraction N0/NC� 1, we expect the

Bogoliubov transformation to provide an accurate description of the system, with the

dispersion relation

"k � 	 ¼
�h2k2

2m

	 
2

þðc�hkÞ2

" #1=2

, ð132Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0u=mL3

p
is the speed of sound.

Second-order spectrum. For sufficiently large interaction strengths and temperatures, the

cubic and quartic terms of the many-body Hamiltonian that are neglected in the

Bogoliubov transformation become important. In [23], Morgan develops a consistent

extension of the Bogoliubov theory to second order that leads to a gapless excitation

spectrum. This theory treats the cubic and quartic terms of the Hamiltonian using

perturbation theory in the Bogoliubov quasiparticle basis, and results in energy-shifts of

the excitations away from the Bogoliubov predictions of (132).

Advances in Physics 405

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
0
:
5
9
 
3
0
 
A
p
r
i
l
 
2
0
0
9



The results in Figure 13 clearly show that second-order theory provides a better

description of mode occupations than Bogoliubov theory. Other results in [58] show that

as the interaction strength increases, initially better agreement with second-order theory is

observed, until the validity conditions of that theory are eventually surpassed. In [74] the

temperature, as determined from the spectral fitting procedure [58], was shown to be in

good agreement with the Rugh (dynamical) temperature (discussed in Section 3.2.5) in the

regimes where spectral fitting was valid.

3.3.2. Shift of Tc for the uniform Bose gas

The shift in critical temperature Tc with interaction strength for the homogeneous Bose gas

has been the subject of numerous studies and debate for almost fifty years since the first

calculations of Lee and Yang [76,77]. While there is a finite shift to the chemical potential

in mean-field theory, the shift of the critical temperature is zero [78]. The leading order

effect is due to long-wavelength critical fluctuations and is inherently non-perturbative.

Using effective field theory it was determined that the shift is

�Tc=Tc0 ¼ can1=3, ð133Þ

where n is the particle number density, a is the S-wave scattering length and c is a constant

of order unity [79]. Until recently results for the value of c disagreed by an order of

magnitude and even sign, as summarized in [80, Figure 1]. However, two calculations

performed using lattice Monte Carlo have settled the matter, and confirm that the shift is

in the positive direction with combined estimate of c� 1.31�0.02 (see [37,80]). A number
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0

1

2

3

4

5
x 104

ε k
 / 

kT
fit

 

k (2π/L)

Figure 13. Fits of the simulation quasiparticle population data to dispersion relations. The dots are
a plot of (1/Nk� 1/N0), the solid curve is for the dispersion relation predicted by second-order
theory, and the dashed curve is the dispersion relation predicted by Bogoliubov theory. Simulation
parameters: u¼ 2000L3�L/NC, EC¼ 4000NC�L and N0/NC¼ 0.279, where the unit of energy is
�L¼ �h2/2mL2 and the unit of temperature is T0¼NC�L/kB. Reproduced with permission from [58].
Copyright � 2002 by The American Physical Society.
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of recent improved results broadly agree, and useful discussions are provided by Andersen

[81] and Holzmann et al. [82].
Here, we briefly describe the procedure used by Davis and Morgan [74] to calculate

a value for c using the (uniform gas) PGPE.

(i) For a given non-linearity (i.e. scattering length) a randomized initial state of

definite energy EC is evolved with the PGPE, and the temperature is determined

by using the methods described earlier in Section 3.2.5.
(ii) As the initial state energy is varied, the critical point is identified using the

Binder cumulant Cb ¼ hN
2
0i=hN0i

2, with N0 the population of the zero-

momentum condensate mode. This Binder cumulant characterizes condensate

number fluctuations, and takes the universal value of Ccrit
b ¼ 1:2430 at the

transition.
(iii) The shift in the critical temperature is calculated as a function of interaction

strength, parameterized by the S-wave scattering length.

By fitting a straight line to the first two points as illustrated in Figure 14, we obtain

an estimate for the coefficient

c ¼ 1:3� 0:4, ð134Þ

where the error specified is owing to the uncertainty in the value of Tc for the data point.

This agrees with the value determined in [37,80].
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Figure 14. Shift in the critical temperature of a uniform Bose gas with interaction
strength determined from PGPE simulations with NC¼ 1010 for zero scattering
length. The dashed line is a linear fit to the first two data points and this has a slope of
1.3� 0.4. Reproduced with permission from [74]. Copyright � 2003 by The American Physical
Society.
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3.4. Applications to the trapped Bose gas

3.4.1. Shift in Tc for a trapped Bose gas: comparison with experiment

The behaviour of Tc for the harmonically confined Bose gas is drastically different from

the uniform gas. There is a shift in Tc owing to finite size effects arising from the fact that

the system is not in the thermodynamic limit [83], and a first-order interaction shift owing

to mean-field effects [84].
For a typical BEC experiment, the critical temperature deviates from the ideal gas

result only by a few per cent. Thermometry of Bose gases at this level of accuracy is

challenging: however, in 2004 Gerbier et al. reported precise measurements of the critical

temperature for a range of atom numbers [73].
Davis and Blakie [85] used those measurements to make the first quantitative

comparison of the PGPE formalism with experiment and other theories, which

are summarized in Figure 15. The various other theories appearing in Figure 15 are as

follows.

. A1: this is the mean-field analytic estimate as calculated by Giorgini et al. [84],

and was compared with the experimental data in [86].
. A2: this is the analytic estimate as calculated by Arnold and Tomášik [87], which

includes next order fluctuation results; however, it is only strictly valid in broad

traps.
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Figure 15. Comparison of theoretical calculations with experiment. The main figure plots Tc

versus N0, whereas the inset plots the shift of Tc against the relevant small parameter a/	0.
Experimental results: data (open circles), one fit (grey area). Theoretical results for Tc: ideal gas (dot-
dashed line), A1 (dotted line), A2 (dashed line), MF-GPE (crosses), MF-HFBP (dots), PGPE
(pluses). Solid lines through the data points are polynomial fits. A1 is not shown in the main figure
for clarity. The total number of atoms at the critical point is N¼ 4.0 106 and 	0 ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mkBT
p

fits
to the data. Reproduced with permission from [85]. Copyright � 2006 by The American Physical
Society.
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. MF-GPE: the GPE is solved numerically using a variational Gaussian ansatz, and

the thermal cloud calculated using a semiclassical approximation [84]. At each

temperature the condensate and non-condensate are determined self-consistently

with a fixed number of particles, and the critical temperature is taken to be where

the condensate fraction decreases to zero. This approach differs from theory A1

because it avoids using perturbation theory around the ideal (saturated) gas

density profile to estimate interaction effects.
. MF-HFBP: here the condensate fraction is fixed, and the temperature determined

that gives an appropriate self-consistent condensate mode and thermal density

(the full Bogoliubov modes are used and the semiclassical approximation is

avoided). We have verified that the results are unchanged for equipartition or

Bose–Einstein statistics.

The PGPE calculations appear to provide the best theoretical description of

experiment, however, error bars in the experimental results are not yet small enough to

definitively discriminate between results.
We also note that the HFB Popov calculations (MF-HFBP) use the same procedure as

in the PGPE calculation to determine the critical point, the above cutoff density and the

total atom number, so that the difference between this best mean-field calculation and the

PGPE results is a result of beyond mean-field fluctuation effects. This suggests that if

experimental accuracy in thermometry could improve by an order of magnitude, then

effects of fluctuations on the critical temperature in this system could be investigated

directly.

3.4.2. Quasi-two-dimensional Bose gas

The phenomena of superconductivity and superfluidity are striking manifestations of the

role played by quantum statistics at low temperatures. Altering the temperature or

effective dimensionality may radically change the physical properties of quantum

degenerate systems. A well-known consequence is that in contrast to the situation in

three dimensions, there is no BEC for a homogeneous two-dimensional ideal gas in the

thermodynamic limit at any finite temperature [40,41]. Nevertheless, the Berezinskii–

Kosterlitz–Thouless (BKT) vortex binding–unbinding phase transition allows the

emergence of superfluidity in two-dimensional systems [88,89]. Although weak particle

interactions alone are not sufficient to change the situation, an external confinement

modifies the density of states in such a manner that the critical point of BEC is elevated to

a finite temperature [90]. Therefore, it is not certain a priori whether the transformation

from normal to superfluid in such systems is a BEC- or BKT-type transition.
This properties of the finite-temperature trapped two-dimensional system have proven

difficult to analyse. Strong fluctuations mean that mean-field approaches are inapplicable,

however since these fluctuations are classical in nature the PGPE approach is appropriate.

Indeed, early studies of the uniform two-dimensional Bose gas were performed by a c-field

method, but sampled using Monte Carlo techniques [38,42]. More recently, Giorgetti et al.

[91] have developed an accurate semiclassical approach for simulating this system.
Simula and Blakie [45] used PGPE simulations of quasi-two-dimensional Bose fields to

characterize the low-temperature phases for such systems over a wide parameter range.

These simulations show the emergence of thermally activated vortices (see Figure 16(b)
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and (c)), their influence on interference patterns (see Figure 16(a)), and provide strong
evidence supporting the view that the BKT-type phase was observed in the recent
experiment by Stock et al. [92]. More recent work with PGPE simulations have
characterized correlation and collective mode properties of the system to quantify the BKT
transition point [66,93], and find good qualitative agreement with recent quantum Monte
Carlo simulations [94].

3.4.3. Two-point correlation functions

Recent experimental developments in ultra-cold gases [95–100] have allowed atomic
correlation measurements that are analogous to the photon correlations observed in
the landmark experiments of Hanbury-Brown and Twiss [101]. Such correlations
are of particular interest in systems where many-body interactions are important
[102,103], and in the region of the phase transition, where critical exponents can be
measured [104].

The PGPE description is valid in this regime and can be used to calculate these
correlations, and assess beyond mean-field effects (cf. [105,106]). We now summarize an
approach for calculating these correlations within the PGPE formalism that has been
developed by Bezett et al. [65].

The quantities of interest are the normally ordered first-order correlation function,
Gð1Þðx, x0Þ � h ̂yðxÞ ̂ðx0Þi (also known as the one-body density matrix), and second-order
correlation function, Gð2Þðx, x0Þ � h ̂yðxÞ ̂yðx0Þ ̂ðx0Þ ̂ðxÞi. From these functions other first-
and second-order observables can be obtained directly, such as the density–density
correlation function.

Figure 16. Interference pattern (a) produced by two independent c-fields (b) and (c) at temperature
T¼ 0.86T0. The relevant particle numbers are Ncl¼ 3.0 103 and N¼ 4.0 104. The ‘zipper’
structure in (a) is the telltale signature of the phase singularity associated with the central vortex in
(b). The locations of vortices and antivortices are marked by þ and � signs, respectively.
Reproduced with permission from [45]. Copyright � 2006 by The American Physical Society.
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Breaking the full quantum field into c-field and incoherent parts, the correlation

functions can be written as

Gð1Þðx, x0Þ ¼ G
ð1Þ
C ðx, x

0Þ þ G
ð1Þ
I ðx, x

0Þ, ð135Þ

Gð2Þðx, x0Þ ¼ G
ð2Þ
C ðx, x

0Þ þ G
ð2Þ
I ðx, x

0Þ þ 2G
ð1Þ
I ðx, x

0ÞG
ð1Þ
C ðx, x

0Þ

þ nIðxÞnCðx
0Þ þ nIðx

0ÞnCðxÞ, ð136Þ

where G
ð1Þ
j ðx,x

0Þ ¼ h ̂yj ðx
0Þ ̂jðxÞi and G

ð2Þ
j ðx, x

0Þ ¼ h ̂yj ðx
0Þ ̂yj ðxÞ ̂jðxÞ ̂jðx

0Þi with j¼ {I,C}

for the incoherent and classical regions, respectively, and we have neglected any

correlations between the c-field and incoherent regions.
While the c-field correlations can be evaluated using the approach detailed in

Section 3.2.4, for the incoherent region we can make use of the one-particle Wigner

function given in Equation (122). Appropriately transforming the Wigner function we

obtain the first-order correlation function, i.e.

G
ð1Þ
I ðx,x

0Þ ¼

Z
�I

d3k e�ik
ðx�x
0ÞFI

xþ x0

2
, k

	 

: ð137Þ

As the FI Wigner description of the incoherent region is Gaussian, we can easily obtain the

second-order G
ð2Þ
I ðx, x

0Þ ¼ nIðxÞnIðx
0Þ þ jG

ð1Þ
I ðx, x

0Þj2:
Figure 17 illustrates correlation functions for a trapped Bose gas at T�Tc. The results

shown are for the case of two points along the x-axis of the system, and in Figure 17(b) and

(c) the normalized correlation functions, defined as gð1Þðx, x0Þ ¼ Gð1Þðx, x0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðxÞnðx0Þ

p
and

g(2)(x, x 0)¼G(2)(x,x 0)/n(x)n(x 0), are shown. The broad feature apparent in Figure 17(a) and

(b) is the off-diagonal long-range order, arising from the emerging condensate in this system.

The diagonal ridge is due to short-range thermal correlations. We also note that Holzmann

and Castin [107] have used a quantum Monte Carlo method to obtain the pair distribution

function for a trapped Bose gas.

3.5. Applications of non-projected classical fields at finite temperature

As well as the work of the current authors on quantitative projected c-field techniques,

there have been a number of other studies of finite-temperature properties of degenerate

Figure 17. Two-point position space correlation functions of a harmonically trapped Bose gas of
N¼ 3 105 87Rb atoms at T¼ 159 nK. Other parameters: N0¼ 3540, �cut¼ 36�h!x, with
f!x,!y,!zg ¼ 2� f1, 1,

ffiffiffi
8
p
g  40 s�1. Reproduced with permission from [65]. Copyright � 2008 by

The American Physical Society.
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Bose gases. For completeness, in the final part of this section we briefly describe the results
that have been obtained.

3.5.1. Homogenous gas

In one of the first papers on classical fields, Gòral et al. [54] demonstrated the
thermalization of a homogeneous multimode Bose gas in a similar manner to Davis et al.
[53,58]. They expanded the equation of motion for the c-field in terms of mode coefficients,
and calculated the non-linear terms by performing the appropriate summations, and
implicitly correctly applied a projection operation. Brewczyk et al. [75] performed
a Bogoliubov analysis of homogeneous Bose gas using a GPE classical field description.
Zawitkowski et al. [108] attempt to describe not just the classical modes but the I region
modes using only the GPE by fixing a grid cutoff such that the condensate fraction and
temperature agree with that for the ideal Bose gas. Doing this eliminates any possibility of
describing, e.g., the effects of interactions on the transition temperature and includes
a large number of modes in the problem that should not be described classically. It should
be clear from this review that the current authors strongly disagree with this approach.

Leadbeater et al. [109] studied the effect of condensate depletion on the critical velocity
when an object is dragged through a superfluid. On a related note, Zawitkowski et al. [110]
performed an interesting study of placing a homogenous moving condensate in a static
thermal cloud, and investigated the decay of the superflow as a function of velocity and
temperature. Unfortunately, it seems that the lack of projection caused some numerical
issues in this work, such as the violation of momentum conservation.

Witkowska et al. [111] related the dynamics of a non-linear string to the weakly
interacting Bose gas. Nunnenkamp et al. [112] made a comparison of three versions of
a classical field theory for a one-dimensional Bose gas on a ring. They found that an exact
solution in the high-temperature limit of a transfer integral method agreed well with both
a molecular dynamics approach and classical field simulations of the GPE. Recently
Sinatra et al. [113] found non-diffusive phase spreading of a three-dimensional
homogenous BEC at finite temperature.

Connaughton et al. [114] and Josserand et al. [115] have studied condensate formation
in the homogeneous gas using a GPE model. In an interesting application related to
classical fields, Picozzi and co-workers have investigated the dynamics of equilibration
in incoherent non-linear optics both theoretically and experimentally. See, for example,
[116–119].

3.5.2. Trapped gas

Gòral et al. [59] were the first to apply the condensation criterion of Penrose and Onsager
[61] to a classical field. They solved a non-projected GPE for the trapped Bose gas at finite
temperature, and developed some estimates of thermodynamics properties of the system.
Schmidt et al. [120] applied the same simulation technique to investigate the decay of
an off-centre vortex in a harmonic trap at finite temperature. Recently, Gawryluk et al.
[121] seeded a trapped F¼ 1 spinor condensate with thermal fluctuations and studied the
resulting spin dynamics.

The effect of thermal fluctuations in Bose gases is more significant in low dimensions.
Kadio et al. [67] studied the coherence properties in a quasi-one-dimensional trapped Bose
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gas, and analysed the effects of phase fluctuations in a three-dimensional elongated trap.

Mebrahtu et al. [122] have analysed coherence effects in the spatial splitting of a quasi-one-

dimensional BEC and its subsequent merging at finite temperature.

3.5.3. Superfluid turbulence

Finally, we mention work in the area of superfluid turbulence, which attempts to describe

the formation of tangles of vortices in the homogeneous superfluid transition and the

subsequent relaxation to global phase coherence. Many of the simulations of these systems

make use of the GPE to describe finite-temperature non-equilibrium dynamics, and hence

are directly related to classical field techniques.
Of particular interest to this review is the work of Berloff and Svistunov [123], who

studied condensation from a strongly non-equilibrium state in a three-dimensional

homogeneous system using the GPE. Their main interest was in the decay of superfluid

turbulence, and the establishment of phase coherence, validating the scenario of superfluid

growth as earlier described by Kagan, Svistunov and Shlyapnikov [47–50]. Berloff

subsequently studied the interactions of vortices and solitary waves and their role in the

decay of superfluid turbulence [124], and Berloff and Yin studied their role in turbulence in

a two-component system [125]. Recently, Berloff and Youd studied the decay of vortex

rings in a homogeneous superfluid at finite temperature [126]. In [127] Kobayashi and

Tsubota simulated a GPE with a dissipation at short wavelengths and obtained an energy

spectrum consistent with the Kolmogorov law.

4. Applications of the TWPGPE to quantum matter-wave dynamics

As more experimental investigations have begun probing beyond mean-field quantum

dynamics in BECs, theoretical applications have begun to explore the role of thermal and

quantum fluctuations using the truncated Wigner method. Here, we give a brief survey of

the background and recent developments of this method.

4.1. Background

The TWA was introduced by Graham in 1973 [128] and has found wide application in

the field of laser physics. A precursor of work on trapped Bose gases was carried out

by Carter et al. [129] who applied phase-space methods to the simulation of the

quantum optical non-linear Schrödinger equation. The theoretical formulation and

applications to Bose gas dynamics began with the work of Steel et al. [130] who

developed phase-space techniques for atomic Bose fields and applied them to

simulating the time evolution of a one-dimensional homogeneous Bose gas.

The truncated Wigner method was compared with the functional positive-P phase-

space method [131] in calculations of the first-order coherence function

gð1ÞðtÞ � hâ
y
0 ðtÞâ0ð0Þi=hâ

y
0 ð0Þâ0ð0Þi for the condensate operator â0. Different initial

states of the condensate were sampled including the coherent state and the

Bogoliubov state. A general conclusion of this work, which provides a reliable guide,

is that the positive-P method, while exact, is unstable except for very short simulation

times, whereas the truncated Wigner method, while approximate, is stable. Many
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subsequent works have considered aspects of the validity of the truncated Wigner

method and its applications to dynamical Bose gases using both full phase-space

approaches, and the classical field method based on analysis of single trajectories.
A distinction between the formulation of [130] and the c-field description presented in

Section 2, is the emphasis placed on projection into a low-energy subspace, both formally

and numerically. In the TWPGPE formulation, the projection operator imposes a formal

UV cutoff which allows a measure of control over the sometimes spurious effects of

vacuum noise arising in the truncated Wigner method.

4.2. Condensate collisions in free space

The Bragg scattering of a condensate into a superposition of states of momentum 0

and 2�hk creates a well-characterized non-equilibrium initial condition that is easily

produced in experiments [133–136]. This scenario is shown schematically in the centre-

of-mass (COM) frame (in position space) in Figure 18(a), where the original and

scattered wavepackets move away from each other. In the subsequent dynamics, but

while the two wavepackets still overlap in position space, pairs of atoms are scattered

onto a spherical shell in momentum space (see Figure 18(b)). This scattering, often

referred to as an S-wave halo, is clearly seen in experiments [6,137], but is absent in

a GPE description.
The truncated Wigner method was first used to model this process by Norrie et al.

[34,132]. Beginning with a condensate with mode function 0(x), Bragg scattering was

Figure 18. Schematic of the condensate collision scenario of [132]. (a) Position space densities of
initially overlapping, counter-propagating condensate wavepackets. (b) Momentum space repre-
sentation of possible energy and momentum-conserving collisions between atoms in the two
condensates (k1, k2) onto the allowed spherical scattering halo (k3, k4), indicated by the grey annular
region in the collision plane.
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assumed to scatter half the condensate, resulting in the superposition of two wavepackets

with momenta ��hk (in the COM frame) [138], i.e.

 0ðxÞ ¼
0ðxÞffiffiffi

2
p eik
x þ e�ik
x

� �
: ð138Þ

The full initial condition (see Figure 19(a) and (b)) was sampled by adding vacuum noise

to modes orthogonal to  0 (see Equation (90)). In the truncated Wigner simulation modes

on a spherical shell of radius v� 10mm s�1 in velocity space are seen to grow, while the

initial wavepackets are situated at the poles of this sphere (see Figure 19(c) and (d)).

Figure 19. (a)–(f) Velocity mode populations on the planes vz¼ 0 (left) and vx¼ 0 (right) for the
condensate collision described in the text at t¼ 0 (top), t¼ 0.5 ms and t¼ 2.0 ms (bottom).
The spherical momentum cutoff is clearly visible in the upper plots owing to the presence of quantum
fluctuations. (g)–(h) Mode populations at t¼ 2.0 ms for an identical collision excluding vacuum
noise. Reproduced with permission from [132]. Copyright � 2005 by The American Physical Society.
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The importance of vacuum fluctuations is clear: they seed the growth of the halo modes,

thus mimicking spontaneous processes. It was found that after the halo first develops (see

Figure 19(e) and (f)), the stimulated evolution of these scattered modes leads to turbulent

dynamics. In contrast, no such spherical shell is seen to develop in the GPE simulations

(see Figure 19(g) and (h)).
We also note the work of Deuar and Drummond [140] which used a positive-P

method (see [141–143]) to simulate BEC collisions. The positive-P method is a phase-

space approach, like the Wigner method, but does not require approximation (i.e. the

truncation of third-order derivates) to arrive at a set of stochastic equations for any

Hamiltonian which is at most quartic in operators. The application to condensate

collisions represents a significant success of the method for modelling real-time

dynamics of atomic Bose fields. While providing an exact mapping and being used

widely for treating quantum optical systems (where dissipation is usually significant

and interactions weaker), for pure Hamiltonian evolution the method suffers from

stability problems limiting its use to short simulations and low-density systems.

Comparing with truncated Wigner simulations, Deuar and Drummond found

discrepancies between the two approaches for the early time dynamics of initially

unoccupied modes into which atoms were scattered. While directly probing such

a discrepancy in an experiment would be difficult, this result emphasizes the need for

care in interpreting TWPGPE results for sparsely occupied modes.

4.2.1. Condensate depletion

A comparison between the truncated Wigner method and Fermi’s second golden rule was

made by Ferris et al. [139] for the case of colliding condensates in the uniform system. That

study compared the early time depletion of the colliding condensates owing to

spontaneous scattering with the prediction of Fermi’s golden rule

dN0

dt
¼

u2mjkj

2��h3V
N2

0, ð139Þ

where N0 is the number of remaining (unscattered) condensate atoms, and V is the system

volume. The condensate population from the truncated Wigner simulation is shown in

Figure 20, where the good agreement with the estimates of Fermi’s golden rule is evident at

short times. The growing discrepancy at long times arises from the depletion of the

condensate and the stimulated dynamics of the scattered modes.

4.3. Truncated Wigner treatment of three-body loss

The three-body loss process is an inherently non-diffusive process in phase space (the

generalized FPE contains derivatives beyond second order in the phase-space variables),

and thus does not admit an exact formulation in terms of SDEs for any pseudo-probability

distribution.
An important consideration must be borne in mind at this point: practical application

of stochastic methods is not feasible for problems containing higher than second-order

derivatives for phase-space variables. Thus, a more general statement of the TWA is that it

should include all terms up to second order in phase-space variable derivatives, subject to

416 P.B. Blakie et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
0
:
5
9
 
3
0
 
A
p
r
i
l
 
2
0
0
9



the usual validity conditions of weak interactions and high mode occupation. This is the

approach taken in the treatment of three-body loss.
The basic technical extension beyond the standard TWA presented in Section 2.3.6 is

an additional stochastic term which models the diffusive effects of inelastic loss. Thus,

while elastic two body collisions do not generate a stochastic equation of motion within

TWA (second-order terms are identically zero), three body inelastic collisions introduce

a stochastic element to the evolution.
The three-body loss master equation for the system density operator �̂, which has been

rigorously derived by Jack [144,145], takes the form

@�̂

@t

����
3

¼
K3

6

Z
d3x 2 ̂ðxÞ3�̂ ̂yðxÞ3 �  ̂yðxÞ3 ̂ðxÞ3�̂� �̂ ̂yðxÞ3 ̂ðxÞ3

n o
, ð140Þ

which generates the time evolution for the total atom number

dN

dt
¼ �K3

Z
d3xg3ðxÞnðxÞ

3, ð141Þ

where

g3ðxÞ ¼
h ̂yðxÞ3 ̂ðxÞ3i

h ̂yðxÞ ̂ðxÞi3
: ð142Þ

Within the TWA Equation (140) leads to a SDE for the c-field  C(x)

d CðxÞ ¼ PC �
K3

2
j CðxÞj

4 CðxÞdtþ

ffiffiffiffiffiffiffiffi
3K3

2

r
j CðxÞj

2 dW3ðx, tÞ

( )
, ð143Þ

Figure 20. Reduction in condensate population during a condensate collision. Wigner simulations
(solid), a linear fit to the rate given by Fermi’s golden rule (dotted) and the solution to the differential
Equation (139) that includes condensate depletion (dashed). Reproduced with permission from [139].
Copyright � 2008 by The American Physical Society.
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[146] (in addition to the terms already in the TWPGPE (60)) where the noise term is

given by6

dW3ðx, tÞ ¼
X
n2C

dn �nðxÞ, ð144Þ

with dn(t) a complex Gaussian noise satisfying

dnðtÞdn0 ðtÞ ¼ 0, ð145Þ

d	nðtÞdn0 ðtÞ ¼ �nn0 dt: ð146Þ

4.3.1. Application to condensate collapse

The three-body loss formalism was originally derived and applied to quantify the atom

loses in condensate collisions [34,132], where it was shown to be a small effect. A regime

where three-body corrections are more important is in the description of the Bose-nova

experiment performed by Donley et al. [147]. In that experiment a Feshbach resonance was

used to suddenly change the scattering length from a value of a� 0 (ideal stable BEC) to

a negative value (i.e. attractive interactions), causing the system to collapse. During this

process the condensate density increases significantly, and from Equation (141) it is clear

that the three-body loss will become more important. This problem was studied with the

TWPGPE approach by Wüster et al. [148], who assessed the effects of quantum and

thermal fluctuations on the collapse process. Where comparison was possible, the

TWPGPE simulations of the collapse process agreed quantitatively with the results of

HFB theory, and both theories predicted slower collapse than observed in the experiment.

4.4. Quantum reflection of a BEC

Scott et al. [149,150] used the GPE and the TWA to model the collision of a BEC with an

abrupt potential barrier, as studied experimentally by Pasquini et al. [151,152]. The system

consists of a BEC held in a magnetic trap which is then accelerated at normal incidence

toward a steep potential drop. Two regimes of behaviour for these reflections were

characterized, as described below.

(i) For low approach velocities the BEC was observed to suffer from disruption

owing to interference from incident and reflected components. Most aspects of

these slow collisions were adequately explained by the GPE, however for dense

initial condensates the inclusion of vacuum fluctuations was observed to have an

appreciable effect on the dynamics through the formation of a scattering halo

(see Figure 21).
(ii) At higher velocities there is negligible disruption owing to interference, so that the

GPE results are relatively smooth. Studying this regime with the truncated Wigner

approach, the inclusion of vacuum fluctuations cause a large scattering halo to

develop.

In both regimes the experiments and the truncated Wigner results were found to be in

quantitative agreement.
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4.5. Applications to optical lattices

There have been several studies of atom dynamics in one-dimensional optical lattices using
the truncated Wigner approach.

4.5.1. Dynamical instability of a BEC at the band edge of an optical lattice

Ferris et al. [139] presented experimental results and truncated Wigner simulations of
the dynamically unstable evolution of a BEC prepared in a band-edge state in a one-
dimensional optical lattice.

The theoretical description was based on a full three-dimensional simulation of the

experimental system, and included degrees of freedom transverse to the lattice, and excited
band states along the lattice direction. The large number of modes needed to accurately
model the actual experimental system (i.e. in the combined lattice and weak harmonic
potential), would violate the validity condition NC�M/2 (see Section 2.3.9). To avoid
this, the theoretical model was simplified to a translationally invariant case, greatly
reducing the number of basis modes required. The truncated Wigner simulations showed

that vacuum fluctuations have an important role in seeding the growth of unstable modes,
leading to rapid depletion and heating of the condensate. Furthermore, the drastic
modifications of energy and momentum conservation in the lattice were observed to have
a substantial effect on the initial dynamics in the system, particularly the modes into which
atoms were spontaneously scattered.

4.5.2. Quantum fluctuation effects on dipolar oscillations

In [29], Polkovkinov and Wang considered the dipolar motion of a condensate displaced
relative to the centre of the harmonic trap in a quasi-one-dimensional lattice. This study,
conducted within the tight-binding Bose Hubbard description [35,153], examined the

Figure 21. Experimental absorption image of BEC for an impact velocity of vx¼ 3.0mm s�1 at
t¼ 120 ms, having reflected from the Casimir–Polder potential of a pillared silicon surface. The field
of view is 500 mm, the vertical dashed line indicates the position of the barrier. Lower inset:
corresponding simulated absorption image in the yx-plane including quantum fluctuations for
reflection from a barrier of height V¼ 1.67 10�31 J. Upper inset: equivalent constant density
surface excluding quantum fluctuations, axes are shown in the figure. The BEC in this simulation has
a peak density of 5.2 1012 cm�3 with its long axis perpendicular to barrier. Reproduced with
permission from [149]. Copyright � 2006 by The American Physical Society.
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nature of the damping, and how it is influenced by the quantum fluctuations included
within the truncated Wigner treatment. An adiabatic mapping procedure was used to
sample the initial Wigner distribution which allowed them to sample the ideal Bose gas in
the harmonic and lattice potential [154] as discussed in Section 2.3.8. Their study presented
evidence that there is a smooth crossover between the classical localization transition
(overdamped oscillations that occur beyond a critical displacement) and the superfluid-to-
insulator quantum phase transition in the limit of zero trap displacement. Using a similar
tight binding approach, the evolution of phase coherence in a deep quasi-one-dimensional
lattice with a large number of atoms per lattice site was examined and compared with
experiments by Tuchman et al. [155].

4.5.3. Number squeezing in one-dimensional lattices

Ruostekoski and Isella have also considered quasi-one-dimensional optical lattice systems
using the truncated Wigner approach, but used a beyond tight binding description
[156,157], which included excited band states.

In [156], they considered the effect that lattice loading has on a quasi-one-
dimensional gas initially prepared in a harmonic trap. The initial state was sampled
using the Bogoliubov procedure [158,159] (see Section 2.3.7), and then evolved through
a simulated lattice loading procedure. Coherence and number fluctuations
were evaluated, and observed to be in qualitative agreement with the experiments of
Orzel et al. [160].

In later work Ruostekoski and Isella considered the quantum dynamics in shallow
lattices [157], and modelled experiments by Fertig et al. [161] of dipolar motion of
a BEC in an optical lattice. In their simulations, the initial state was sampled using the
Bogoliubov procedure for the combined harmonic and lattice potential. Using the
truncated Wigner approach they modelled the sudden trap displacement and
subsequent dynamics and found qualitatively good agreement with the damping
behaviour observed in experiments. These results, which are for the low atom number
regime (i.e. NC� 102), where the strict validity conditions (see Section 2.3.9) for the
Wigner approach are not satisfied, provides an indication that the Wigner method has
an extended range of applicability.

4.5.4. Dephasing in one-dimensional interferometers

Bistritzer et al. [162] examined the effect of quantum-phase fluctuations on
a condensate split into two parts. Their system consisted of a pair of quasi-one-
dimensional Bose gases which realize a basic model for an atom interferometer. These
one-dimensional gases were modelled with a Bose Hubbard Hamiltonian using
the Wigner method (note there was no explicit optical lattice potential, but the gases
were treated in a lattice approximation). In detail they used the adiabatic mapping
procedure to sample the initial Wigner distribution as discussed in Section 2.3.8. In this
application, an initial non-equilibrium state was prepared by imposing a relative phase
between the two quasi-one-dimensional systems. The dephasing between
the (uncoupled) systems was then calculated as a function of time and shown to
decay exponentially with little sensitivity to temperatures below a characteristic
temperature T*.

420 P.B. Blakie et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
0
:
5
9
 
3
0
 
A
p
r
i
l
 
2
0
0
9



4.5.5. Quantum phase transition in a one-dimensional optical lattice

Dziarmaga et al. [163] investigated the quantum phase transition from Mott insulator to
superfluid transition in a periodic one-dimensional optical lattice. The Kibble–Zurek
mechanism (KZM) predicts that when the lattice is ramped down in a time of the order of
�Q (ramping up the tunnelling rate) the winding number will grow through a random walk
of BEC phases. In the high occupation regime the TWA leads to a discrete non-linear
Schrödinger equation of motion, and the initial conditions were sampled to approximate
a Mott insulator state jn, n, n, . . . , ni, where n is the (integer) number of particles per lattice
site. The KZM scaling of the winding number with �Q was confirmed using truncated
Wigner simulations of the transition dynamics.

4.6. Dynamical instabilities and quasiparticle dynamics: quantum de Laval nozzle

The quantum dynamics of a dynamically unstable supersonic current have been
investigated by Jain et al. [164]. They considered the stationary flow of a condensate in
a one-dimensional toroidal trap that was modified to form a double de Laval nozzle
geometry by the inclusion of a spatially varying potential (around a torus of length L) of
the form

VðxÞ ¼ �V0 sin
2 2�x

L

	 

ð147Þ

which has periodicity two over the region �L/2� x�L/2. There are persistent current
solutions for this system which have distinct spatial regions of subsonic and supersonic
flow, with two acoustic horizons for sound waves (phonons): one where the flow goes
supersonic (black hole, see Figure 22(a)) and the other where it returns to the subsonic
level (white hole). A typical stationary solution of the GPE which has this property is
shown in Figure 22(b) and the flow scenario is shown in Figure 22(c). Supersonic flows are
known to be energetically unstable and will decay in the presence of dissipation unless the
decay is topologically prohibited such as in a toroidal trapping configuration. It was found
that the system can also be dynamically unstable in certain scenarios, and the quantum
dynamics of the instability were investigated with the truncated Wigner approach and
compared with the predictions of Bogoliugov theory.

For a system with a dynamical instability the usual Bogoliubov expansion (72) is
inadequate [164,165], as modes arise with complex eigenvalues. For these unstable modes
the Bogoliubov description acquires an irreducible off-diagonal component, which takes
the form (see Equation (47) of [164])

Ĥ2 ¼
X
j

�h!j

�
ðb̂yjþb̂jþ � b̂yj�b̂j�Þ �

Z
dx ðjVþj j

2 � jV�j j
2Þ

�

þ
X
j

i�h�j

�
ðb̂jþb̂j� � b̂yjþb̂

y

j�Þ þ

Z
dx ðUþj V

�
j �Uþ	j V�	j Þ

�
,

ð148Þ

where fUþj ,V
þ
j g and fU

�
j ,V

�
j g are the positive and negative energy Bogoliubov modes,

respectively, e�j ¼ ð�!j � i�jÞ�h are the respective (complex) eigenvalues for these modes
with annihilation operators b̂j� (see [165]). The second line is analogous to the interaction
Hamiltonian for non-degenerate down-conversion of light by a non-linear crystal.
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In regimes where only a pair of modes are coupled then Ĥ2 describes the formation of
a two-mode squeezed state [12]. In this case, tracing over the negative energy mode, the
density matrix for the positive energy state is of the form of that for a thermal state with
mean occupation hniþ¼ sinh2�t. This is analogous to the Hawking effect in that pairs of
quasiparticles are produced at no energy cost: one enters the negative energy state (in the

Figure 22. Stationary flow in a doubly constricted toroid potential. (a) Schematic of
a hydrodynamic de Laval nozzle. A flow that attains the speed of sound (v¼ c) at the narrowest
point of the nozzle becomes supersonic beyond the nozzle. (b) Stationary GPE solution in a quasi-
one-dimensional toroidal geometry perturbed by the potential (147), with winding number w0¼ 10
(other parameters are given in [164]). The full solution is compared with the results of hydrodynamic
and perturbation theory approaches showing the importance of beyond hydrodynamic corrections in
the supersonic region. (c) Flow velocity and sound velocity corresponding to the GPE solution of
(b), showing the position of the black hole (BH) and white hole (WH) horizons for sound waves.
The energy unit of the toroid is �h!L¼ �h2/mL2. Reproduced with permission from [164]. Copyright �
2007 by The American Physical Society.
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supersonic regime) and the other is promoted to positive energy and emerges at the

horizon.
While the Bogoliubov analysis is useful in predicting the regions of instability, it cannot

describe the process dynamics, as the unstable modes grow exponentially (at least initially)

and rapidly invalidate the linearized Bogoliubov analysis. Simulations with the truncated

Wigner approach (see Figure 23) avoid such limitations as they include the non-linear

interactions between excitations and their back-reaction. These features of the Wigner

approach have seen several recent applications to the study of cosmological analogue

models in BEC systems, such as particle production in an expanding universe [166], and

studies of Hawking radiation [167].
In relation to the treatment of instabilities, also note the work of Polkovnikov [168] on

the evolution of the macroscopically entangled states in optical lattices, where the truncated

Wigner approach was used to deal with an unstable system where the usual Bogoliubov

treatment breaks down. In that work the author presents arguments that this formalism

should be able to adequately describe collapse and revival dynamics of the condensate.
Another application to quasiparticle dynamics was performed by Modugno et al. [169]

who investigated the possibility of driving a parametric resonance in a toroidally trapped

BEC. It was shown that specific quasiparticle modes could be resonantly excited, and then

individually observed via expansion imaging. Starting from a zero-temperature BEC, the

quasiparticle excitation was initiated from vacuum fluctuations present in the initial state

of the Wigner representation and driven by modulating the trapping potential.

4.7. Vortex formation in a stirred BEC

A number of experiments have shown that rotationally stirring a low-temperature BEC

can lead to the formation of a vortex lattice, e.g. [171–174]. In the most typical scenario,

Figure 23. Mode populations from averaging 40 trajectories of the truncated Wigner evolutions for
the quantum de Laval nozzle. Modes 1 and 6 are dynamically unstable, corresponding to the
negative and positive energy modes respectively. Reproduced with permission from [164]. Copyright
� 2007 by The American Physical Society.
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the stirring excites a dynamical instability of the condensate [175], which is transformed

into a highly turbulent state, and then after a long period evolves into a rotating state

containing a regular vortex lattice. This system provides a challenging test for dynamical

theories of cold bosonic gases, because while the process (ideally) involves only an initial

pure ground state subject to a conserving (Hamiltonian) process, dissipation is required for

the system to evolve into a state in equilibrium with the stirrer; see, e.g., [176,177]. A

number of approaches have been given based either on the pure GPE, e.g. [178,179] or

the GPE supplemented with phenomenological damping terms [176], but the description

of the turbulent state is clearly beyond the validity of the GPE. An a priori description of

the thermalization which is central to the process, and provides the necessary dissipation

mechanism, was first given by Lobo et al. [180] using a classical field method. They

simulated a three-dimensional condensate stirred by an elliptically perturbed rotating

harmonic trap, and considered the case of an initial T¼ 0 condensate (which they modelled

as the ground state of the GP equation), and also the case of an initial finite temperature

condensate. Their simulations for an initially T¼ 0 condensate showed evolution similar to

that seen in earlier approaches (e.g. [177–179]), with vortices eventually entering the high-

density region of the field a few hundred trap cycles after the creation of the turbulent

state. The vortices settle into an ordered lattice after another period of a few hundred trap

cycles, and then the lattice slowly damps over a further period of about 1000 trap cycles.

Lobo et al. made an approximate estimate of the total energy transferred irreversibly out

of the condensate, and by assuming equipartition over the available modes, obtained

a temperature of the thermal cloud which they assumed was responsible for the

dissipation. More recently, Wright et al. [170] have treated this stirring problem using

a TWPGPE approach. The initial vacuum noise gives an irreducible mechanism for

seeding the dynamical instability, and their method ensures particle number and rotating

frame energy are conserved to very high accuracy over the length of the simulation.

Furthermore, the basis choice and numerical method they use is free from the grid method

and boundary artifacts such as aliasing and spurious damping at high momenta, so that

any thermalization and damping observed can be unambiguously attributed to the

intrinsic field theory, rather than numerical artifact. The authors considered systems in

‘pancake’ traps, which are effectively two dimensional. A typical final state, after the

system has been subjected to a constantly rotating elliptical perturbation for 3000 trap

cycles, is shown in Figure 24(a).
This treatment allows a detailed and quantitative description of the thermalization of

the condensate. The thermal cloud created is initially located primarily in an outer

annulus, and quickly obtains a classical moment of inertia, while the central region of the

field is irrotational until penetrated by vortices. The temperature and chemical potential of

the thermal cloud are obtained by a self-consistent fit, and good agreement is obtained to

an analytic estimate. The Penrose–Onsager criterion (see Section 3.2.4) for identifying the

condensate component fails in this system, owing to the complex phase and amplitude

structure associated with the vortex array. As an alternative method of characterizing the

coherence properties of the system, the authors examine the local behaviour of the

temporal power spectra of the classical field about time t0, namely

Hðx,!; t0Þ ¼

���� 1T
Z t0þT=2

t0�T=2

 Cðx, tÞe
�i!t dt

����
2

: ð149Þ
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The sampling period T is chosen to be a number of trap cycles, and is long compared with

the timescales characterizing the phase evolution of the condensate (�h/�), but short

compared with the relaxation time of the field. Spectra such as those shown in Figure 24(b)

are obtained. The spectrum from the central region of the field has a prominent and

narrow peak at !� 10!r, which is interpreted as the condensate eigenvalue. At larger radii

(r0 9r0) the spectrum is broadened and is approximately that of the non-interacting gas.

The local correlation times obtained from these data (by Fourier transform of H ) allow an

unambiguous distinction to be made between superfluid turbulence and thermal gas

(which has a much shorter correlation time). We note that a feature of the two-

dimensional system is that the final state is not a regular Abrikosov lattice, but instead is

a spatially disordered vortex liquid state. This can be interpreted as a thermally excited

vortex lattice, and indeed both the simulations and an analytic prediction given in [170]

show that a considerable amount of thermal energy is generated in the stirring process, and

that therefore the final condensate state must have considerable thermal excitation.

The final state of the simulations is consistent with the condensate being in thermal and

rotational equilibrium with the thermal cloud.

4.8. Quantum statistical effects in superchemistry

The field of superchemistry was defined by Heinzen et al. [181] as ‘the coherent stimulation

of chemical reactions via macroscopic occupation of a quantum state by a bosonic

chemical species’. Truncated Wigner simulations were used by Olsen et al. [27,28,182–184]
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Figure 24. (a) Classical field density of the equilibrium state of stirred condensate. Vortices are
indicated byþ symbols, and are indicated only where the surrounding density of the fluid exceeds
some threshold value. (b) Power spectral density traces at particular radii. The black (blue) and dark
grey (red) lines correspond to radii r¼ 3.1894r0 and r¼ 11.9575r0, respectively. Data corresponds to
the period t¼ 9900–9910 trap cycles. The plots in (a) and (b) are from the same simulation, in which
the condensate was initially in a trap of frequency !r, at temperature T¼ 0, chemical potential
�i¼ 14�h!r. The elliptical perturbation rotates continuously at �¼ 0.75!r. The spatial scale is the
oscillator length r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=m!r

p
. Colour refers to the online version. Reproduced with permission

from [170]. Copyright � 2008 by The American Physical Society.
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to investigate superchemistry based on photoassociation of trapped BECs into molecular

dimers. The atom–molecule coupling occurs through a Raman two-photon transition for

which the interaction Hamiltonian can be written as [28]

Ĥint ¼
i

2

Z
d3x�ðxÞ  ̂y2a ðxÞ ̂m	 ðxÞ �  ̂

2
aðxÞ ̂

y
m	 ðxÞ

� �
þ i

Z
d3x�ðxÞ  ̂

y
m	 ðxÞ ̂mðxÞ �  ̂m	 ðxÞ ̂

y
mðxÞ

� �
,

ð150Þ

where  ̂aðxÞ is the atomic field,  ̂m	 ðxÞ the excited molecular field and  ̂mðxÞ is the

molecular ground-state field. Here �(x) is the Rabi frequency of the transition from atoms

to excited molecules and �(x) is the Rabi frequency for the transition from excited to

ground molecular states.
A notable feature of this work was the departure from the mean-field predictions (see

also [185]). The quadratic dependence of (150) on atomic fields combined with the

relatively short timescale of the atom–molecule transition combine to make the process

highly sensitive to quantum statistical effects such as squeezing (see, e.g., Figure 3 for

a comparison of some different quantum states for the condensate). Results of those

studies demonstrated a regime where the quantum statistics of the atomic condensate play

a crucial role in superchemistry dynamics and confirmed that photoassociation of

a trapped BEC into molecules provides a signature of the quantum state of the BEC. This

can be seen in Figure 25 where photoassociation dynamics are compared for different

quantum states of the initial BEC.

4.9. The quantum linewidth of an atom laser

Johnsson and Hope [186] used the TWA to model the process of weak outcoupling from

a trapped BEC and to determine the linewidth of the outcoupled beam. Semi-classical

Figure 25. Comparison of atom number in photoassociation dynamics for Fock (solid line),
coherent (dash-dot) and crescent quantum states of the initial atomic BEC. Reproduced with
permission from [27]. Copyright � 2004 by The American Physical Society.
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analysis predicts the linewidth will be essentially Fourier limited, scaling as the inverse of
the outcoupling time [187]. Determining the quantum linewidth requires a multimode
quantum theory of the atom laser outcoupler which the was implemented using the TWA.
For Raman transition-based outcouplers the primary source of linewidth broadening in
the weak outcoupling regime comes from phase fluctuations of the condensate. The main
source of phase fluctuations is the non-linear interactions in the condensate which convert
number fluctuations into phase fluctuations [188]. A simple estimate for the quantum
linewidth, �E, of the output coupled atom laser beam from condensate containing N0

atoms in a harmonic trap is given by

�E ¼
@�TF

@N0
�N0, ð151Þ

where �TF is the Thomas–Fermi chemical potential (see Equation (103)). If the quantum
state of the BEC is approximately a coherent state then the fluctuations in condensate
number are Poissonian, i.e. �N0 ¼

ffiffiffiffiffiffi
N0

p
, and an analytic expression for �E can be

calculated.
In [186] one- and two-dimensional truncated Wigner simulations were used to obtain

the atom laser linewidth as a function of output coupling time, and these results were
compared against GPE simulations. For short times the linewidth was found to be
inversely proportional to the output coupling time, a feature adequately described by the
GPE. However, on longer timescales the linewidth predictions of the two theories differed:
the truncated Wigner simulations plateaued towards the Poissonian limit (151), whereas
the GPE continued to narrow.

5. The SPGPE

The SPGPE is a truncated Wigner theory of Bose gases which takes into account the
interactions between the atoms in the c-field region and the I region. The theory is valid
for sufficiently large systems for temperatures from about 0.5Tc to just above the BEC
transition at T¼Tc when the I region contains many weakly populated thermal modes.
For a trapped system with largest trap frequency ! the condition �h!� kBT must be
satisfied; in this sense it is a high-temperature theory, extending the PGPE theory treated
in Section 3 and complimenting the low-temperature TWPGPE approach described in
Section 4. An important point of difference is that the SPGPE theory is a grand canonical
theory, in contrast to the microcanonical approaches described in previous sections. In its
simplest implementation the theory is parameterized by the (in general, time-dependent)
temperature T and chemical potential � of the thermal reservoir comprising the thermally
occupied modes contained in the I region. Thus, in contrast to microcanonical approaches
for which temperature must be determined a posteriori, the SPGPE formalism allows
direct control of the temperature of the interacting system. In general, the I and C regions
may be out of equilibrium (such as during quench cooling towards Tc). The dynamics of
the condensation process are particularly well suited to treatment with this theory.

5.1. Formalism

The treatment of thermal processes using stochastic methods has a long history, beginning
with the theory of Brownian motion [189,190]. The theory of open quantum systems

Advances in Physics 427

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
0
:
5
9
 
3
0
 
A
p
r
i
l
 
2
0
0
9



couples the modes of interest in the quantum system to a reservoir [11]. The precise details
of the derivation can be found in [8,26,191,192]. As a full treatment is rather lengthy, here
we briefly outline the development of the theory.

The essential conditions for a treatment of the degenerate Bose gas with minimal
complexity are (i) the system and the reservoir are uncorrelated and (ii) the reservoir is in
local equilibrium, described by the semiclassical Bose–Einstein distribution. In many
systems of interest these conditions can be readily satisfied by appropriately choosing the
cutoff energy �cut. In essence, the SPGPE theory extends the PGPE theory by including the
coupling of C region atoms with atoms in I which form a grand-canonical reservoir.
The coupling generates additional damping and stochastic terms in the PGPE, which
necessarily takes the form of a SDE.

The assumption of local equilibrium for the I region is convenient, but does not pose
a fundamental limitation of the formalism. In principle, it is possible to derive a quantum
Boltzmann-like kinetic equation for the particles in I coupled to a stochastic c-field
equation for the particle in C. However, this would result in further computational
complexity which is not necessary for a broad range of applications. Such a description
remains a goal for the future, and would result in a near-complete model of Bose gas
dynamics at high temperature.

5.1.1. Background

The theory of finite temperature BEC dynamics of Zaremba et al. [193], which was
developed along the lines of the two-fluid theory of superfluid helium, provided the
foundations for generalized GPE theory from a hydrodynamic point of view. The essential
assumption of the theory is that atoms enter and leave the condensate so as to enforce local
energy and momentum conservation. The resulting description takes the form of a finite-
temperature GPE for the condensate, coupled to a Boltzmann equation for the non-
condensate. The theory has the advantage that the condensate and non-condensate are
described on an equal footing, making the description of coupled dynamics of thermal
cloud and condensate tractable. While being intuitively appealing and a providing
a powerful approach for extending zero-temperature mean-field theory, enforcing local
conservation of energy and momentum also has disadvantages which are removed by the
SPGPE approach. First, as a mean-field theory it cannot be valid near the BEC phase
transition where the condensate is relatively small or non-existent. Furthermore, a locally
conserving theory neglects the non-locality of quantum mechanics, which plays
a fundamental role in determining the dynamics of atoms stimulated into a highly
occupied field.

The SGPE formulation of Stoof is closely related to the SPGPE theory presented
here: the formulation leads to a SDE for the condensate which is driven by a noise
term associated with condensate growth. However, there are two important differences.
First, in [194] the reservoir is chosen to contain all modes with energy in excess of the
chemical potential �. The stochastic GPE so-obtained involves self-energy functions,
necessitating a many-body T-matrix treatment of interactions. As well as being difficult
to implement numerically, the c-field of the theory only describes the condensate and
few very low-energy excitations. As discussed in Section 3.1.2, in the vicinity of the
transition there are typically 103–104 degenerate modes warranting a c-field treatment.
Second, the approach neglects scattering terms which conserve population but transfer
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energy from the reservoir to the c-field region. The inclusion of these terms in the
SPGPE stems from the explicit use of a high-energy projector, which renders them
finite and tractable.

SPGPE. The quantum kinetic theory of Bose–Einstein condensation [195–197] has been
shown to provide a good description of the process of condensate formation [198–200] at
the level of condensate population dynamics provided condensation occurs into the
absolute ground state of the system. Recent work by Gardiner et al. [8,26,46,191,192]
developed the SPGPE theory to explicitly include a high-energy cutoff, thus unifying the
PGPE theory with the reservoir theory of high-temperature BECs.

Since its inception, the theory of finite-temperature BECs has presented many
challenges and a rich body of work has accumulated [22]. Several key problems are the
consistent treatment of two-body interactions [20,23], the description of thermal cloud
coupling and dynamics [193,194] and the unification of GPE approaches with dissipative
finite-temperature phenomenology [176,201]. In these respects, the SPGPE theory has
some notable computational and physical advantages which we briefly summarize as
follows.

(i) Consistent UV-cutoff. The imposition of a high-energy cutoff using the methods
of Section 3 imposes a consistent cutoff, even for trapped systems. As noted in
Section 3.1.1, if the cutoff is only imposed in momentum space the precise
wavelength for the cutoff is position dependent. The PGPE formalism addresses
this problem by imposing a cutoff in the single-particle basis which approximately
diagonalizes the many-body Hamiltonian at high energies.

(ii) Two-body T-matrix. By imposing the cutoff at high energies the need to use the
many-body T-matrix to describe scattering is eliminated, requiring only the two-
body T-matrix description of S-wave scattering: T(0)! 4��h2a/m.

(iii) Non-local description of condensate growth. Fundamentally the theory is non-local:
atoms which leave the high-energy cloud enter the c-field region so as to minimize
the difference between the chemical potential of the high-energy region and the
GPE operator acting on the c-field. Beyond hydrodynamic effects are thus
explicitly included.

(iv) Scattering terms. Imposing a cutoff at high energies allows the so-called scattering
terms, reservoir interactions that do not directly change the populations of the
reservoir or c-field, to be consistently included in the theory. Analogous terms
proved to play an important role in the quantum kinetic theory description of
condensate growth [202]. In the SPGPE theory, the scattering terms couple to
dynamical excitations in the c-field region.

(v) Valid at the BEC transition. A notable feature of the SPGPE is that it is
particularly well suited for dynamical studies in the regime T�Tc since the
conditions of validity are high temperature (�h �!� kBT) and moderate occupation
of modes, both of which are readily satisfied near the BEC transition.

(vi) Reservoir dynamics. In principle, the dynamics of the incoherent region can be
treated with a quantum Boltzmann equation with little additional formalism
provided the region remains in approximate local equilibrium.

(vii) Consistent mean-field treatment of dissipation. The mean-field theory recovered by
setting all noises to zero gives a GPE of motion with extra dissipative terms.
The dissipation evolves the c-field to a ground state with the chemical potential of
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the reservoir. In contrast to phenomenological approaches [176,201], the

dissipation rate arising in the equation of motion is the physical rate of the

theory which can be derived from a Boltzmann integral7 [192].

5.1.2. The system and its separation

We again consider a dilute Bose gas held in a trapping potential defined by (3), but extend

the PGPE description of Section 3 to consider the coupling of the c-field region to the

I region. To accommodate applications such as the formation of vortex lattices in BECs

(discussed below in Section 5.4), we include the possibility that the I region may be

rotating. This requires either that the trapping potential is axially symmetric, or time-

independent in a rotating frame of reference (corresponding to elliptical stirring at

a constant angular frequency). For simplicity we restrict our attention to systems where

either (i) the I region is stationary in the laboratory frame or (ii) the I region is rotating in

an axially symmetric trap. For the latter case the theory is conveniently formulated in the

frame rotating at the frequency of the I region, which we denote by �. Choosing the

symmetry axis of the system to be the z-axis, the single-particle Hamiltonian for the system

transformed to the rotating frame is

Hsp ¼ H0 ¼ �
�h2r2

2m
þ V0ðxÞ ��Lz, ð152Þ

where Lz¼�i�h(x@y� y@x) is the z-component of the angular momentum operator. It has

been shown that when the incoherent region is in rotational equilibrium in a harmonic trap

the theory is modified by transforming the c-field description to the rotating frame and

making the replacement !r!!?, where

!? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
r ��2

q
, ð153Þ

in the dissipation rates of the SPGPE [192]. We can thus treat the rotating case in the

formalism by including the effects of rotating frame transformation in the c-field

description (152), parameterized by �. We return to rotating systems in more detail in

Section 5.4.3, but in what follows the formalism applies to systems that are either

non-rotating and in general non-axisymmetric, or rotating and axisymmetric

(!x¼!y�!r).
As described in Section 2.2, the field operator for the full system is decomposed into

a c-field and an incoherent field. The SGPE takes the form of an equation of motion for

the c-field  C(x) with terms arising from interaction with the incoherent region I. The two

regions are treated using different approximations.

5.1.3. Treatment of the incoherent region

The local equilibrium assumption for the state of the incoherent region allows all higher-

order correlation functions arising in the theory to be factorized into products of second-

order correlation functions. At this level of approximation the essential reservoir

interaction physics can be reduced to functions of the single-particle Wigner function
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for the incoherent region

FIðx,KÞ ¼

Z
d3x0  ̂

y
I ðxþ x0=2Þ ̂Iðx� x0=2Þ

D E
eiK
x

0, ð154Þ

previously introduced in Section 3.2.6. Introducing the variables u� (xþ x0)/2, v� x0 �x,

we can write

h ̂
y
I ðx
0Þ ̂Iðx, �Þi ¼ h ̂

y
I ðuþ v=2Þ ̂Iðu� v=2, �Þi,

�
1

ð2�Þ3

Z
�I

d3KFIðu,KÞe
�iK
v�i!ðu,KÞ� , ð155Þ

h ̂Iðx
0Þ ̂
y
I ðx, �Þi �

1

ð2�Þ3

Z
�I

d3K ½1þ FIðu,KÞ�e
iK
vþi!ðu,KÞ� , ð156Þ

where phase-space integration over the incoherent region �I constrains the coordinates

to satisfy �h!(x,K)4 �cut (see (124) and (127)) and the energy in the frame rotating with

angular frequency vector : ¼ �ẑ has the semiclassical form

�h!ðx,KÞ ¼
�h2K2

2m
� �h: 
 ðx KÞ þ V0ðxÞ: ð157Þ

The dissipation rates of the theory are time-integrated products of such functions, as can

be seen from (171) and (174).

Semi-classical Bose–Einstein distribution. For many applications the I region may be

described by a semiclassical Bose–Einstein distribution

FIðx,KÞ ¼
1

exp ½ð�h!ðx,KÞ � �Þ=kBT � � 1
, ð158Þ

where we note that for high energies where this is assumed to apply, the gas is always

rapidly thermalized and interactions with the c-field region are a small correction to the

single-particle energy (157). This form has been used to evaluate the dissipation rates of the

SPGPE theory [192].
The properties of the ideal gas description of (158) and (157), including the effect of

the cutoff, can be expressed in terms of the incomplete Bose–Einstein function defined

as [192]

g�ðz, yÞ �
1

�ð�Þ

Z 1
y

dxx��1
X1
l¼1

ðze�xÞl,

¼
X1
l¼1

zl

l�
�ð�, ylÞ

�ð�Þ
, ð159Þ

where �ð�, xÞ �
R1
x dy y��1e�y is the incomplete Gamma function. In analogy with the

reduction to an ordinary Gamma function �(�, 0)¼�(�), we have
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g�ðz, 0Þ ¼ g�ðzÞ �
P1

l¼1 z
l=l�, reducing to the ordinary Bose–Einstein function. We then

find for the I region density, for example

nIðxÞ ¼

Z
�I

d3k

ð2�Þ3
FIðx, kÞ

¼ 	�3dBg3=2 e�½��V?ðxÞ�,��h2KcutðxÞ
2=2m

� �
,

ð160Þ

where �h2Kcut(x)
2/2m¼max{�cut�V?(x), 0} and we have introduced the effective

potential

V?ðxÞ ¼
m

2
ð!2
?r

2 þ !2
zz

2Þ, ð161Þ

which accounts for the transformation to the rotating frame (153). Setting �cut¼ 0, we

recover the standard form for the semiclassical particle density of the ideal gas [57].

The total number in I region is given by

NI ¼ g3 e��,��cut
� �

=ð��h �!Þ3, ð162Þ

where �! ¼ ð!z!
2
?Þ

1=3 is the geometric mean frequency in the rotating fame. In this way the

usual semiclassical expressions can be generalized to include a cutoff in terms of the

incomplete Bose–Einstein function.

5.1.4. Treatment of the c-field region: deriving the equation of motion

The standard procedure of phase-space methods for open systems involves deriving

a master equation for the reduced system by eliminating the reservoir degrees of

freedom. The master equation may then be mapped to a generalized FPE of motion

for a quasi-probability distribution, such as the Wigner representation, by making use

of operator correspondences (e.g. (52)–(55)). Provided that the FPE contains derivatives

which are at most second order (representing diffusion), an equivalent SDE may be

found which can be conveniently simulated numerically. The TWA involves neglecting

third-order terms in the FPE (see (58)), and in the context of the SPGPE theory the

TWA reduces the FPE to second order, allowing a formulation of the problem in terms

of SDEs.

Validity of the SPGPE treatment of the c-field. In addition to treating the I region

semiclassically, the SPGPE formalism makes the TWA which requires that the modes

under consideration are highly occupied. An approximate master equation that can be

mapped to a SDE is then obtained by truncating the interaction between C and I at first

order in powers of �h!/kBT, where !¼max{!i} is the largest oscillator frequency of the

system.
A feature of the high-temperature theory is that the dissipation arising from the

reservoir coupling acts to smooth out sharp phase-space structure that would otherwise

generate significant third-order term corrections [203]. In this sense the high-

temperature Bose gas is particularly well suited to treatment using the truncated

Wigner method.

432 P.B. Blakie et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
0
:
5
9
 
3
0
 
A
p
r
i
l
 
2
0
0
9



5.1.5. SPGPE

In the rotating frame the full non-local form of the SPGPE is given by the following SDE

in Stratonovich form

ðS Þd Cðx, tÞ ¼ PC

�
�

i

�h
LC CðxÞdt ð163aÞ

þ
GðxÞ

kBT
ð�� LCÞ CðxÞdtþ dWGðx, tÞ ð163bÞ

þ

Z
d3x0Mðx� x0Þ

i�hr 
 jCðx
0Þ

kBT
 CðxÞdtþ i CðxÞ dWMðx, tÞ

�
: ð163cÞ

The first line of the SPGPE (163a) describes Hamiltonian evolution according to the

PGPE introduced in Section 2.3.6 and developed in Section 3. The projector PC appears as

a natural consequence of formally imposing a high-energy cutoff in the definition of the

c-field region. The operator LC is the Hamiltonian evolution operator for the c-field region

defined via Equations (65) and (67). Its explicit form is

LC CðxÞ � Hsp þ uj Cðx, tÞj
2

� �
 CðxÞ: ð164Þ

The second line of the SPGPE (163b) is directly responsible for condensate growth from

scattering between two I region atoms as illustrated in Figure 26(a). The � and T that arise

are respectively the chemical potential and temperature of the thermal reservoir of

particles in the I region. The quantity G(x) is a spatially dependent collision rate,

specified by a quantum Boltzmann integral over the I region as discussed in more detail in

Section 5.2.1 below. The complex noise associated with growth is dWG(x
0, t) and satisfies

hdW	Gðx, tÞ dWGðx
0, tÞi ¼ 2GðxÞ�Cðx, x

0Þdt, ð165Þ

hdWGðx, tÞ dWGðx
0, tÞi ¼ hdW	Gðx, tÞ dW

	
Gðx
0, tÞi ¼ 0: ð166Þ

I

C

n
q

m

p

(a) Growth (b) Scattering

nq

mp

I

C

εcutεcut

Figure 26. Schematic of the processes arising from the interactions between the c-field and
incoherent regions. (a) Two c-field region atoms collide, with a significant fraction of the collision
energy transferred to one of the atoms, with the other atom passing into the c-field region. The time-
reversed process also occurs. (b) A c-field region atom collides with a incoherent region atom with
no change in c-field region population.
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The third line of the SPGPE (163c) represents number-conserving scattering processes
between atoms in C and I and provides a mechanism for energy transfer between the two
regions as illustrated in Figure 26(b). This couples to the divergence of the c-field region
current given by

jCðxÞ �
i�h

2m

�
½r 	CðxÞ� CðxÞ �  

	
CðxÞr CðxÞ

�
� ð: xÞj CðxÞj

2, ð167Þ

where the last line is a rigid-body rotation term arising from the transformation to the
rotating frame. The limit jC(x)¼ 0 gives the laboratory frame velocity field v¼:x,
corresponding to the irrotational system mimicking rigid-body rotation. The rate function
M(x� x0) is specified by a second quantum Boltzmann integral, and is discussed in detail
below in Section 5.2.2.

The real noise dWM(x, t) associated with scattering is specified by

hdWMðx, tÞ dWMðx
0, tÞi ¼ 2Mðx� x0Þdt: ð168Þ

Grand canonical equilibrium. As described in Section 3.2.4, the PGPE provides a means to
sample the microcanonical ensemble of equilibrium states. By including interactions with
the incoherent region we have arrived at a grand canonical description, parameterized by
the chemical potential and temperature of I. Irrespective of the form of G(x) and M(x), the
SPGPE evolves the system to the grand canonical equilibrium distribution

Ws / exp
�NC �HC

kBT

	 

, ð169Þ

corresponding to the density matrix

�̂s / exp
�N̂C � ĤC

kBT

 !
, ð170Þ

in the TWA. Once the c-field reaches equilibrium single trajectories may be used to sample
the grand canonical ensemble.

5.2. Growth and scattering in the SPGPE

We now discuss the properties of the dissipative terms in the SPGPE (163). We give the
explicit form of the rate functions G(x) and M(x), the regimes under which they may be
evaluated in closed form, and discuss details of their physical interpretation.

5.2.1. Growth terms

Growth rate. The explicit form of the growth rate is [8,192]

GðxÞ �
u2

ð2�Þ5�h2

Z Z Z
�I

d3K1 d
3K2 d

3K3 Fðx,K1ÞFðx,K2Þ

 ½1þ Fðx,K3Þ��123ð0, 0Þ, ð171Þ

where �123(k, �)� �(K1þK2�K3�k)�(!1þ!2�!3� �/�h) conserves energy and momen-
tum during the collision.
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The rate G(x) can be calculated in the regime where the I region is quasi-static, and

well-approximated by an ideal semiclassical Bose–Einstein distribution (158) with slowly

varying �(t) and T(t). For the inner spatial region of a harmonic trap satisfying

V(x)� 2ER/3 we find that G(x)� � is independent of position with

� ¼ �0

��
ln ð1� e�ð���cutÞÞ

�2
þ e2�ð���cutÞ

X1
r¼1

er�ð��2�cutÞ
�
�½e�ð���cutÞ, 1, rþ 1�

�2�
, ð172Þ

where �0¼ 4m(akBT )2/��h3 and �[x, y, z] is the Lerch transcendent. Outside this region

there is a weak spatial dependence which can be neglected for most purposes [192].

The bare rate, �0, has been used as an estimate in the literature, often requiring

a ‘fudge factor’ (usually chosen as about three) to obtain a rate that gives physically

reasonable damping times. In Figure 27 we show � for a fixed choice of �cut¼ 3�. The full
picture is more complicated than shown in Figure 27 because the choice �cut¼ 3� would

not be appropriate near Tc, but instead a much higher �cut would be necessary. In practice,

the more accurate form typically increases the ratio �/�0 by a factor which is in the range

1–10.

Dissipative dynamics of condensate growth. By neglecting the scattering and noise terms

in the SPGPE (163) it is possible to show that

@ðHC � �NCÞ

@t
¼ �

2�

�h

Z
d3xjð�� LCÞ Cðx, tÞj

2, ð173Þ

where we used the approximation G(x)� � as given by Equation (172). As the right-hand

side of Equation (173) is a strictly non-positive term, we can see that the growth term acts

to minimize the effective grand-canonical Hamiltonian KC�HC��NC. The equilibrium

solution is the ground state of the PGPE (68) with chemical potential �. The growth terms

describe the Bose-stimulated transfer of particles between the C and I regions during two-

body collisions.

10–2 10–1
0

10

20

30

40

μ/ kBT

γ 
/ γ

0

T = Tc

T = 0.5Tc

Figure 27. Dependence of the growth rate � (172) on � for the choice �cut¼ 3�. The full rate (172)
(solid line) is compared with the logarithmic term (dashed line). The two points are calculated for
N¼ 106 87Rb atoms in a trap with geometric mean frequency �! ¼ 2� 25 Hz using the ideal gas
relation for Tc. The chemical potentials are estimated from � � 3�h �!=2 at T¼Tc, and ���TF(N0)
at T¼ 0.5Tc.
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5.2.2. Scattering terms

Scattering rate. The rate function for the scattering term of the SPGPE (163) is most easily

calculated by transforming to momentum space MðxÞ ¼
R
d3k e�ik
x ~MðkÞ, where we find

~MðkÞ ¼
2u2

ð2�Þ5�h2

Z Z
�I

d3K1 d
3K2 �12ðk, 0ÞFðu,K1Þ½1þ Fðu,K2Þ�, ð174Þ

with �12(k, �)� �(!1þ!2� �/�h)�(K1þK2� k). It has been shown that to a good

approximation that this expression is independent of u (see [8,192]), and for this reason

we suppress the argument in the present definitions.
Using the same approximation of a quasi-static thermal cloud as used in the

calculation of the rate G(x) in the previous section we find that

~MðkÞ ¼
16�a2kBT

ð2�Þ3�hjkj

e�ðER��Þ

e�ðER��Þ � 1ð Þ
2
�
M

ð2�Þ3jkj
, ð175Þ

and, thus,

MðxÞ ¼
M

ð2�Þ3

Z
d3k

e�ik
x

jkj
: ð176Þ

so that M(x) is a spatially dependent function over the whole C region. At first glance this

term appears somewhat pathological, but well-defined results are obtained since M(x) is

convolved with functions of condensate band fields. Such functions are both UV and

infrared cutoffs, giving a finite result for the convolution in (163c).

Effect of scattering on hydrodynamic collective modes. To gain some physical insight into

the nature of the scattering we note that the evolution according to the deterministic part

of (163c) can be written as a real effective potential

i�h
@ Cðx, tÞ

@t

����
M

¼ PCfVMðx, tÞ Cðx, tÞg, ð177Þ

where

VMðx, tÞ ¼ �

Z
d3x0Mðx� x0Þ

�h2

kBT
r 
 jCðx

0Þ: ð178Þ

To first approximation we can neglect all dissipation as relatively weak corrections to the

PGPE evolution (163a), giving the continuity equation r 
 jC(x)��@nC(x)/@t for the c-field
region and

VMðx, tÞ �

Z
d3x0Mðx� x0Þ

�h2

kBT

@nCðx
0Þ

@t
: ð179Þ

Thus, the scattering term generates an effective potential from dynamical density

fluctuations in the c-field region.
As a specific example we consider excitations of a system with spherical symmetry,

since the momentum distribution will have the same symmetry as the scattering kernel

(176). We can then evaluate the effective potential for collective modes in the

hydrodynamic and Thomas–Fermi approximations. For a spherically symmetric trap
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the condensate wavefunction in the Thomas–Fermi approximation is nTF(x)¼ (�TF/

u)(1� (r/RTF)
2), with Thomas–Fermi radius RTF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�TF=m!2

r

p
. The density profile for

spherically symmetric modes [204] with amplitude A can be written as

�nnðx, tÞ ¼
A�TF

u
sin ð!ntÞfnðr=RTFÞ, ð180Þ

where the radial form is given by the Jacobi polynomials fnðxÞ ¼ ð
nþ1=2

1=2�1
Þ

Pð0,1=2Þn ð2x2 � 1Þ�ð1� xÞ and �(x) is the unit step function. Since fn(0)¼ 1 the peak density

of the excitation is A�TF/u. The modes have frequencies !n ¼ !r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 3n
p

, for example

the breathing mode has frequency !1 ¼
ffiffiffi
5
p
!r. Evaluating Equations (179) and (176)

leads to

VM,nðx, tÞ ¼ A�h!n cos ð!ntÞ
4aR3

TF

�a4r

	 

e�ð�cut��Þ

ðe�ð�cut��Þ � 1Þ2
Fnðr=RTFÞ, ð181Þ

where ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=m!r

p
is the radial harmonic oscillator length, and

FnðxÞ ¼

Z 1
0

dk
sin ðkxÞ

kx

Z 1

0

dy y sin ðkyÞfnð yÞ: ð182Þ

In Figure 28, we show the effect of scattering on the breathing mode. At t¼ 0 the density

modulation (180) vanishes, but has maximal rate of change, reflected by the phase of (181)

relative to (180). The radial shape of the mode f1(r/RTF) is shown in Figure 28(a),

corresponding to outward flow at t¼ 0. The potential, shown in Figure 28(b) (at t¼ 0),

generates damping of the excitation by imposing an additional potential gradient that acts

to oppose the outward flow. The same qualitative result holds for higher modes, where

VM,n(r) is found to have the same overall shape as fn(r/rTF) and a relative phase so as to

oppose the excitations with an additional potential gradient. From Figure 28(b) it is clear

Figure 28. Scattering potential for the breathing mode �n1(r, t) of a Thomas–Fermi condensate.
(a) The radial shape of the mode f1(r/RTF) (see the text). (b) The scattering potential for a breathing
mode excitation with amplitude A¼ 0.1 (solid line, shown at t¼ 0) and the harmonic trapping
potential (dashed line). We have used �cut¼ 3� and ���TF(N0) for T¼ 0.7Tc and have estimated N0

using the ideal gas relation for 106 87Rb atoms in a trap with radial frequency !r¼ 2� 25Hz.
For these parameters VM,1(r) is small compared with the harmonic trap for significant radii (shown
in the inset).
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that VM,1(r) can be a significant correction to the bare trapping potential near the centre of

the trap, but is unimportant near RTF (see the inset).

5.3. Simple growth SPGPE

The scattering term of the SPGPE (163c) does not alter the population of the condensate

band directly, nor does it affect the grand canonical equilibrium of the c-field. It is

generally expected to be less important to the c-field dynamics in comparison to the

growth term (163b), which directly describes the dominant collision processes resulting in

Bose–Einstein condensation. Combined with the difficulty in its numerical implementation

arising from the non-locality of the deterministic part and the multiplicative nature of the

associated noise, it seems reasonable to neglect it in the first instance. This results in the

simple growth SPGPE

d Cðx, tÞ ¼ PC �
i

�h
LC Cðx, tÞdtþ

�

kBT
ð�� LCÞ Cðx, tÞdtþ dW�ðx, tÞ

� �
, ð183Þ

where

hdW	�ðx, tÞ dW�ðx
0, tÞi ¼ 2��Cðx, x

0Þdt: ð184Þ

The numerical implementation of this simplified form is relatively straightforward, being

only somewhat more complicated than the PGPE. As the only noise term is additive, the

simple growth SPGPE can be integrated using high-order algorithms, such as a modified

fourth-order Runge–Kutta algorithm [205].

5.4. Applications to the dynamics of partially condensed Bose gases

5.4.1. Background

The first stochastic Gross–Pitaevskii treatment of Bose gases was developed by Stoof [194]

using a functional integral formulation of the Keldysh method. The first application of

SGPE theory was carried out by Stoof and Bijlsma [207] who used the SGPE theory

developed in [194] to study finite-temperature dynamics of a one-dimensional Bose gas.

Focusing on the scenario of growth into a one-dimensional dimple trap Stamper-Kurn

et al. studied reversible condensate formation (see [208]), and the frequencies and damping

rates of collective modes. The SGPE theory has also been used in conjunction with

variational techniques to study finite temperature collective excitations [207,209], and

dissipative vortex dynamics [210]. More recently, Proukakis [43] have used the method to

investigate quasicondensate growth into a one-dimensional dimple trap. For a deep dimple

the dynamics were found to involve shockwave propagation in addition to quasiconden-

sate formation.
Applications of the SPGPE theory are still relatively few in number. The current

authors have only recently completed the implementation of the simple growth SPGPE

for a harmonic trap in two dimensions with rotation, and in three dimensions without.

However, even the dissipative mean-field equation obtained by neglecting all noise terms

in the SPGPE has given significant insight into the dynamics of finite-temperature BECs.

Here, we briefly review the applications that have appeared to date.
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5.4.2. Spontaneous vortex formation during Bose–Einstein condensation

The formation of topological defects in symmetry-breaking phase transitions has been
a topic of interest in both cosmological [211] and condensed matter [212] scenarios. Until
recently quantitative models of the formation dynamics of trapped BECs have only been
studied at the level of populations without allowing for the possibility of topological
excitations [197–200,213,214]. The possibility of the spontaneous formation of vortices in
the growth of a trapped BEC has been suggested previously by Anglin and Zurek [215] and
Svistunov [216], but until recently had not been confirmed by experiment and the
possibility has been the subject of much speculation [217]. Recent work by Weiler et al.
[206] has reported the observation of spontaneous vortex formation in the growth of
a trapped BEC, and compared the statistics of formation with predictions of the simple
growth SPGPE (183).

Experiment. The experiments of Weiler et al. [206] evaporatively cooled a dilute gas of
87Rb atoms from slightly above Tc in both an oblate harmonic trap and a toroidal trap
formed by the addition of a Gaussian barrier from a tightly focused blue-detuned laser
beam along the symmetry axis. The oblate nature of the trapping potential resulted in an
energy penalty for vortices not aligned with the symmetry axis, hence improving the
fidelity of vortex detection. After condensate formation and sufficiently long time-of-flight
expansion, vortex cores were observed with a probability in the range 20–60%.

Theory. The results of Weiler et al. [206] were modelled using the simple growth SPGPE
(183) matched to the growth of the condensate number in the experiments by ramping the
chemical potential and temperature of the thermal cloud. For each experimental
evaporative cooling ramp an ensemble of around 300 SPGPE trajectories was computed6

and the vortex observation statistics were compared with the experimental measurements.
A comparison between experimental absorption images and column densities of
representative SPGPE trajectories is shown in Figure 29, with clear qualitative similarity.
A comparison of the vortex observation statistics yielded quantitative agreement between
experiment and the SPGPE theory. In Figure 30 a time series of density iso-surfaces is
shown for a particular trajectory. The emergence of the final BEC is seen to be a turbulent
process, in this case resulting in a metastable vortex.

5.4.3. Rotating Bose–Einstein condensation

Bradley et al. [192] have used the simple growth Equation (183) to model the dynamics of
the formation of a rotating BEC [218] where it is possible for stable vortices to form during
condensation. The following question arises: does a vortex-free condensate form before it
is penetrated by vortices, or does condensation proceed into a state with vortices already
present?

It is helpful to consider the single-particle energy spectrum (in the rotating frame) of
the cylindrically symmetric harmonic trap in three dimensions

�nlm ¼ �h!rð2nþ jlj þ 1Þ � �h�lþ �h!zðmþ 1=2Þ, ð185Þ

where n, l, m are the radial, angular and axial quantum numbers. In the absence of
interactions a BEC will form in the ground-state mode with energy �000¼ �h!rþ �h!z/2.
Vortices arise from occupation of states with non-zero angular momentum and the positive
angular momentum part of the spectrum behaves as �h(!r��)l leading to near-degeneracy
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of positive angular momentum modes as �!!r. States with angular momentum

hL̂zi ¼ �hl4 0 are increasingly easy to populate as the rate of rotation increases.
For a rapidly rotating BEC transition, vortices can play a dominant role at all stages

in the BEC growth process. It is then possible that atoms condense into a vortex-filled

but spatially disordered state: a vortex liquid.

SPGPE treatment of rotation. In our development of the SPGPE we have included the

possibility that the thermal cloud occupying I may be in rotational equilibrium in

a symmetric trap. The transformation has consequences for the choice of �cut and the basis

of single-particle states. In harmonic oscillator units the single particle modes

corresponding to (185) are also eigenstates of Lz:

�nlmðr, �, zÞ ¼ N nlme
i�rjlje�r

2=2Lnðr
2Þe�z

2=2HmðzÞ, ð186Þ

which is the appropriate basis for introducing a projection operator to separate the C and

I regions. Imposing the cutoff in the rotating frame leads to a bias (in the direction of the

rotation) for the angular momentum for the c-field region modes. In the limit of very fast

rotation (�!!r), z-excitations are strongly suppressed and only the lowest Landau level

(LLL) is contained in the c-field if �cut5 �h!z.
In Figure 31, we show a representative SPGPE simulation of the BEC transition in

a rapidly rotating system (not in the LLL regime). An initial thermal state with no

condensate present is evolved subject to a sudden change in the thermal cloud temperature

and chemical potential consistent with a quench below the critical point. When the final

temperature after the quench is comparatively low (T�Tc shown here) the dynamics show

a phase of rapid growth into a vortex liquid, followed by a much slower ordering phase

where the vortices assemble into a regular lattice. At higher temperatures (T�Tc),

Figure 29. Spontaneous formation of vortices during Bose–Einstein condensation. (a) Images of
a 200-�m2 expansion of BECs created in a harmonic trap, showing single vortices (left, centre) and
two vortices (right). Sample simulation results from evaporative cooling in a harmonic trap, showing
(b) in-trap integrated column densities along z and (c) associated phase profiles in the z¼ 0 plane,
with vortices indicated by crosses and circles at �2� phase windings. (d) Left image: 70-�m2 phase-
contrast experimental image of a BEC in a toroidal trap; other images: vortices in 200-�m2

expansion images of BECs created in the toroidal trap. (e), (f) Simulations of BEC growth in the
toroidal trap show vortices (as in (b) and (c)) and persistent currents. Reproduced with permission
from [206]. Copyright � (2004), Nature Publishing Group.
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condensation into a vortex liquid still occurs but the ordering phase is frustrated by

thermal fluctuations.

6. Conclusion

In this review we have outlined a unified c-field theory for studying the dynamics and

statistical mechanics of ultra-cold Bose gases. The various c-field approaches considered

apply to situations as diverse as the zero-temperature quantum dynamics of colliding

BECs, through to the effects of critical fluctuations at the condensation transition. Perhaps

one of the most surprising aspect of these approaches is that underlying them is the

well-known, and computationally obliging, GPE. Two essential adaptations to the

Gross–Pitaevskii theory bring this power to describe quantum and thermal effects:

stochastization of the field and evolution equation, and projection onto the c-field region.
Recently, there has been increasing use of classical field techniques in the ultra-cold

atom community, and particularly in the truncated Wigner approach to describe beyond-

mean-field dynamics in BECs at zero temperature. Most of the classical field calculations

performed at finite temperature have not made controlled use of projectors, other than the

Figure 30. BEC growth dynamics. (a)–(d) Four snapshots during the simulated growth of a BEC
showing isodensity surfaces (in light red) in a three-dimensional rendering. Vortex cores of opposite
charges about the z-axis are indicated as magenta and cyan lines. The corresponding times are:
(a) 0.13 s; (b) 0.45 s; c, 0.67 s; d, 1.57 s, where t¼ 0 s is the time when the quench is initiated in the
simulation. Colour refers to the online version. Reprinted with permission from [206]. Copyright �
(2004), Nature Publishing Group.
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accidental projection intrinsic to the numerical representation. One of the consequences is

that these results often cannot be easily related to experiment. In this review, we have

extolled the virtues of a consistent energy projector used to define the c-field region, and

have shown that this allows a theory that can be applied to quantitatively describe

experiment.
The future development of c-field techniques is closely related to the direction in which

many ultra-cold gas experiments are heading. We close this review by pointing to a few

such areas under investigation:

6.1. Full implementation of SPGPE

To date the SPGPE scattering term has yet to be implemented numerically, primarily

because of technical challenges. This term is expected to have an effect on strongly non-

equilibrium scenarios such as condensate growth and unstable vortex dynamics, although

it is currently not clear in what regimes it would give rise to measurable differences.

Developing a formulation that can handle the dynamics of the incoherent region remains
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Figure 31. Rotating Bose–Einstein condensation: c-field region density for a single trajectory of the
SPGPE (in the frame of the thermal cloud rotating at �0¼ 0.979!r). (a) Initial state for 1.3 106
87Rb atoms at T0¼ 12 nK, with �0¼ 0.5�000. At time t¼ 0 the non-condensate band is quenched to
T¼ 1 nK, �¼ 3.5�000, and �¼�0 preserving the rotation rate. (b)–(d) The c-field region undergoes
rapid growth into a vortex liquid state. (e), (f) At this low temperature the vortices then assemble into
a regular Abrikosov lattice. Reproduced with permission [192]. Copyright � 2008 by The American
Physical Society.
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an important future challenge which would complete the theoretical description for most
practical purposes.

6.2. General interactions

Long-range interactions, such as dipole interactions, and strong S-wave interactions using
Feshbach resonances are now routinely available in experiments. For these systems finite
temperature and incoherent processes appear to become more important than in the
weakly interacting S-wave case, and should be well-suited to a c-field description.

6.3. Fermionic systems

The quantum statistics of bosons allows for the modes of the atomic field to be highly
occupied, providing the coherence central to the c-field description of the ultra-cold Bose
gas. In contrast, quantum statistics prohibits multiple fermions from occupying a single
mode, and thus invalidating a c-field approach at face value. A fundamental question to
address is whether there is some other pathway to providing a useful c-field description of
Fermi gases.
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Notes

1. The term ‘c-field’ techniques has been coined to unify the methods discussed in this review. This
terminology is derived from the name ‘classical field method’, often given to the pure projected
GPE formalism, but which we have avoided because it can give the misleading impression that is
not a quantum mechanical treatment.

2. It is worth noting that the C region has also been referred to as the coherent region, the
condensate band or the classical region in the literature, although some of these names also imply
additional restrictions on C.

3. There are several different operator orderings that are commonly used to define the quantum
characteristic function, with the symmetric case being the standard choice for defining the
Wigner function.

4. We consider the description of coupled C and I regions in Section 5.
5. We note that the familiar result of 	¼� only holds in the thermodynamic limit, and for finite

size systems it is often important to ensure that the chemical potential � and condensate
eigenvalue 	 are distinct.
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6. Note that while this SDE gives an exact correspondence with the TWA FPE derived from
Equation (140), the noise must be computed on a dense quadrature grid to ensure that the SDE
preserves the correspondence (see appendix C for a discussion of quadrature methods and
SDEs).

7. The difference between the effective dissipation rates in the two descriptions is usually small for
weak dissipation, but the equations of motion are formally distinct. See [191] for a more detailed
comparison of dissipative mean field approaches to vortex formation in BECs.

8. See the online supplementary information for [206] for a subset of trajectories showing possible
outcomes for each scenario of the experiment.

9. This restriction simply allows us to avoid using cumbersome notation to account for different
spectral bases in each direction, and the fully anisotropic case is of no additional computational
complexity.

10. Since a polynomial of degree 2N� 1 is integrated exactly using an N-point quadrature.
11. Here, we form e2j ~xijkj

2

j ~ Cj
2 ~ C as this corresponds to the polynomial (P) required for the

quadrature (see (A19)).
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(2004), p. 21.
[83] S. Grossmann and M. Holthaus, Phys. Lett. A 208 (1995), p. 188.

[84] S. Giorgini, L.P. Pitaevskii, and S. Stringari, Phys. Rev. A 54 (1996), p. R4633.
[85] M.J. Davis and P.B. Blakie, Phys. Rev. Lett. 96 (2006), p. 060404.
[86] F. Gerbier, J.H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, and A. Aspect, Phys. Rev.

Lett. 92 (2004), p. 030405.
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Appendix A: Numerical technique for the harmonically trapped system

In this appendix, we give an overview of a numerical method that allows an efficient and accurate
solution of the PGPE in a harmonic potential. In appendix B we briefly discuss a method for the
uniform gas and refer the interested reader to [64,170,192,219] for a more detailed discussion of
implementation details and applications to rotating systems.
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A.1. Numerical requirements

The modes of the system are of central importance in the assumptions used to derive the various
c-field methods presented in this review, and care must be taken in numerical implementations to
ensure that the modes are faithfully represented. Any useful simulation technique must satisfy the
following requirements.

(i) The space spanned by the modes of the simulation should match the c-field region as
closely as possible.

(ii) All modes in the c-field regime must be propagated accurately.

The case we examine here is the PGPE for the harmonically trapped system, i.e. where

V0ðxÞ ¼
1

2
m!2ðx2 þ y2 þ z2Þ: ðA1Þ

To simplify the discussion we have taken the harmonic trapping potential to be isotropic8 and will
not consider the perturbation potential �V. We take the c-field region to be defined by an energy
cutoff in the single-particle basis, i.e. eigenstates of H0¼ p2/2mþV0(x) with energy less than �cut.

A.2. Spectral representation of the PGPE

For convenience, we write the PGPE in dimensionless units to simplify the discussion, and explicitly
indicate all dimensionless quantities in this section by use of tildes. We do this by introducing a unit
of distance x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�h=m!
p

and time t0¼ 1/!. These choices immediately imply computational units for
energy E0¼ �h! and momentum p0 ¼

ffiffiffiffiffiffi
�h!
p

. So, for example, our dimensionless distance variable is
defined as ~x ¼ x=x0, dimensionless time, ~t ¼ t=t0, and c-field, ~ C ¼  Cx

3=2
0 . The coefficient of the

non-linear term in the GPE is given by the product u. In dimensionless units we define this as the
non-linearity constant CNL � ut0=�hx

3
0.

In dimensionless units, the PGPE takes the form

i
@ ~ C

@~t
¼ ~H0

~ C þ PCfCNLj ~ Cj
2 ~ Cg, ðA2Þ

where

~H0 ¼ �
1

2
~r2 þ

1

2
ð ~x2 þ ~y2 þ ~z2Þ: ðA3Þ

The c-field is expanded in a spectral basis as

~ Cð ~x, ~tÞ ¼
X
n2C

cnð ~tÞ ~�nð ~xÞ, ðA4Þ

where f ~�nð ~xÞg are the harmonic oscillator eigenstates of ~H0 with respective eigenvalues ~�n, and the
{cn} are complex amplitudes. The projection is explicitly implemented by limiting the summation
indices in (A4) to the set of values

C ¼ fn : ~�n � ~�cutg, ðA5Þ

i.e. the field ~ C only contains the modes of interest.

A.3. Mode evolution

Having used the modes of ~H0 as the spectral basis and to realize the projector, we follow the Galerkin
approach (i.e. projecting (A2) onto our spectral basis) to obtain the amplitude evolution equation

@cn

@ ~t
¼ �i ~�ncn þ CNLGn½ �, ðA6Þ
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where

Gn �

Z
d3 ~x ~�	nð ~xÞj

~ Cð ~x, ~tÞj2 ~ Cð ~x, ~tÞ, ðA7Þ

is the non-linear matrix element. Once this matrix elements is evaluated, the evolution of the system
can be calculated using numerical algorithms for systems of ordinary differential equations, e.g. the
Runge–Kutta algorithm (see [220]). Since this is a well-understood area of numerical mathematics
we do not concern ourselves with the details of the propagation algorithm, but instead focus on
evaluating (A7).

We can point out the central issue for numerical implementation. Expanding the fields in
expression (A7) into the mode basis we obtain

Gn ¼
X
pqr

�Z
d3 ~x ~�	nð ~xÞ

~�	pð ~xÞ
~�qð ~xÞ ~�rð ~xÞ

�
c	pcqcr: ðA8Þ

While the matrix elements within the brackets can be calculated exactly in advance, computing all
Gn values using this expression requires O(M4) floating point operations, where M is the number of
c-field region modes. Such scaling would be prohibitive for performing realistic calculations. In what
follows we show how to compute these matrix elements with a scheme that only requires O(M4/3)
operations. Such spectral representations have also been considered for the zero-temperature
(non-projected) GPE in [221,222].

A.4. Separability

An important feature of the basis states (i.e. eigenstates of ~H0) is that they are separable into one-
dimensional eigenstates, i.e.

~�nð ~xÞ $ ~’
ð ~xÞ ~’�ð ~yÞ ~’�ð ~zÞ, ðA9Þ

~�n $ ~"
 þ ~"� þ ~"� , ðA10Þ

cn $ c
�� , ðA11Þ

where f ~’
ð ~xÞg are eigenstates of the one-dimensional harmonic oscillator Hamiltonian, i.e.

�
1

2

d2

d ~x2
þ
1

2
~x2

� �
~’
ð ~xÞ ¼ ~"
 ~’
ð ~xÞ, ðA12Þ

with eigenvalue ~"
 ¼ ð
þ
1
2Þ, for 
 a non-negative integer.

For clarity we use Greek subscripts to label the one-dimensional eigenstates, so that the
specification of the c-field region in (A5) becomes

C ¼ f
,�, � : ~"
 þ ~"� þ ~"� � ~�cutg: ðA13Þ

Within the c-field region there exists Mx (� ~�cut) distinct one-dimensional eigenstates (i.e. ~’
) in each
direction, and thus M � 1

6M
3
x three-dimensional basis states ( ~�n) in the c-field region (see the left

subplot of Figure A1).

A.5. Evaluating the matrix elements

An important observation made in [221] was that the non-linear matrix element given in (A7) can be
computed exactly with an appropriately chosen Gauss–Hermite quadrature. To show this we note
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that because the harmonic oscillator states are of the form ~’
ð ~xÞ ¼ h
H
ð ~xÞ expð� ~x2=2Þ, whereH
ð ~xÞ
is a Hermite polynomial of degree 
, the field (at any instant of time) can be written as

~ Cð ~x, ~tÞ ¼ Qð ~x, ~y, ~zÞe�ð ~x
2þ ~y2þ ~z2Þ=2, ðA14Þ

where

Qð ~x, ~y, ~zÞ �
X
f
��g2C

c
�� ð~tÞh
H
ð ~xÞh�H�ð ~yÞh�H�ð ~zÞ, ðA15Þ

is a polynomial that, as a result of the cutoff, is of maximum degree Mx� 1 in the independent
variables.

Similarly, it follows that because the interaction term (A7) is fourth order in the field, it can be
written in the form

G
�� ¼

Z
d3 ~x e�2ð ~x

2þ ~y2þ ~z2ÞP
�� ð ~x, ~y, ~zÞ, ðA16Þ

where

P
�� ð ~x, ~y, ~zÞ � h
H
ð ~xÞh�H�ð ~yÞh�H�ð ~zÞjQð ~x, ~y, ~zÞj2Qð ~x, ~y, ~zÞ, ðA17Þ

is a polynomial of maximum degree 4(Mx� 1) in the independent variables. To evaluate these
integrals, we note the general form of the NQ point Gauss–Hermite quadrature

Z þ1
�1

d ~xwð ~xÞf ð ~xÞ �
XNQ

j¼1

wjf ð ~xjÞ, ðA18Þ

where wð ~xÞ is a Gaussian weight function, and the NQ values of wj and xj are the quadrature weights
and roots, respectively (see [223]). This quadrature is exact if f ð ~xÞ a polynomial of maximum degree
2NQ� 1.

Identifying the exponential term in (A16) as the usual weight function for quadrature, the
integral can be exactly evaluated using a three-dimensional spatial grid of 8(Mx� 1)3 points (i.e.
2(Mx� 1) points in each direction9), i.e.

G
�� ¼
X
ijk

wiwjwkP
��ð ~xi, ~xj, ~xkÞ, ðA19Þ

Figure A1. Schematic of numerical procedure to evaluate the non-linear matrix elements G
��.
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where ~xi and wi are the 2(Mx� 1) roots and weights of the one-dimensional Gauss–Hermite
quadrature with weight function wð ~xÞ ¼ expð�2 ~x2Þ (see [223]). Note that owing to the isotropy of the
trapping potential, the quadrature grids in all spatial directions are identical.

A.6. Overview of numerical procedure

Here, we briefly overview how the quadrature described above can be efficiently implemented
numerically. We require the transformation matrices, given by one-dimensional basis states
evaluated on the quadrature grid, i.e.

Ui
 ¼ ~’
ð ~xiÞ, ðA20Þ

to be pre-calculated. Starting from the basis set representation of the field (i.e. {c
��}) at an instant of
time ~t, the steps for calculating the matrix elements are as follows (also see Figure A2).

(i) Transform from spectral to spatial representation:

~ Cð ~xijk, ~tÞ ¼
X
f
��g2C

Ui
Uj�Uk�c
��ð ~tÞ, ðA21Þ

where ~xijk ¼ ð ~xi, ~xj, ~xkÞ.
(ii) The quadrature integrand of the non-linear matrix element (A7) is constructed by

appropriately dividing by the weight function and pre-multiplying by the weights10, i.e.

gð ~xijkÞ � wiwjwke
2j ~xijkj

2

j ~ Cð ~xijk, ~tÞj2 ~ Cð ~xijk, ~tÞ: ðA22Þ

(iii) Inverse transforming these integrand functions yields the desired matrix elements:

G
�� ¼
X
ijk

U	i
U
	
j�U
	
k�gð ~xijkÞ: ðA23Þ

The slowest step in this procedure is carrying out the basis transformation, which requires OðM4
xÞ,

i.e. OðM4=3Þ floating point operations when carried out as a series of matrix multiplications. Typical
simulations, where we evolve a c-field field with M� 2000 modes for 100 trap periods, take about
2 hours.

Appendix B: Numerical technique for the uniform system

B.1. Spectral representation

The basic quadrature arguments presented for the harmonic oscillator case can be applied to the
numerical description of the uniform Bose gas. In this section we briefly discuss the uniform case,
referring to results from Appendix A where they are the same. The system of interest is taken to be in
a cuboid volume with linear dimensions {L,L,L} and subject to periodic boundary conditions.

The dimensionless PGPE takes the same form as in Equation (A2), but with a basis Hamiltonian
of the form

~H0 ¼ �
~r
2

ð2�Þ2
, ðB1Þ

where we take periodic boundary conditions,

~ Cð ~xþ 1, ~y, ~zÞ ¼ ~ Cð ~x, ~yþ 1, ~zÞ ¼ ~ Cð ~x, ~y, ~zþ 1Þ ¼ ~ Cð ~x, ~y, ~zÞ, ðB2Þ

and have used x0¼L and t0¼mL2/�h as the units of length and time.
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As in the harmonic case (see Equations (A9)–(A11)) the basis states are separable into one-
dimensional eigenstates (i.e. ~�nð ~xÞ ¼ ~’
ð ~xÞ ~’�ð ~yÞ ~’�ð ~zÞ) of the form

~’
ð ~xÞ ¼ ei
~k
 
 ~x, ðB3Þ

with the wavevectors ~k
 chosen as harmonics of the periodicity interval, i.e. ~k
 ¼ 2�
, with 
 an
integer, and respective eigenvalues ~"
 ¼ 


2. The values of the indices {
,�, �} specifying the c-field
region is given by Equation (A13), which defines a sphere of radius

ffiffiffiffiffiffiffi
~�cut
p

in 
�� space for the
uniform system. For later convenience we define 
max as the maximum value of 
 that occurs in C,
i.e. the highest-order basis state in each direction. For the planewave case we have 
max ’

ffiffiffiffiffiffiffi
~�cut
p

, and
thus in the c-field region we have a total of Mx¼ 2
maxþ 1 distinct one-dimensional basis states (i.e.
~’
) in each direction, with M � ð�=6ÞM3

x three-dimensional basis states (i.e. ~�n).

B.2. Evaluating the matrix elements

In the planewave spectral representation the PGPE takes the form (A6), for which the main
challenge is evaluating the non-linear matrix element (A7). We now show how a quadrature
approach can be used to evaluate this matrix element exactly. The essence of this approach is to
transform the field to a spatial representation where the non-linear term is local.

In each spatial dimension, the quadrature grid of interest (for the uniform case) consists of NQ

equally spaced points given by

~xj ¼ j� ~x, 1 � j � NQ, ðB4Þ

with spacing � ~x ¼ 1=NQ, which spans the spatial region (0, 1]. The quadrature expression for an
integral of an arbitrary function f is

Z 1

0

d ~xwð ~xÞf ð ~xÞ �
XNQ

j¼1

wjf ð ~xjÞ, ðB5Þ

where wð ~xÞ ¼ 1 is the weight function, and wj ¼ � ~x. That is, for the planewave approach, the
quadrature rule is the well-known rectangular rule from elementary numerical analysis.

The requirement that our quadrature will exactly calculate the non-linear matrix elements is
equivalent to the requirement that the one-dimensional integrals between are all products of four
~’jð ~xÞ are evaluated exactly, i.e.

I
��� ¼
XNQ

j¼1

� ~x ~’	
ð ~xjÞ ~’
	
�ð ~xjÞ ~’�ð ~xjÞ ~’�ð ~xjÞ, � 
max � 
,�, �, � � 
max, ðB6Þ

¼ �
þ�,�þ�, ðB7Þ

which holds for the quadrature described above if we take NQ� 2Mx. Thus, the most efficient and
accurate representation is when we choose 2Mx grid points in each spatial dimension.

B.2.1. Fourier interpretation

The quadrature grid requirement (NQ¼ 2Mx) can be interpreted in terms of Fourier properties of the
spatial grid. To represent a maximum wavevector of ~kcut ¼ 2�
max � �Mx, the Nyquist requirement
for the spatial grid is that the distance between points should be � ~x ¼ 1=Mx (or smaller), which
requires at least Mx points over the interval (0, 1). However, our quadrature argument above was
that to evaluate the non-linear matrix elements correctly we need twice as many grid points, i.e.
NQ¼ 2Mx. Such a grid is sufficient to satisfy the Nyquist condition for wavevectors of magnitude up
to 2 ~kcut. To understand why we need so many points consider the worst case for the matrix element
in (B6): the case �
¼��¼ � ¼ �¼
max, i.e. where all modes occur with the maximum magnitude
wavevector ~kcut. The integrand of (B6), i.e. the product of these four modes, is itself a planewave with
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wavevector 4 ~kcut. On the spatial grid with 2Mx points this cannot be represented unambiguously (i.e.
it exceeds the Nyquist limit of 2 ~kcut), and is aliased. However, for the choice of 2Mx-points, this
aliasing does not map the wavevector into the region ½� ~kcut, ~kcut�, and hence does not effect the
matrix elements evaluated for the c-field region. For any fewer points the aliased wavevector maps
into ½� ~kcut, ~kcut�, and gives rise to spurious dynamics.

B.3. Overview of numerical procedure

We could apply an identical procedure to that discussed in Section A.6 to evaluate the matrix
elements with a computational cost per evaluation of O(M4). However, for the planewave case the
basis transformation between spectral (momentum space) and position space quadrature grids (i.e.
steps (i) and (iii) in Section A.6) is equivalent to a fast Fourier transformation, which has
a computational cost of O (M3 log(M)). For more details on the planewave procedure we refer the
reader to [219].

Appendix C: Mapping to stochastic equations

The utility of phase-space methods requires that the equation of motion for the quasi-probability
distribution (here (58)) can be mapped to an equivalent SDE, which is comparatively much easier to
solve. A projected functional FPE of the form

@P

@t
¼

Z
d3x

�
�

��
�� CðxÞ

A  CðxÞ, 
	
CðxÞ, t

� �
þ h:c:

þ
��
2

�� CðxÞ �� CðxÞ
D11  CðxÞ, 

	
CðxÞ, t

� �
þ h:c:

þ
��
2

�� CðxÞ 	CðxÞ
D12  CðxÞ, 

	
CðxÞ, t

� �
þ h:c:

�
P, ðC1Þ

with drift vector A¼ [A,A*] and diffusion matrix D � ½D11,D12;D
	
12,D

	
11� has an equivalent

stochastic equation if the diffusion matrix is positive semi-definite. A factorization of the diffusion
matrix in the form D¼BBT can then be found, and the Itô SDE is given by

dwCðx, tÞ ¼ PC Aðx, tÞdtþ Bðx, tÞ dWðx, tÞ
� 

ðC2Þ

where dwC ¼ ½d C, d 
	
C�

T, PC ¼ ½PC,P
	
C�

T and dW(x, t) is a vector of noises. In general, mapping to
ordinary SDEs is only possible if the equation of motion for the quasi-probability is strictly a FPE
(derivatives up to second order).

There is an important technical point regarding the equivalence of (C1) and (C2). The strict
equivalence holds only if the projector PC is implemented with sufficient care. In the language of
Section A.5, the quadrature chosen to compute (C2) must be sufficient to generate a c-field delta
function of the appropriate numerical order upon stochastic averaging. The standard proofs of
equivalence [16] can be adapted to show that for a diffusion term of polynomial degree 2Dx, giving B
of degree Dx, the delta function must to be a true delta function for terms up to order DxþMx,
requiring expansion of the noise up to states of degree DxþMx and implementation of
Equation (C2) using a numerical quadrature rule sufficient to integrate terms of order 2Dxþ 2Mx

or a rule of order DxþMx� 1 to generate the appropriate equivalence.
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