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A Gaussian operator basis provides a means to formulate phase-space simulations of the real- and
imaginary-time evolution of quantum systems. Such simulations are guaranteed to be exact while the
underlying distribution remains well-bounded, which defines a useful simulation time. We analyse the
application of the Gaussian phase-space representation to the dynamics of the dissociation of an ultra-
cold molecular gas. We show how the choice of mapping to stochastic differential equations can be used
to tailor the stochastic behaviour, and thus the useful simulation time. In the phase-space approach, it is
only averages of stochastic trajectories that have a direct physical meaning. Whether particular constants
of the motion are satisfied by individual trajectories depends on the choice of mapping, as we show in
examples.

© 2010 Elsevier B.V. All rights reserved.
Numerical approaches are an indispensable part of endeavours
to understand quantum many-body physics in condensed matter
and AMO physics. In particular, there is a need for real-time, dy-
namical simulations, driven in large part by the progress in the
control and flexibility of ultra-cold atom experiments, which has
made the dynamically evolving quantum many-body state more di-
rectly accessible. For bosons, first-principles phase-space methods
have successfully simulated dynamics in experimentally realistic
systems [1,2]. However, these methods are not directly applicable
to fermionic systems, which are an increasingly important area of
ultra-cold atoms, often with direct relevance to condensed matter
systems.

The exponential growth of the Hilbert space with system size
hinders a brute-force approach for systems of more than a few
modes. Stochastic approaches, provided they are unbiased, can pro-
vide exact results within the precision determined by sampling
error. A range of quantum Monte Carlo methods has been used
to address a variety of problems in many-body quantum physics.
However, the limitations when it comes to dynamics are well
known [3], for example, the oscillating phase problem in path-
integral approaches [4]. An interesting direction in recent years has
been the extension to fermionic systems of stochastic wavefunction
approaches [5].

In this work we employ a Gaussian stochastic method based
on a generalized phase-space representation of the quantum den-
sity operator [6]. The representation allows the quantum Liouville
equation for the density operator to be mapped onto an equiva-
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lent Fokker–Planck equation for a distribution function over phase
space, provided that the distribution vanishes at the boundary.
This distribution is then sampled via equivalent stochastic phase-
space equations, with physical results corresponding to stochastic
averages. The phase-space equations are structurally similar to the
Heisenberg equations for the corresponding operators, with addi-
tional stochastic noise.

Here we explore the freedom in choosing the stochastic noise in
order to reduce sampling errors and extend the useful simulation
time. We first introduce the Bose–Fermi model we use to study
these effects, and a set of conserved quantities that can be used to
benchmark the different choices of stochastic equations. After re-
viewing the phase-space formalism, we give the general form of
the stochastic equations corresponding to the Hamiltonian. To ex-
emplify the gauge freedom, we then give two forms of the noise
terms and demonstrate through simulation their very different nu-
merical properties.

As a particular application, we consider a model of produc-
tion of correlated pairs of fermionic atoms by dissociation of a
Bose–Einstein condensate (BEC) of diatomic molecules [7,8]. The
uniform molecular BEC is initially in a coherent state at zero
temperature with average initial number of molecules N0, with
no atoms present. The created fermionic atoms are modeled as
being untrapped in the x-direction, and propagate through the
homogeneous condensate. The Hamiltonian of this boson-fermion
model [9] is given by

Ĥ = h̄
∑

�kn̂k,σ − ih̄κ
∑(

â†m̂k − m̂†
kâ

)
, (1)
k,σ k
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where k labels the M plane-wave modes for a quantization
box of length L and σ = 1,2 labels the effective spin state for
the atoms. The fermionic number and pair operators are de-
fined as n̂k,σ = ĉ†

k,σ ĉk,σ and m̂k = ĉk,1ĉ−k,2, respectively, with

{ĉk,σ , ĉ†
k′,σ ′ } = δk,k′δσ ,σ ′ , while the bosonic molecular operators

obey [â, â†] = 1. The first term gives the kinetic energy of the
atoms of mass ma and the detuning � between the atomic and
molecular levels: h̄�k ≡ h̄2|k|2/(2ma) + h̄�. The second term de-
scribes the atom-molecule coupling of strength κ .

The physics of the growth of correlations during the dynamics
has been explored elsewhere [10]. Here, we use the same system
parameters but focus on the evolution of certain conserved quanti-
ties. While such quantities are constant in the stochastic averages,
which have a physical meaning, they are not necessarily constant
in individual trajectories. We study this evolution to monitor the
growth of sampling error for different choices of the stochastic
equations, and to illustrate the exactness of the method within the
limitations of sampling error.

The spin-symmetry of the Hamiltonian implies the identity
n̂k ≡ n̂k,1 = n̂−k,1 = n̂k,2 = n̂−k,2 for equal initial populations. An
additional operator identity arises from the homogeneity of the
molecular condensate,

m̂†
km̂k(= n̂k,1n̂−k,2) = n̂k. (2)

According to this, we expect the conserved quantity

Fk ≡ 〈
m̂†

km̂k
〉 − 〈n̂k〉 (3)

to be zero in any numerical implementation. We calculate this
quantity numerically for the resonant Fourier mode k0, along
with the total energy normalised by the dissociation energy:
E ≡ 〈Ĥ〉/2h̄|�| and the total number of molecules and pairs, nor-
malised by the initial number molecules: N ≡ (2〈â†â〉 +∑

k,σ 〈n̂k,σ 〉)/2N0, which is also conserved.
The Gaussian phase-space representation maps pairs of anni-

hilation/creation operators onto first-order differential operators. It
can thereby be used to transform the Liouville equation for unitary
evolution

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] (4)

into a differential equation for an equivalent phase-space distri-
bution, so long as certain boundary terms vanish. In practice the
appearance of a boundary term is indicated by the rapid growth of
sampling error and the appearance of large excursions in the tra-
jectories [11], and this places a limitation on the length of the
simulation. For Hamiltonians containing up to four operators, a
second-order partial differential equation is generated, which can
be written in the form of a Fokker–Planck equation (FPE):

d

dt
P (�λ) =

[
−

∑
j

∂

∂λ j
A j(�λ) + 1

2

∑
j,k

∂2

∂λ j∂λk
Dij(�λ)

]
P (�λ). (5)

The first order derivatives in the phase-space variables λ j corre-
spond to drift behaviour and the second order to the diffusion.
Effects such as three-body interactions will result in higher-order
derivatives, but these are difficult to efficiently sample by numeri-
cal methods [12].

In general the phase-space variables �λ are complex. However,
the analytic nature of the Gaussian operators gives a freedom in
the choice of derivatives when the variables are expanded into real
and imaginary parts. The diffusion matrix D of the resulting FPE
can always be chosen to be positive-definite [13], as required for
stochastic sampling.

The quantum state generated by the Hamiltonian (1) can
be represented by a distribution over 3M + 2 variables �λ(t) =
(n1, . . . ,nM ,m1, . . . ,mM ,m+
1 , . . . ,m+

M , β,β+), with m+
j �= m∗

j and

β+ �= β∗ . The corresponding FPE for the dynamics is

∂t P = 2i
∑

k

�k
[
∂mkmk − ∂m+

k
m+

k

]
P

+ κ
∑

k

[−∂nk

(
β+mk + βm+

k

) − ∂mkβ(1 − 2nk)

− ∂m+
k
β+(1 − 2nk) + ∂βmk + ∂β+m+

k

+ ∂nk∂βnkmk + ∂nk∂β+nkm+
k + ∂mk∂βm2

k

− ∂mk∂β+n2
k − ∂m+

k
∂βn2

k + ∂m+
k
∂β+m+2

k

]
P . (6)

Note that all differential operators act also on the multidimen-
sional distribution P = P (�λ, t). To directly solve Eq. (6) is compu-
tationally unfeasible for many variables. Instead one can employ
a mapping [14,15] to an equivalent set of stochastic differential
equations (SDEs) to sample the moments of the distribution. In
the Itō calculus, stochastic equations corresponding to Eq. (6) have
the general form

dnk = (
αm+

k + α+mk
)

dτ + N−1/2
0 B(nk) dW,

dmk = [−2iδkmk + α(1 − 2nk)
]

dτ + N−1/2
0 B(mk) dW,

dm+
k = [

2iδkm+
k + α+(1 − 2nk)

]
dτ + N−1/2

0 B(m+
k ) dW,

dα = − 1

N0

∑
k

mk dτ + N−1/2
0 B(α) dW,

dα+ = − 1

N0

∑
k

m+
k dτ + N−1/2

0 B(α+) dW, (7)

where we have used a scaled time, τ = κ
√

N0t and have also nor-
malised the molecular field by its maximum (initial) value, i.e.
α = β/

√
N0. The deterministic part of the Itō equations corre-

sponds to the drift terms in the FPE, which if taken alone, are
equivalent to the so-called ‘pairing mean-field theory’ [7,17,10].
The stochastic part, in which B(λ) are row vectors with elements
that are functions of the phase-space variables, and where dW is
a column-vector of real Wiener increments, constitutes diffusion
processes in the complex phase-space. This form of Eqs. (7) shows
that with drift terms of order 1, the stochastic terms are of or-
der 1/

√
N0, i.e. the stochastic terms and therefore non-mean-field

corrections are more important for decreasing N0.
Stochastically sampled moments can be related to physical ex-

pectation values. For example, the first order moments give:⎧⎪⎨
⎪⎩

〈nk〉S = 〈n̂k〉 = 〈b̂†
kb̂k〉,

〈mk〉S = 〈m̂k〉 = 〈b̂k,1b̂−k,2〉,
〈α〉S = 〈â〉/√N0.

(8)

Normally ordered higher-order moments are obtained exactly by
stochastic averages of a corresponding Wick decomposition [6], as
in the following example〈
m+

k mk
〉
S + 〈

n2
k

〉
S = 〈

m̂†
km̂k

〉
. (9)

Note, however, that this does not mean that a Wick factorisation is
assumed to hold for a general quantum state [10], since the aver-
age of a product is not the same as the product of averages.

The equivalences above hold so long as the appropriate mo-
ments of the distribution are well-defined. In practice this requires
that the distribution tails vanish sufficiently quickly, which again
places a limit on the simulation time, indicated by ‘spiking’ be-
haviour and associated rapid growth of sampling error. The insta-
bilities underlying this behaviour are a general feature of nonlinear
stochastic equations [11,18].
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Fig. 1. Real and imaginary part of the conserved quantity Fk0 , defined in Eq. (10), as
a function of scaled time τ . Dashed line gives the mean for SDE-I, while the sam-
pling error vanishes for SDE-I (see text). Solid line gives the mean for SDE-II, with
the light-grey shading giving the sampling error (±σ ). The spiking behaviour and
rapid growth of sampling error at τ = 1.5 mean that the results from SDE-II cannot
be used past this time. The insets show the standard deviation σ of Fk0 for SDE-II,
with the arrows pointing out precursors of the spiking behaviour (see text). We use
a momentum grid with |k| = 0,dk, . . . ,1000 dk,dk = 2π/L 
 7.92 × 103 m−1 and
a resonance momenta k0 = √

2ma|�|/h̄ = 500 dk, where � = −12 500 s−1. Initially
we have N0 = 100 molecules and an atomic vacuum. The atom-molecule coupling
strength is κ 
 500 s−1. The stochastic quantities for both SDE-I and SDE-II are
evaluated using 104 trajectories.

With the equivalences between stochastic averages and op-
erator expectation values, the defined conserved quantities Fk
[Eq. (3)], E and N can be calculated:

Fk = 〈
m+

k mk + n2
k − nk

〉
S , (10)

E = 1

|�|
∑

k

〈
�knk − i

κ
√

N0

2

(
α+mk − αm+

k

)〉
S
, (11)

N = 〈
α+α

〉
S + 1

N0

∑
k

〈nk〉S . (12)

Note that although the stochastic quantities defined in Eqs. (10)–
(12) are complex for individual trajectories, the average of the
imaginary components approach zero with increasingly many
stochastic trajectories sampled. Thus the average of each of these
quantities approaches a real value, as expected for physical observ-
ables.

The stochastic equations corresponding to a given Hamiltonian
are not unique and therefore can be tailored to give different nu-
merical and sampling properties [14]. We illustrate how this can
be done through the choice of ‘diffusion gauges’ to extend the use-
ful simulation time [6,19,20]. The stochastic terms must fulfil the
matrix-square-root condition [14] that relates the diffusion matrix
D in the Fokker–Planck equation to the noise-matrix B:

D = B BT , B = [
B(nk),B(mk),B(m+

k ),B(α),B(α+)
]T

, (13)

where T denotes matrix transpose. Let O denote a matrix with
orthonormal rows composed of functions of phase-space variables.
Then if B fulfils Eq. (13), so does B̃ = B O , which gives infinitely
many choices of the SDE.

One specific noise matrix, which we together with Eqs. (7) label
SDE-I, is

B I =

⎡
⎢⎢⎢⎢⎢⎣

nkmk −inkmk nkm+
k −inkm+

k

m2
k −im2

k −n2
k in2

k

−n2
k in2

k m+2
k −im+2

k
1 i 0 0

0 0 1 i

⎤
⎥⎥⎥⎥⎥⎦ , (14)
Fig. 2. Normalised total energy E , defined in Eq. (11), as a function of scaled time τ .
Dashed line and dark-grey shading give the mean and sampling error (±σ ) for
SDE-I. Solid line and light-grey shading give the mean and sampling error (±σ )
for SDE-II. While the sampling error grows in both cases, SDE-I is stable for at least
3 times longer. Parameters are as in Fig. 1.

where dWI = [ dw1 dw2 dw3 dw4 ]T /
√

2. Note that it is often no-
tationally convenient to work instead with complex Wiener in-
crements, e.g. dW (1) = (dw1 + i dw2)/

√
2, such that dW ( j) satis-

fies 〈dW ( j)(τ )dW ( j′)(τ ′)〉 = 0, 〈dW ( j)(τ )dW ( j′)∗(τ ′)〉 = δ j j′δ(τ −
τ ′)dτ . Then, for example, B(nk)

I dWI = nk(mk dW (1)∗ + m+
k dW (2)∗).

As proved in Appendix A, this choice of noise terms means that
the quantity Fk defined in Eq. (10) is satisfied by each individual
trajectory, not just by the ensemble average, i.e.

m+
k mk + n2

k = nk. (15)

This property is clearly seen graphically in Fig. 1 as a vanishing
sampling error for SDE-I. In Figs. 2 and 3, we see that the en-
ergy and particle number are conserved for SDE-I, but with a finite
sampling error (dark-grey shading) which can be reduced further
by including more stochastic trajectories. The trajectories are sta-
ble, with no ‘spiking’ or dramatic increase in sampling error, until
at least a normalised time of τ = 5.0. We conclude that SDE-I per-
forms very well for the particular set of parameters chosen.

We now use the gauge freedom of the condition in Eq. (13)
to construct another specific noise matrix (SDE-II) which does not
fulfil Eq. (15). For the case of a single k-mode, the noise matrix for
this diffusion gauge can be written:

BII =

⎡
⎢⎢⎢⎢⎣

nk −ink nk −ink 0 0 0 0
mk −imk 0 0 0 0 −nk ink
0 0 m+

k −im+
k −nk ink 0 0

mk imk 0 0 nk ink 0 0
0 0 m+

k im+
k 0 0 nk ink

⎤
⎥⎥⎥⎥⎦ .

(16)

However, in general BII is of size (3M + 2) × 8M , i.e. the number
of noise columns grows with the number of phase-space vari-
ables, such that now dWII = [ dw1,k dw2,k . . . dw8,k ]T /

√
2. In

this case we have for example B(nk)
II dWII = nk(dW (1)∗

k + dW (2)∗
k )

and B(α)
II dWII = ∑

k mk(dW (1)

k + dW (3)

k ).
For SDE-II it is now only the average of Fk that is zero, within

the finite sampling error indicated by the light-grey shading in
Fig. 1. For the energy and particle number, the average is still
constant within the sampling error, as shown in Figs. 2 and 3.
However, the sampling error is now larger than for SDE-I. More-
over, the mean results from SDE-II (solid line in all figures) start
to spike before τ ∼ 1.5, with an associated dramatic increase in
sampling error, and can thus not be used beyond this point for the
present parameters. The standard deviation of a stochastic variable
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Fig. 3. Normalised total particle number as defined in Eq. (12), as a function of
scaled time τ . Dashed line and dark-grey shading give the mean and sampling error
(±σ ) for SDE-I. Solid line and light-grey shading give the mean and sampling error
(±σ ) for SDE-II. Parameters are as in Fig. 1.

is a moment of higher order than the average of the variable itself,
and precursors of the spiking behaviour are first seen here. This is
illustrated by the arrows in the inset plots of Fig. 1 for the standard
deviation of Fk0 , but generally occurs for all sampled variables.

As shown in Figs. 1–3, there can be dramatic differences in
the performance of the two diffusion gauges. However the rela-
tive performance depends on the system parameters. For instance,
whereas the second gauge (SDE-II) may seem unnecessarily com-
plicated for the many modes, and leads to a much larger sampling
error and a shorter useful simulation time here, for the small sys-
tem in [10], it is in fact superior to SDE-I in terms of useful simu-
lation time.

From the theoretical foundation it is expected that the Gaus-
sian phase-space method is exact while the distribution is suf-
ficiently bounded [6]. In practice the simulation can be trusted
until signatures such as spiking trajectories and rapid growth of
the sampling error occurs in the time evolution of the phase-space
variables [11,20,21,10]. We have previously also analysed a re-
lated dynamical system with only N0 = 10 molecules and M = 10
atomic momentum modes [10]. For this test system, the exponen-
tially growing dimension of the Hilbert space was small enough
(d = 2Mnmax 
 105), to allow a direct comparison to an expansion
in a number state basis. However, this comparison is not possible
for the system under study here. Having explicit access to differ-
ent stochastic realisations of the FPE, as here with Eqs. (14) and
(16), then gives the possibility to compare different stochastic cal-
culations of the moments to check the accuracy of the numerical
implementation or to detect errors in the underlying derivations.

Despite the different stochastic behaviour revealed in Figs. 1–3,
it is important to note that SDE-I and SDE-II both correspond to
the same Hamiltonian (1) and the same complex FPE Eq. (6). Un-
derlying these different realisations is the overcompleteness of the
Gaussian representation, which allows the one density operator ρ̂

to be mapped to many different distributions.
In summary, we have demonstrated how different diffusion

gauges can substantially change the numerical performance of the
Gaussian fermionic phase-space method. This ability to manipulate
the form of stochastic equation can be used to reduce the sampling
error and extend the useful simulation time, depending on the sys-
tem parameters. In addition, we have shown that the simulation of
conserved quantities can have qualitatively different behaviour for
different gauges. The conserved quantities thus provide a check on
numerical implementation and allow the performance of different
gauges to be benchmarked.
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Appendix A. Derivation of Eq. (15)

Here we prove Eq. (15) for SDE-I, which is a stronger condition
than the corresponding result for the stochastic average. We apply
the product rule for two stochastic variables X and Y within Ito
calculus

dI (XY ) = XdI (Y ) + dI (X)Y + dI (X)dI (Y ), (17)

to the first term in Eq. (15), with dI denoting the Ito differential.
Hence we have, from Eqs. (7) and (14)

dI
(
m+

k mk
) = −2iδkm+

k mk dτ + αm+
k (1 − 2nk)dτ

+ N−1/2
0 m+

k

(
m2

k dW ∗
1 − n2

k dW ∗
2

) + 2iδkm+
k mk dτ

+ α+(1 − 2nk)mk dτ

+ N−1/2
0

(
m+2

k dW ∗
2 − n2

k dW ∗
1

)
mk

+ N−1
0

(
m+2

k dW ∗
2 − n2

k dW ∗
1

)(
m2

k dW ∗
1 − n2

k dW ∗
2

)
= (

αm+
k + α+mk

)
(1 − 2nk)dτ

+ N−1/2
0

(
m+

k mk − n2
k

)(
mk dW ∗

1 + m+
k dW ∗

2

)
, (18)

where we have kept, as usual, only first order terms in dτ . The in-
crement for n2

k can be calculated similarly, leading to the following
equation for the increment in the left-hand side of Eq. (15):

dI
(
m+

k mk + n2
k

) = (
αm+

k + α+mk
)

dτ

+ N−1/2
0

(
m+

k mk + n2
k

)(
mk dW ∗

1 + m+
k dW ∗

2

)
.

(19)

From Eqs. (7) and (14), the corresponding expression for the left-
hand side of Eq. (15) is

dnk = (
αm+

k + α+mk
)

dτ + N−1/2
0 nk

(
mk dW ∗

1 + m+
k dW ∗

2

)
. (20)

The initial conditions are m+
k = mk = nk = 0, which satisfy the

equality (15) trivially. If initially true, then Eqs. (19) and (20) guar-
antee the equality for consecutive time-steps of SDE-I.

However, it is straightforward to show that any stochastic gauge
that does not have the same indices on the noises for dI (nk) and
dI (mk) does not fulfil Eq. (15). This is in particular exemplified
with SDE-II and the qualitative difference in the sampling errors of
Fk for the two gauges is seen in Fig. 1.
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