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Abstract. The development of the Raman atom laser promises to make available
new techniques for accessing and manipulating the quantum statistical proper-
ties of Bose-Einstein condensates. In this work we show how, combined with the
already existing methods for the manipulation of quantum states of light which
are central to quantum optics, the Raman input-output coupling mechanisms
potentially enable the production of quadrature squeezed and sub-Poissonian
atomic beams, and entanglement between atomic and optical fields. We also pro-
pose a method of measuring the quantum statistics of the atomic beam by trans-
ferring them to an optical field. Finally, by combning these techniques, we propose
a method of teleporting the atom laser beam from one trapped condensate to an-
other.

1 Introduction

Quantum-atom optics [1–3] is a rapidly developing subfield of ultra-cold atomic physics. The
development of the Raman output coupler [4], which can produce controlled and potentially
coherent atomic beams, will make available new techniques and phenomena in quantum-atom
optics, just as the optical laser did in quantum optics. One interesting possibility is the produc-
tion of atomic beams in states analogous to the squeezed and entangled states of the optical
field which are now routinely produced in laboratories [5]. In this work we will cover proposed
methods for producing nonclassical matter wave states and measuring the quantum properties
of these using the ability of Raman output and input coupler mechanisms to transfer quantum
statistics between atomic and optical fields. Beginning with the production of sub-Poissonian
atomic beams [6], including the entanglement of atomic and optical fields [7] and the transfer
of statistics to an optical field to allow for simple homodyne measurements [8,9], we will finally
demonstrate how the input [10] and output couplers can be combined to teleport an atomic
beam from one location to another without the need for sharing of entanglement resources [11].
Previously proposed methods for producing matter waves in highly non-classical states

include utilising the nonlinear atomic interactions to create correlated pairs of atoms via either
molecular down conversion [12], spin exchange collisions [13,14], or by transferring the quantum
state of a non-classical electromagnetic field to a propagating atomic field [15–17]. In some of
these schemes it has been demonstrated that continuous variable entanglement can be generated
between spatially separated atomic beams [12,15] or between an atomic beam and an optical
beam [7]. Here we show how the flexibility of our system can be used to do many of these with
the one basic experimental setup.
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Fig. 1. Internal energy levels of our three-level atom. A condensate of state |1〉 atoms is coupled to
an untrapped state via a Raman transition. The two fields of the Raman transition are a probe beam
(annihilation operator Ê(x, t)) and a control field, which is strong compared to the probe beam and
can be approximated by a classical field (Ω23(x, t)), detuned from the excited state by an amount ∆.

2 Theoretical model of a Raman atom laser

In this work we are interested in the transfer of quantum states between atom laser beams
and optical fields. We begin here by outlining our approach to the basic atom-light interaction
which is central to all subsequent sections. We model the system as a one-dimensional BEC of
three-level atoms outcoupled via a Raman transition, as in Fig. 1. The BEC is confined in a
magnetic trap and manipulated by two laser fields. A photon from the probe beam is absorbed,
and one is emitted into the control beam, transferring the internal state of the atom from |1〉
(trapped) to |2〉 (untrapped) and giving the atom a momentum kick of �(kprobe − kcontrol),
forming an atom laser beam.
The Hamiltonian for the system is

H = Hatom +Hint +Hlight (1)

=

∫
ψ̂†1(x)H0ψ̂1(x)dx+

∫
ψ̂†2(x)

(
− �

2

2m
∇2
)
ψ̂2(x)dx+

∫
ψ̂†3(x)

(
− �

2

2m
∇2 + �ω0

)
ψ̂3(x)dx

+ �

∫
(ψ̂2(x)ψ̂

†
3(x)Ω23(x, t) + h.c.) dx+ �g13

∫
(Ê(x)ψ̂1(x)ψ̂

†
3 + h.c.) dx+Hlight

where Ω23(x, t) = Ω23e
i(k0x−(ω0−∆)t) is the Rabi frequency for the |2〉 → |3〉 transition, H0

is the single particle Hamiltonian for the trapped atoms, m is the atomic mass, ψ̂1(x) is the

annihilation operator for the condensate mode (internal state |1〉), ψ̂3(x) is the annihilation
operator for the excited atoms (|3〉), and ψ̂2(x) is the annihilation operator for the untrapped
atoms (|2〉). The atomic field operators obey bosonic commutation relations,

[ψ̂i(x), ψ̂j(x
′)] = [ψ̂†i (x), ψ̂

†
j (x

′)] = 0, (2)

and

[ψ̂i(x), ψ̂
†
j (x

′)] = δijδ(x− x′). (3)

Ê(x) is the spatially dependent annihilation operator for the probe field, satisfying [Ê(x),

Ê†(x′)] = δ(x − x′). The coupling coefficient is g13 = d13
�

√
�ωk
2ε0A
, where d13 is the dipole

moment for the |1〉 → |3〉 transition, and A is the cross sectional area of the beam. We assume
that g13(ωk) is approximately flat in the interaction region range. In one dimension,

Hlight = −ic�
∫
Ê†(x)

∂

∂x
Ê(x) dx. (4)
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The equations of motion for the Heisenberg operators are found as

i
˙̂
ψ1(x) =

H0

�
ψ̂1(x) + g13ψ̃3(x)Ẽ

†(x),

i
˙̂
ψ2(x) = − �

2m
∇2ψ̂2(x) +Ω∗23e−ik0xψ̂3(x),

i
˙̃
ψ3(x) =

(
− �
2m
∇2 +∆

)
ψ̃3(x) +Ω23e

ik0xψ̂2(x) + g13Ẽ(x)ψ̂1(x),

i
˙̃
E(x) =

(
−ic ∂

∂x
− (ω0 −∆)

)
Ẽ(x) + g13ψ̂1(x)ψ̃

†
3(x),

(5)

where ψ̃3(x) = ψ̂3e
i(ω0−∆)t and Ẽ(x) = Êei(ω0−∆)t. The population of the excited state |3〉

will be insignificant when the detunings of the optical fields are larger than the other terms in
the system and, since the dynamics occur on time scales greater than 1

∆
, we can set ψ̃3(x) =

−Ω23
∆
eik0xψ̂2(x)− g13

∆
Ẽ(x)ψ̂1. Using this approximation, the equations of motion for the probe

field and the atom laser beam become

i
˙̂
ψ = H2ψ̂(x)−ΩcẼ(x) (6)

i
˙̃
E(x) = HEẼ(x)−Ω∗c ψ̂(x) (7)

with Ẽ ≡ Ê(x)ei(ω0−∆)t), ψ̂(x) ≡ ψ̂2(x),Ωc = g13Ω
∗
23

∆
e−ik0xφ1(x) andH2 = − �

2m∇2− |Ω23|
2

∆
, and

HE = −ic ∂∂x − (ω0 −∆)− |g13|
2

∆
|φ1(x)|2, with φ1(x, t) ≡ 〈ψ̂1(x)〉 representing the semiclassical

wavefunction for the condensate atoms. We consider that the trapped condensate remains in a

coherent state i.e. ψ̂1(x) ≈ 〈ψ̂1(x)〉 ≡ φ1(x), which is valid if the number of atoms outcoupled
is small compared to the total number. We have assumed that the condensate is dilute enough
that collisional interactions can be ignored. (The interactions could also be tuned by Feshbach
resonance techniques [18].) The evolution of the condensate mode is then given by

iφ̇1(x) =

(
H0

�
− g213

∆
〈Ẽ†(x)Ẽ(x)〉

)
φ1(x)−Ωc〈Ê†(x)ψ̂(x)〉. (8)

We note here that we are using a one dimensional analysis for three reasons. The first is that
the interesting dynamics takes place along one direction. The second is that it is experimen-
tally possible to realise an effective one dimensional system by, for example, confinement in a
waveguide. The third is that it would be extremely difficult to use our calculational method in
more than one dimension.
In order to solve Eqs. (6) and (7), we expand the field operators at t = 0 as

ψ̂(x, t = 0) =
∑
i

fi(x)âi and Ẽ(x, t = 0) =
∑
i

pi(x)b̂i, (9)

where fi(x) and pi(x) represent an expansion in any orthonormal basis, and the operators âi
and b̂i represent Schrödinger picture operators for the ith mode of the atomic and optical fields
respectively. We can now postulate solutions to Eq. (6) and (7) as

ψ̂(x, t) =
∑
i

fi(x, t)âi +
∑
i

gi(x, t)b̂i (10)

Ẽ(x, t) =
∑
i

pi(x, t)b̂i +
∑
i

qi(x, t)âi. (11)

By substituting this ansatz into Eqs. (6) and (7) we obtain equations of motion for the mode
functions fi(x), gi(x), pi(x) and qi(x), given by

iḟi(x) = H2fi(x)−Ωcqi(x) (12)

iġi(x) = H2gi(x)−Ωcpi(x) (13)

iṗi(x) = HEpi(x)−Ω∗c gi(x) (14)

iq̇i(x) = HEqi(x)−Ω∗c fi(x) (15)
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with gi(x, t = 0) = qi(x, t = 0) = 0. In practice we may choose any initial conditions for the
fi(x)s and pi(x)s, as long as they form an orthonormal basis. The solutions to these equations
make available the dynamics of any system observable. Another simplification is that in our
system we initially have no outcoupled atoms, and can choose a basis so that the photons
initially occupy only one mode. i.e. |Ψ(t = 0)〉 = |0, 0, . . . , 0〉atoms ⊗ |γ, 0, . . . , 0〉light, where |γ〉
represents an arbitrary state of a single optical mode. In subsequent calculations we choose the

mode basis as plane waves, with b̂0 representing the annihilation operator for a plane wave with
momentum kp, meaning that p0(x) is initially a plane wave with momentum kp.

Noticing that âi, for all i and b̂i, (i �= 0) acting on our state return zero for all time, we
can find the expectation value of any normally ordered operator by making the substitution

ψ̂(x)→ g0(x)b̂0, Ê(x)→ p0(x)b̂0. This is only true when the operators are in normally ordered
form before the substitution is made. In terms of Eqs. (10) and (11), Eq. (8) can be written as

iφ̇1(x) =

(
H0

�
− |g13|

2

∆
〈b̂†0b̂0〉|p̄0(x)|2

)
φ1(x)−Ωc(x)〈b̂†0b̂†0〉p̄∗0(x)ḡ0(x) . (16)

The equation of motion for p0(x) is difficult to solve in practice due to the high propagation
speed of light. If we look more closely at the equation of motion for p0(x) (making the trans-
formation p̃0(x) = p0(x)e

iδt, g̃0(x) = g0(x)e
iδt, with δ = c(kc − kp) the two photon detuning),

i ˙̃p0(x) =

(
−ic ∂

∂x
− ckp − |g13|

2

∆
|φ1(x)|2

)
p̃0(x)−Ω∗c (x)g̃0(x), (17)

we notice that (−ic ∂
∂x
− |g13|2

∆
|φ1(x)|2) and ckp are of the order of the optical frequency

(∼ 1015 Hz), but their difference is of order c∆k, where �∆k is the spread in momentum of
the wave packet. Therefore the i ˙̃p0(x) term will be much less than the individual terms on the
right hand side of Eq. (17), so that we may set the left hand side of Eq. (17) to zero if we are
interested in the dynamics on time scales much longer than ∼ 1/(ckp), giving

ic
∂p̃0

∂x
= −
(
ckp +

|gte|2
∆
|φ1(x)|2

)
p̃0(x)−Ω∗c (x)g̃0(x). (18)

This is a slow envelope approximation, which is valid here since the speed of light is 10 orders
of magnitude faster than the mean atomic speed. In the next section, we will solve Eqs. (13),
(16), and (18), and use them to investigate properties of the system.

3 A sub-Poissonian atom laser

In this section we show how a probe beam with reduced intensity fluctuations can be used to
produce a sub-Poissonian atom laser. We solve Eqs. (13), (16) and (18) with typical parameters

for experiments with 87Rb. We set g13 = (d13/�)
√
�ωk/2ε0A = 2.9×105 rad s−1m 1

2 , where d13
is the dipole moment of the |1〉 → |3〉 transition, ∆ = 1011 rad/s and k0 ≡ |kprobe − kcontrol| =
1.6 × 107m−1. We start with a condensate of N = 106 atoms, initially in the ground state of
a harmonic trap with frequency ωt = 5 rad/s. The two photon detuning is chosen such that

the coupling is on resonance, i.e. δ =
�k20
2m − |Ωc|2/∆ − 1

2ωt ≡ δ0. The initial state for p0(x) is

chosen as a plane wave (wave vector |kp| = 8.0× 106m−1) with quantum state |γ〉 and a mean
flux of 2.9 × 106 photons/s, with all other modes as vacuum. p0(x) is normalised on a range
∆x ≈ 515 km. This defines the operator b̂0, with b̂†0b̂0 corresponding to the number of particles
per ∆x. A flux of 2.9× 106 photons/s corresponds to 〈b̂†0b̂0〉 = 5000.
Optimum transfer of the quantum state from the probe to the atoms occurs for unit quantum

efficiency of the outcoupling. In this case the probe field is completely absorbed. In Fig. 2(a)
we have chosen a value close to the optimum value of Ωc for efficient quantum state transfer.
The probe beam is almost completely absorbed, and a steady, nearly monochromatic, atomic
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Fig. 2. Density of the condensate (dotted line), atom laser beam (solid line) and probe beam (dashed
line) at t = 40ms when the system is (a) on resonance with the optimal coupling (Ωc = 1.5×108 rad/s,
δ = δ0), (b) on resonance and under-coupled (Ωc = 0.5 × 108 rad/s, δ = δ0), (c) on resonance and
over-coupled (Ωc = 2.25 × 108 rad/s, δ = δ0), and (d) off resonance with optimum coupling (Ωc =
1.5× 108 rad/s, δ− δ0 = 1500 rad/s). The probe and control beams have been multiplied by a factor of
100 for clarity. The factor mc/�k0 = vlight/vatoms is the ratio of the speed of light to the mean atomic
speed. The density of the probe beam is multiplied by this ratio to show conservation of particle flux.

beam is produced. We also show an example where the system is under-coupled, with Ωc less
than the optimum. The probe beam is only partially absorbed, giving a reduced flux for the
atom laser. For over coupling, where Ωc is larger than the optimum value, we find a bound
state and reduced flux. With the system at the optimum outcoupling rate, but detuned from
the optimum two-photon detuning, we also see inhibited outcoupling.
The efficiency of quantum state transfer from the probe may be shown by comparing the

intensity variances of the probe and the output atoms. To calculate intensity fluctuations in
the atom laser, we use the density integrated over a small region. We first define the operator

N̂ =

∫ x2

x1

ψ̂†(x)ψ̂(x) dx , (19)

which represents the number of atoms in a region between x1 and x2 in the beam path. x1 and
x2 are chosen with x2 − x1 = (�k0/mc)∆x, such that when there is complete quantum state
transfer, the region between x1 and x2 will contain exactly 〈b̂†0b̂0〉 atoms. We now define the
normalised number variance as

v(N̂) =
〈N̂2〉 − 〈N̂〉2
〈N̂〉 , (20)

giving 0 for a Fock state and 1 for a coherent state. Figure 3 shows v(N̂) versus time for the

cases shown in Fig. 2, with the probe beam was initially in a Fock state. We see that v(N̂)
is minimised when the ideal conditions for outcoupling are met and that it slowly increases
over time. This is due to the depletion of the condensate reducing the strength of the effective
coupling, Ω(x). This could be compensated for by slowly increasing Ωc or decreasing ∆. We
note here that, although optical Fock states are difficult to make experimentally, their use in
our analysis demonstrates that the quantum statistics are transferred efficiently between the
light and the atoms.

4 Atom light entanglement

It is well known from quantum optics that it is possible to generate entanglement using one
squeezed beam and vacuum incident on the two ports of a beam splitter [19]. With the effective
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Fig. 3. v(N̂) versus time for the cases shown in Fig. 2, with the probe initially in a Fock state. Case
(a) (on resonance with optimum coupling; Ωc = 1.5×108 rad/s, δ = δ0), case (b) (on resonance, under-
coupled; Ωc = 0.5 × 108 rad/s, δ = δ0), case (c) (on resonance, over-coupled; Ωc = 2.25 × 108 rad/s,
δ = δ0), and case (d) (off resonance with optimum coupling; Ωc = 1.5× 108, δ − δ0 = 1500).

coupling between the probe beam and the outcoupled atoms at half the optimum strength for
complete quantum state transfer, our system acts in a manner analogous to a 50/50 beam
splitter, and we find that we can produce entanglement between the amplitude and phase of
the outcoupled atoms and the transmitted light when quadrature squeezed light is used to
outcouple [7].
We will now show that this procedure allows for a demonstration of the Einstein-Podolsky-

Rosen (EPR) paradox [20], which has been shown to be a proof of entanglement [21]. It was
first proposed to demonstrate the EPR paradox using optical phase quadratures by Reid [22],
followed by an experimental realisation by Ou et al. [23]. To demonstrate entanglement using
the EPR paradox, we infer the values of a quadrature on one field via measurements on the
corresponding quadrature of the other. Following the EPR proposal, we may do this for conju-
gate quadratures whose real variances must obey the Heisenberg Uncertainty Principal (HUP).
The paradox is demonstrated when the product of the inferred values seemingly violates the
minimum set by the HUP. In the present example, by measuring the amplitude and phase
quadratures of the optical beam we are able to infer the amplitude and phase quadratures on
the atomic beam. Quantitatively, Vinf(X̂

+)Vinf(X̂
−) < 1 is the requirement for demonstrating

the EPR paradox, where

Vinf(X̂
±) = V (X̂±)− [V (X̂

±, Ŷ ±)]2

V (Ŷ ±)
, (21)

with V (X̂±, Ŷ ±) = 〈X̂±Ŷ ±〉−〈X̂±〉〈Ŷ ±〉. Here, X̂+(−) refers to the amplitude (phase) quadra-
ture of the atom laser beam, and Ŷ +(−) refers to the amplitude (phase) quadrature of the
transmitted probe beam, defined by

X̂+ =

∫ x2

x1

(
u∗ψ(x)ψ̂(x) + uψ(x)ψ̂

†(x)
)
dx , (22)

X̂− = i

∫ x2

x1

(
u∗ψ(x)ψ̂(x)− uψ(x)ψ̂†(x)

)
dx . (23)

Ŷ + =

∫ x′2

x′1

(
u∗E(x)Ê(x) + uE(x)Ê

†(x)
)
dx , (24)

Ŷ − = i

∫ x′2

x′1

(
u∗E(x)Ê(x)− uE(x)Ê†(x)

)
dx . (25)
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Fig. 4. Vinf(X̂
−) (dot-dashed line), Vinf(X̂+), (dashed line), and Vinf(X̂+)Vinf(X̂−) (solid line) for

Ωc = 0.75× 108 rad s−1 and an initial amplitude squeezed optical state with the squeezing parameter
r = 2.0.

uψ(x, t) and uE(x, t) are arbitrary modes which we choose as plane waves with appropriate
wavelengths to match the modes of the outcoupled atoms and transmitted light. We choose x1
and x2 to be points in the path of the atom laser beam, and x

′
1 and x

′
2 to be downstream of the

condensate such that the light operators and atomic operators can be correlated at the same
time, i.e. x′1 =

c
vatom

x1, x
′
2 =

c
vatom

x2.

We find that the output atomic beam and the transmitted probe beam are clearly entangled
for the appropriate parameters, as shown in Fig. 4, which shows the product of the inferred
variances versus time for Ωc = 0.75 × 108 rad s−1 and a probe with squeezing parameter r =
2.0 [5].

In the case of squeezed light mixed with vacuum on a beamsplitter, for r = 2.0, Vinf(X̂
+) =

2e−2r
1+e−2r ≈ 0.036, Vinf(X̂−) = 2e2r

1+e2r ≈ 1.96, and Vinf(X̂+)Vinf(X̂−) = 2
1+cosh 2r ≈ 0.071. These

compare quite well to the values which correspond to maximum entanglement in our system
Vinf(X̂

+) ≈ 0.048, Vinf(X̂−) ≈ 1.83, and Vinf(X̂+)Vinf(X̂−) ≈ 0.085, indicating that our system
behaves almost as an ideal beam splitter. We note here that our treatment is idealised, but that
we will deal with likely sources of degradation in the following two sections.

5 Homodyne measurements of atomic quadratures

In this section we examine a scheme for transferring quantum information from a propagating
atom laser beam to an optical beam, allowing indirect measurement of de Broglie wave quadra-
ture variances via optical homodyning. The strength of this scheme is that it does not require a
mode-matched atomic local oscillator, which would be difficult to achieve experimentally. The
process involves a reversal of the Raman atom laser output coupling described in the previ-
ous sections, so that a two-photon Raman transition now couples the atom beam into a large
trapped condensate [10], with highly efficient transfer of the atomic statistics to the optical
probe.
The scheme (Fig. 5) consists of a trapped condensate and an incoming atom laser beam

of the same species and is essentially a reversal of that described in section 2, with the im-
portant difference that stimulation by the trapped condensate now plays an important role.
The Hamiltonian and equations of motion are the same apart from different initial conditions,
with the atomic beam but not the optical probe beam being occupied at the beginning of
the process. To understand the transfer of quantum information in the system we use mode
matched quadratures of the probe light and the atomic signal as in section 4.
Figure 6 shows the Raman incoupling dynamics for a continuous, essentially monochromatic

atom laser beam. The system consists of a quadrature squeezed atom laser beam in a nearly
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Fig. 5. Raman incoupler. (a) Λ atom. A beam of |2〉 atoms is coupled to a trapped state |1〉 via
a Raman transition. The two optical fields are a weak probe beam (annihilation operator Ê(x, t)),
and a classical control beam (Ω23(x, t)). The transition is detuned from the intermediate state by ∆.
Wide lines represent highly occupied states. (b) Spatial configuration of the Raman atom laser. Beam

atoms (ψ̂2(x, t)) reach the condensate (ψ̂1(x, t)) with momentum 2�k0, which is transferred during
incoupling by absorption and emission of a light quanta at angle θ and momenta ∓�k0 with respect to
the propagation axis.

monochromatic state (wavevector 2k0) which enters from the left. The atoms are incoupled
via the reversed Raman scheme, emitting probe photons. Once the front of the beam crosses
the interaction region the system is approximately in a steady state (except for the gradual
transfer of atoms into the trapped condensate), with a constant probe output. We see that the
quadrature variances of the emitted probe light reach steady state values very close to the atom
laser variances.

As quantum states are very fragile we must consider possible sources of loss. Apart from
the stability of the lasers used, the main sources of possible signal degradation are sponta-
neous emission losses and collisional phase noise. The effect of spontaneous emission can be
estimated from the spontaneous emission rate for a transition with energy ω0 = k0c radiating
into a continuum, γsp = k30|d13|2/3π�ε0. The spontaneous loss during the incoupling is then
Lsp = γsp

∫
dx
∫
dt 〈ψ̂†3(x, t)ψ̂3(x, t)〉. Using the adiabatically eliminated expression for the ex-

cited state 〈ψ̂†3(x, t)ψ̂3(x, t)〉 ≈ 〈ψ̂†2(x, t)ψ̂2(x, t)〉(Ω23/∆)2, and the fact that each excited atom
on average remains excited for time TRabi/4, we have approximately Lsp ≤ γspN̄3TRabi/4, where
N̄3 is the total number of excited atoms transferred per squeezed mode. For the incou-
pling process to remain coherent, we require Lsp/N̄3 � 1, and for our parameters we find
Lsp/N̄3 ≈0.04. We can now estimate the effect on the signal using a beam splitter which
mixes the signal and vacuum with reflectivity η (≈0.04 here). The probe variances then become
V (X̂±E ) = (1 − η)V (X̂±ψ ) + η, acceptable for small η. The collisions between the beam and
condensate atoms will have two undesired effects. Firstly, there will be a mean-field shift to the
condensate energy which will rotate the quadrature phases. This will be negligible when the
number of incoupled atoms is much smaller than the condensate occupation, which will be the
case in any practical realisation of the scheme. The second effect will be that of phase-diffusion
of the beam, which to a first approximation will cause an increase in the variance of the phase
quadrature. We may consider this effect by noting that the velocity transferred to 23Na by
the Raman transition can be up to 6 cm/s (1.2 cm/s for 87Rb). Using a single-mode expression
for the phase diffusion [24] and the parameters of Fig. 6, we find that 23Na can travel up to
3mm and 87Rb up to 600µm in their respective coherence times. As this is larger than the
diameter of present condensates, the effect will be small. Another issue which will arise is that
the probe beam will be emitted into a narrow cone rather than as a well collimated beam.
This can be simply overcome using linear optical elements. An important consideration is the
role of condensate phase in our scheme. Although for simplicity we have treated the BEC as a
coherent state, in practice this does not pose a significant restriction. A reasonable model for
a BEC is a coherent state with an a priori random phase. It is clear from that the dynamics
are sensitive to the phase of φ1(x). However, from our numerical simulations we have found
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Fig. 6. Incoupling a continuous atom laser beam. (a) A snapshot of the atomic beam (dashed
line), condensate (chain line) and probe (solid line) during incoupling. The small blip of atoms on the
right is a transient effect. (b) The development of the optical quadratures (solid lines) as the front of
the atom laser beam crosses the interaction region. The zero of the time axis is arbitrary. The chain
lines show the variances of the 4 dB squeezed atomic beam.

that changing the initial phase of the condensate simply rotates the phase space quadratures
of the output optical field, so that on an experimental run the spontaneously chosen phase will
be automatically compensated for when all angles are scanned over during optical homodyne
detection. Finally, we address the effect of a thermal component on the phase stability of the
condensate during incoupling. Since phase diffusion is most significant at high temperatures
we use quantum kinetic theory [25]. We find that during the incoupling interaction time the
phase diffusion is entirely negligible for our parameters and a temperature of order ∼100 nK.
The decay of the relevant two-time correlation function, 〈φ†1(x, t)φ1(x′, t′)〉, is typically at the
level of one part in 108 during the incoupling time.

6 Teleportation without shared entanglement

The instantaneous, disembodied transport of matter through space is of course, absolutely
forbidden by the laws of nature. However, in 1993, a proposal by Bennett et al. [26] used the
term teleporting to describe a scheme which uses quantum entanglement to transfer an unknown
discrete variable quantum state between a sender and a receiver. The protocols of this scheme
were later extended to continuous variable (CV) transfer [27,28], and have been demonstrated
experimentally, with fidelities of up to 0.85± 0.05 for the transfer of an unknown CV quantum
state [29]. In this section we propose a scheme which allows an atom laser beam to disappear
at one location and reappear at another, without the use of shared entanglement between
the sender and receiver. We will go beyond information available from intensity measurements
and determine the quantum efficiency of state transfer. Although our scheme is quite distinct
from what is normally termed quantum teleportation, we feel that it is closer in spirit to the
original fictional concept and so use this term. What differentiates our scheme from what is
usually termed quantum teleportation is that we do not require the sender and receiver to
share entangled states. We avoid this requirement as there is no measurement step involved
in sending the information. As we do not require the generation and distribution of entangled
states it may be possible to achieve a much higher teleportation fidelity than with traditional
quantum teleportation.
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Fig. 7. The sending, ψ̂in1 , and receiving, ψ̂
out
1 , stations for the teleporter. (a) the sender , which absorbs

the propagating atoms and transmits the optical signal containing the quantum information. (b) the
receiver which absorbs the optical signal and uses the information contained in it to reproduce the
original atomic pulse. Ωin and Ωout are the classical control fields, while Êin and Êout are the same
probe field, created by the incoupling and absorbed by the outcoupling process.

Our system is shown schematically in Fig. 7. As can be seen, this is the Raman incoupler
used to allow for indirect quadrature measurements on an atom laser beam, coupled via the
optical probe field to a Raman outcoupler which transfers the quantum statistics of the probe
to the subsequent atom laser beam. The sending stage of the scheme is shown in Fig. 7(a),

where the input atom laser beam (ψ̂in2 ) is coupled into the condensate (ψ̂
in
1 ). The quantum

information held in the beam is transferred to the probe field (Êin). The internal Raman
energy level configuration allows for stimulated transitions between the trapped and untrapped
fields. These transitions are stimulated by both intense optical fields (control), denoted by the

Rabi frequencies Ωin/out(x, t), and highly occupied trapped bosonic matter fields (ψ̂
in/out
1 ).

The optical probe propagates some distance between the two condensates, and is used (Êout)

to outcouple the atom laser field from the second condensate (ψ̂out2 ). The preparation of the
sending and receiving condensates and the control lasers needs only the passing of classical
information, and can be done without knowing the quantum state of the input beam. State
transfer from the input atom laser pulse to the probe field happens automatically given the
appropriate conditions, as shown by Bradley et al. [8]. At the receiver, the state of the probe
field is transferred to the output atomic pulse [6]. If the required conditions are met, there will
be a complete transfer of the quantum information contained in the first pulse, via the probe
field, to the second. We note that technically our scheme would realise a very efficient quantum
channel [30,31] to transfer information between condensates.

We analyse the system using the one-dimensional model and computational technique of
section 2. Results from our one-dimensional numerical calculations are shown in Fig. 8. The
input atomic pulse has n0 = 5× 103, with momentum wavevector 2k0, coupled into the initial
condensate, where k0 = 8× 106m−1, giving an atom laser beam velocity of vatom = 1.1 cm s−1.
We use N0 = 10

6 atoms at each site, trapped with potentials V (x) = mω2t x
2/2 and frequencies

ωt = 5Hz. In all cases we operate at the optimal efficiency point for the signal so that the ratio
of the condensate width to the mean beam velocity is tuned to one quarter of a Rabi cycle,
TRabi ≈ 4

√
�/mωt(m/2�k0). The two condensates are shown by the dashed lines, which are

given as 1mm apart, merely for convenience. In the top panel, an atom laser pulse is about
to enter the first condensate. The middle two panels show the pulse being incoupled and the
probe field, initially vacuum in this example, transmitting between the two condensates. The
beginnings of the pulse can be seen as the outcoupling process proceeds. In the lowest panel, the
outcoupling process has been completed and a replica of the initial pulse is propagating away
from the second condensate. Apart from the information needed to prepare the two condensates
with near identical numbers and the control fields with similar intensities, no information except
that contained in the propagating probe field has been exchanged. In principle, this scheme can
be operated with a very high fidelity, as long as the appropriate Rabi frequencies are matched at
each site. Once this is achieved, the remaining sources of degradation are phase diffusion from
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Fig. 8. At the top, the initial atomic pulse (solid curve) is shown about to enter the sending condensate
(left dashed curve). The second and third pictures show the pulse partially absorbed, with an output
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completed, with a reconstructed atom laser pulse propagating in free space. The atom pulse and optical
probe (dashed-dotted curve) are magnified by factors of 1000 and 1000×mc/2�k0 to plot them on the
condensate scale.

collisional interactions and spontaneous emission from the excited electronic levels of the two
trapped condensates. As shown in the previous section, these can be minimised and would need
to be significant before the efficiency of the process fell to the 2.2% obtained in the Ginsberg
experiment [32].

7 Conclusions

In conclusion, we have shown that the development of the Raman atom laser has opened
up a whole new field of possibilities for the coherent manipulation of matter waves and the
transferring of quantum information between bosonic atoms and light. We have shown that
sources of degradation of this transfer can be minimised by careful control of experimental
parameters. The Raman outcoupling and incoupling techniques described here need no new
technologies and can be realised in existing laboratories. A possible strong advantage of these
Raman schemes over schemes depending on EIT is that they do not operate at resonance, where
spontaneous emission can become a real problem.

This work was supported by the Australian Research Council and the Queensland state government.
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