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PACS 05.10.Gg – Stochastic analysis methods (Fokker-Planck, Langevin, etc.)

Abstract – We demonstrate that the quantum dynamics of a many-body Fermi-Bose system can
be simulated using a Gaussian phase-space representation method. In particular, we consider
the application of the mixed fermion-boson model to ultracold quantum gases and simulate
the dynamics of dissociation of a Bose-Einstein condensate of bosonic dimers into pairs of
fermionic atoms. We quantify deviations of atom-atom pair correlations from Wick’s factorization
scheme, and show that atom-molecule and molecule-molecule correlations grow with time, in
clear departures from pairing mean-field theories. As a first-principles approach, the method
provides benchmarking of approximate approaches and can be used to validate dynamical probes
for characterizing strongly correlated phases of fermionic systems.

Copyright c© EPLA, 2010

Introduction. – The physics of interacting fermions is
the basis of many of the most important phenomena in
condensed-matter physics, ultracold gases, and quantum
chemistry. A fundamental issue is how the microscopic
interactions at the quantum level give rise to collective and
emergent effects in many-body systems. For many situa-
tions, particularly in condensed-matter systems, static or
equilibrium correlation functions are sufficient to connect
theory and experiment, and sophisticated techniques have
been developed to calculate and measure them [1].
Addressing similar questions in the domain of many-

body dynamics, however, has limitations in condensed-
matter systems. Ultracold quantum gases, on the other
hand, allow creation of highly controllable implemen-
tations of analogue many-body systems for which the
dynamical evolution and correlations are directly accessi-
ble [2–6]. The purity and tunability of these “tailor-made”
analogue systems means that ultracold quantum gases are
ideal for testing fundamental ideas in quantum many-body
physics and are leading candidates for dynamical “quan-
tum simulation” [7–10]. In order to make predictions from
the underlying theory and to validate the potential simu-
lators [9,11], or to benchmark approximate approaches, a

(a)E-mail: magnus@ogren.se

numerical simulation of the real-time dynamics is required.
Similar requirements of exact simulation of many fermions
arise in determining the quantum chemistry of complex
molecular systems [12].
In this work we perform first-principles dynamical simu-

lations of a fermion-boson model. We use a Gaussian
stochastic method based on a generalized phase-space
representation of the quantum density operator [13]. The
fermion-boson model forms the underlying basis for a
broad range of phenomena in condensed-matter and ultra-
cold atom physics. It was originally proposed in the
context of high-temperature superconductivity [14], but
in ultracold gases it corresponds to the theory of reso-
nance superfluidity with Feshbach molecules [15]. The
latter forms the basis of a two-channel model for describing
the physics of the BCS-BEC crossover [16]. More recently,
the fermion-boson model has been used for analyzing the
decay of double occupancies (doublons) [17] in a driven
Fermi-Hubbard system [18]. The particular situation that
we simulate here corresponds to spontaneous dissociation
of a Bose-Einstein condensate (BEC) of molecular dimers
into fermionic atoms [19,20], in which case the model
provides the fermionic equivalent of parametric down-
conversion in quantum optics: the production of pairs of
entangled particles.
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The Gaussian phase-space method represents an exten-
sion to fermions of successful bosonic techniques [21–30].
The essence of the method is the mapping of the density
operator evolution onto a Fokker-Planck equation for
a phase-space distribution, via a continuous Gaussian
operator basis [13]. The evolving distribution is then
sampled with stochastic differential equations (SDEs)
for the phase-space variables [21,22]. The mapping to
the phase-space distribution is exact [21–23,31] provided
no boundary terms arise in deriving the Fokker-Planck
equation. In practice, such terms may develop after some
simulation time, but in an easily verifiable way [23,31],
putting a well characterised upper limit to a useful
simulation duration. Numerical signatures of systematic
errors include: i) the onset of spiking behaviour due to the
presence of near-singular trajectories; ii) sudden dramatic
increase in the statistical uncertainties; and iii) develop-
ment of power-law tails in the probability distribution.
All these signatures, well known from the early studies
of real-time dynamics of bosonic systems [23] and from
equilibrium calculations for fermion systems using
imaginary-time techniques [13,31], carry over to the
present simulations of fermion dynamics and are verified
in the numerical examples that we present below.
As in any stochastic method, sampling error limits the

precision of the results. However, unless the distribution
develops power-law tails, indicated by the above-
mentioned signatures, this uncertainty can be made
arbitrarily small by increasing the number of trajectories.
From the physical point of view, the Gaussian phase-

space method can be viewed as providing the quan-
tum corrections, through additional stochastic terms, to
different mean-field approaches. For example, with certain
factorization assumptions [32], the method reduces to
a time-dependent Hartree-Fock formalism. Furthermore,
neglecting the stochastic terms recovers the approximate
pairing mean-field theory (PMFT) [19,33], to which we
compare the phase-space results. While often accurate
for determining particle number densities, the mean-field
approach gives no direct information about higher-order
correlations, and its accuracy is not known a priori. In
contrast to this, the first-principles simulations presented
here reveal significant development of higher-order corre-
lations.
For the first application of the fermionic phase-space

method to a multi-mode dynamical problem, we consider
a uniform molecular BEC (MBEC) initially in a coherent
state at zero temperature, with no atoms present. Assum-
ing sufficiently low densities, we neglect s-wave scattering
interactions to simplify the treatment. The Hamiltonian
of this fermion-boson model [14] is given by

Ĥ = �
∑
k,σ

∆kn̂k,σ − i�κ
∑
k

(
â†m̂k− m̂†kâ

)
, (1)

where k labels the plane-wave modes and σ= 1, 2 labels
the effective spin state for the atoms. Even though we will

present the numerical results for a one-dimensional (1D)
system, we formulate the problem in the general case as
the method is straightforward to use in higher dimensions.
The fermionic number and pair operators are defined as
n̂k,σ = ĉ

†
k,σ ĉk,σ and m̂k = ĉk,1ĉ−k,2, with {ĉk,σ, ĉ†k′,σ′}=

δkk′δσσ′ , while the bosonic molecular operator obeys
[â, â†] = 1. The atom-molecule coupling (invoked by a
magnetic Feshbach resonance sweep or optical Raman
transitions) is characterized by κ= χD/L

D/2 [33], where
L is the size of the quantization box, and mediates an
effective interaction between the atoms. The first term,
�∆k ≡ �2|k|2/(2ma)+ �∆, contains the kinetic energy of
the atoms (of mass ma), while the detuning ∆< 0 corre-
sponds to the total dissociation energy 2�|∆| imparted
onto the system by the external fields.
Because of the symmetry between spins in the Hamil-

tonian, and the equal initial populations, we need only to
consider the number operator for one of the spin states
n̂k = n̂−k = n̂k,1 = n̂k,2. An additional operator identity
that follows from the Hamiltonian is

m̂†km̂k (= n̂k,1n̂−k,2) = n̂k, (2)

which arises because the condensate to which the atom
pairs are coupled is assumed to be homogeneous. One
consequence of eq. (2) is that the relative number of
atoms with equal and opposite momenta is perfectly
squeezed [20], i.e. with zero variance. It also means
that the second-order atom-atom correlation function
reduces to g

(2)
12 (k,−k)≡ 〈m̂†km̂k〉/〈n̂k,1〉〈n̂−k,2〉= 1/〈n̂k〉.

Thus the atom-atom correlation function can be deter-
mined from the number density alone.
One effective approximate approach for treating the

dynamics of dissociation is the PMFT [19,33], which is
obtained by assuming atom-molecule decorrelation and by
replacing the molecular operator by a coherent mean-field
amplitude, â→ β.
In this paper we solve the full Hamiltonian (1) exactly,

and in order to quantify deviations from the PMFT
behavior we evaluate several correlation functions. The
departures from Wick decorrelation are analyzed via the
correlation coefficient

W =
∑
k

〈m̂†km̂k〉
/∑

k

(
|〈m̂k〉|2+ 〈n̂k〉2

)
, (3)

which is unity within the PMFT.
To examine molecule-atom pair correlations and the

second-order coherence of the molecular field, we define

g(2)ma(k) =
〈â†ân̂k〉
〈â†â〉〈n̂k〉 , g(2)mm =

〈â†â†ââ〉
〈â†â〉2 . (4)

Again, within the PMFT, these will be unity. We may
expect that, over time, correlations will develop between
the molecular and atomic fields; the Gaussian phase-
space simulations give exact quantitative accounts of these
effects.
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Fermionic phase-space representation. – As
mentioned above, the essence of the Gaussian phase-
space method is the mapping of the density operator
evolution into a set of stochastic differential equa-
tions [13] that can be solved on a computer. For a
large class of second-quantized Hamiltonians, such
as those containing no higher than quartic terms in
field operators, such mappings introduce no additional
approximations. For M plane-wave modes, the quantum
state governed by Hamiltonian (1) can be mapped
onto a complex phase-space of dimension 3M +2:
�λ(t)=(n1, . . . , nM ,m1, . . . ,mM ,m

+
1 , . . . ,m

+
M , β, β

+), with
m+j �=m∗j and β+ �= β∗. The phase-space equations are
structurally similar to the Heisenberg equations for the
corresponding operators, but the stochastic terms are
not unique and can be modified by different choices
of diffusion gauge [13,24,34]. This freedom allows the
equations to be tailored to have different numerical
properties. One specific set of Ito SDEs is [34]:

ṅk = αm
+
k +α

+mk+
1√
N0
nk
(
mkζ

∗
1 +m

+
k ζ
∗
2

)
,

ṁk = −2iδkmk+α (1− 2nk)+ 1√
N0

(
m2kζ

∗
1 −n2kζ∗2

)
,

ṁ+k = 2iδkm
+
k +α

+ (1− 2nk)+ 1√
N0

(
m+2k ζ

∗
2 −n2kζ∗1

)
,

α̇ = − 1
N0

∑
k

mk+
1√
N0
ζ1,

α̇+ = − 1
N0

∑
k

m+k +
1√
N0
ζ2, (5)

where the derivative is with respect to a scaled time,
τ = t/t0, with t0 = 1/κ

√
N0. We have normalized the mole-

cular field by its maximum (initial) value, α= β/
√
N0,

where N0 is the initial number of molecules. The complex
Gaussian noises ζj obey 〈ζj(τ)ζj′(τ ′)〉= 0, 〈ζj(τ)ζ∗j′(τ ′)〉=
δjj′δ(τ − τ ′). This form of eqs. (5) shows that with drift
terms of order 1, the noise terms are ∼ 1/√N0, i.e. the
noise and therefore non–mean-field corrections to correla-
tions become more important for decreasing N0. In prac-
tice we convert the equations to Stratonovich form and
integrate with a semi-implicit method. Stochastic aver-
ages of the variables give the first-order operator moments;
normally ordered higher-order moments are obtained by
averages of the corresponding Wick decomposition [13],

e.g. 〈m̂†km̂k〉= 〈m+kmk〉S + 〈n2k〉S . Note that the final,
averaged moment will not satisfy Wick’s theorem for a
general quantum state.
The stochastic sampling assumes a sufficiently bounded

distributions, such that any boundary terms could have
been neglected in obtaining the Fokker-Planck equation.
Previous experience with bosons [23] and fermions [31] has
shown that spikes and a sudden rapid growth of the statis-
tical sampling errors in observables are seen when the tails
of the probability distributions do not decay fast enough.

0 1 2
0

0.5

1.0 PMFT

0 1 2
0

5

10

2.120 2.127
0.760

0.764
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τn̂
k

N
a
,N

m

Fig. 1: (Color online) Comparison between different meth-
ods for the population dynamics of individual atomic modes
〈n̂k(τ)〉: phase-space method with 106 stochastic trajectories
(solid black curves), number-state basis (dashed yellow curves).
The top curve with the largest oscillation amplitude is for the
resonant mode k0 = 6dk (corresponding to δk0 = t0∆k0 = 0);
the other curves are the sidebands stepped by dk= 160−1/4/d0,
where the lengthscale is d0 =

√
�t0/2ma. For the k0-mode, we

also plot the result from the PMFT for comparison (top dash-
dotted curve). To illustrate the identity (2) we plot the quantity
〈m̂†k0m̂k0〉 as large black squares for the phase-space method
and as small yellow squares for the number-state calculation.
The left inset shows the number of molecules Nm = 〈â†â〉 (top
curve) and the total number of atoms Na =

∑
k〈n̂k〉 in one of

the spin states. For all curves from the phase-space method, the
statistical errors of ±1σ standard deviation are smaller than
the thickness of the curves, within the time window shown.
The inset on the right shows these errors explicitly as dark
and light grey shadings corresponding to quantities 〈n̂k0〉 and
〈m̂†k0m̂k0〉, respectively.

Through comparisons with independent numerical solu-
tions we confirm that the onset of such spiking behaviour
and the rapidly growing sampling error signifies the limit
of the useful simulation time. Although it can be controlled
somewhat with gauges, [13,24,34], the finite simulation
time is a well-known limitation of stochastic phase-space
methods. In the numerical examples of figs. 1, 3 and 4
below, the simulation results are shown for time windows
well below the spiking time. We simulate a sufficiently
large number of stochastic trajectories to reduce the statis-
tical errors to below the thickness of the relevant curves
shown in the figures. In addition, we use identities such as
(2) and different gauges as a further demonstration that
the simulations are exact up until the emergence of spiking
behaviour.
Unlike quantum Monte Carlo approaches that are well

suited to calculation of exact ground-state properties or
to simulation through imaginary time [35], the Gaussian
stochastic method does not suffer from a “dynamical sign
problem” [36]. Other approaches for real-time simulations
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Fig. 2: (Color online) (a) Population of the resonant mode,
〈n̂k0〉, as a function of time τ for the same parameters as
in fig. 1, except with 103 stochastic trajectories and a longer
simulation time. The solid line is from the phase-space method,
with the grey shading representing statistical errors of ±1σ
standard deviation. The dashed yellow line is from the number-
state calculation. (b) Evolution of the statistical error on nk0 ,
showing the emergence of spiking behaviour past τ � 3 and
the subsequent rapid growth of the sampling errors. The size
of the statistical errors —prior to the emergence of the spiking
behaviour— scales as 1/

√
Ns as expected from the central limit

theorem, where Ns is the number of stochastic trajectories.

include the time-dependent density functional theory [37],
although in practice this method is often restricted in
accuracy by the need for exact functionals. Methods that
use matrix-product-states based algorithms have been
very successful for applications to one spatial dimen-
sion [38–42], however, as these methods require a trun-
cated basis they do not fulfill the strict benchmarking
criteria that a first-principles method can provide. An
interesting direction in recent years has been the exten-
sion to fermionic systems of stochastic wave function
approaches [43], which are similar in spirit to phase-space
methods.

Few-mode system. – To confirm the validity of our
numerical implementation of the phase-space method,
we first independently solve a small system with N0 =
10 molecules and M = 10 atomic modes in a standard
number-state basis. For this test system, with a bosonic
number-basis truncation of nmax ∼ 102, the Hilbert space
has dimension d= 2Mnmax � 105. In fig. 1 we show the
population in the momentum modes 〈n̂k〉 calculated using
the phase-space method (with 106 stochastic trajectories)
and the number-state basis; we also illustrate the identity
(2) by calculating and plotting 〈m̂†k0m̂k0〉 directly and
comparing it with 〈n̂k0〉. The agreement between the two
methods is excellent. The top two curves in fig. 1 illustrate
the deviation of the PMFT prediction (dashed-dotted
curve) from the exact calculation (solid curve) for the
resonant mode k0.
In fig. 2, we show the population dynamics of the

resonant mode, nk0 , together with the explicit behaviour

1

1.2

1.4

PMFT

W

 (a) k=k0

0.95

1

1.05
PMFT

 (b)

g m
a

(2
) (
k 0
)

0 1 2
0.95

1
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PMFT

 (c)

τ

g m
m

(2
)

1

1.02

1.04

PMFT

 (d) k=k0

1

1.1

1.2

PMFT

 (e)

0 1 2 3

1
1.5
2

τ

PMFT

 (f)

Fig. 3: (Color online) (a), (b), (c) Correlation coefficients W ,

g
(2)
ma(k0), and g

(2)
mm as a function of time for the test system of

fig. 1, with N0 = 10 and M = 10. Solid black curves are from
the phase-space method; dashed yellow curves are from the
number-state calculation. The lower curve in (a) is for the full
summation in eq. (3), whereas the upper curve is the respective
correlation coefficient for the resonant mode k0. (d), (e), (f) The
same as in the left column, but from the phase-space method
for N0 = 10

2 andM = 103. The dashed grey curve in (f) is from
an ensemble of PMFT calculations with a set of Poissonian-
weighted N0,j and N0 = 10

2 (see text). Statistical errors of
±1σ standard deviation for all curves from the phase-space
method are contained within the thickness of the curves and
are obtained from 105 stochastic trajectories.

of the statistical errors due to the stochastic sampling. The
number of stochastic trajectories in this example (which
otherwise is the same as in fig. 1) is small enough to render
the sampling errors visible. At the same time, we have
chosen the time window longer than the onset of spiking
behaviour and the sudden dramatic growth of statistical
errors to explicitly illustrate the signatures of systematic
errors that limit the useful simulation time of the phase-
space method.
To further evaluate the differences between treating

the Hamiltonian (1) exactly and using the approximate
PMFT, we plot in fig. 3(a) the correlation coefficient
W . Clear deviations are seen as time evolves; the devi-
ations illustrate that in the exact treatment the following
inequality holds: 〈m̂†km̂k〉� |〈m̂k〉|2+ 〈n̂k〉2, whereas the
PMFT prescribes an equality sign. Next, we consider the
molecule-atom and molecule-molecule second-order corre-
lations, g

(2)
ma and g

(2)
mm (see figs. 3(b) and (c)). Within

the PMFT, both correlations are identically equal to 1.
However, our exact results show that the molecule-atom
correlation initially grows with time while the total atomic
population grows. Then it changes to anti-correlation as
the resonant-mode atoms start to re-associate. Meanwhile
the effect on the molecular field from the atom interactions
is revealed as it gradually loses its second-order coher-
ence, albeit not by a significant amount for this few-mode
system.

Multi-mode system. – We now use the phase-space
method for simulating large 1D systems, with M = 103

36003-p4
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δ
δ

δ

τ

τ

Fig. 4: (Color online) The fraction of remaining molecules,
N(τ)/N0, as a function of time, for: N0 = 10

4, δ=−2.5 (top
curve); N0 = 10

2, δ=−25 (intermediate curve); N0 = 102, δ=
−2.5 (bottom curve). In all cases the coupling κ is chosen
to result in the same timescale t0 = 1/κ

√
N0 = 2× 10−4 s.

The solid curves are from the phase-space method (with 105

trajectories), whereas the dash-dotted curves are from the
approximate PMFT method; the difference between the two
types of curves (seen in the inset, for the lowest curve) is
almost invisible on the scale of the graph. The curve for δ=−25
illustrates a route away from the regime of strong molecular
depletion by increasing the dissociation energy 2�|∆| by an
order of magnitude, while keeping the same N0 as for the
lowest curve. For all curves from the phase-space method, the
statistical errors of ±1σ standard deviation are smaller than
the thickness of the curves, within the time window shown.

atomic modes and N0 = 10
2− 104 (40K2) molecules at

densities n1D � 1.3× 105− 1.3× 107m−1. In these cases,
the number-state calculation is impossible as the dimen-
sion of the Hilbert space is enormous (d= 2Mnmax	
10300). In fig. 4 we show the evolution of the number of
molecules for three different cases. For the top curve, the
initial number (N0 = 10

4) is much larger than the number
of available atomic modes, each of which hosts at most 1
atom due to the Pauli blocking. Accordingly, we see negli-
gible depletion of the MBEC, which makes the relative size
of the bosonic fluctuations very small. Hence, we do not
observe significant deviations from the PMFT, including
in the molecular second-order coherence, eq. (4), which
differed from 1 by less than 10−5 in this case.
The situation changes for the bottom curve, for which

N0 = 10
2 is comparable with the number of atomic modes

within the relevant width of the momentum distribution
near k0; we estimate this number [33] to be ∼ 0.1M = 102.
In this case, we see strong molecular depletion and an
increased role of bosonic quantum fluctuations so that
the PMFT starts to show disagreement with the exact
result. Admittedly the disagreement is still very small,
implying that the predictions of the PMFT for total
particle numbers can be rather accurate. The same is not
true, however, for higher-order correlations, shown in the
right column of fig. 3 for the same parameters as the lowest
curve of fig. 4. Here, the large depletion of the MBEC and
the increased role of quantum fluctuations are manifest
—beyond the predictability of the PMFT— in strong
higher-order correlations. The correlation coefficient W
clearly deviates from one, though to a lesser extend than

in the few-mode system. The deviations of the molecule-

atom and molecule-molecule correlations from g
(2)
ma(k0) = 1

and g
(2)
mm = 1, on the other hand, are more dramatic.

The development of decoherence in the molecular field
can largely be accounted for by the dephasing of atomic-
molecular oscillations due to total number uncertainty.
The frequency of the oscillations depends on the initial
number of molecules; with a range of frequencies, the
oscillations get out of phase and thus, for example, prevent
complete dissociation of the molecular field from being
seen in the average. As illustrated by the dashed grey
curve in fig. 3(f), this effect can be reproduced by an
ensemble of mean-field trajectories with different initial
numbers. Here we have used a Poissonian weighting to
give the same number distribution as the initial coherent
molecular field in the exact calculation, withN0 = 100 (see

footnote 1). The large values of g
(2)
mm, which are possible

with a state containing a superposition (or mixture) of
a few low-occupation number states2, occur at maximum
depletion when the number uncertainty is relatively large.

Summary. – We have demonstrated a successful appli-
cation of a fermionic phase-space representation to first-
principles quantum dynamics of a fermion-boson model.
We simulated the coherent molecular dissociation to fermi-
onic atoms and found significant higher-order correlations
that cannot be accounted for by the approximate pair-
ing mean-field theory. The knowledge of such correlations
and the development of experimental probes to measure
them provide the most accurate characterization of quan-
tum many-body phases in strongly correlated systems.
The method is exact up until clear “spiking” signatures

emerge in the stochastic trajectories. For the present
model, the useful simulation duration encompasses the
time required for partial recombination of the atoms into
molecules and for significant higher-order correlations to
emerge. The accuracy during this useful simulation time
was independently confirmed by comparison to number-
state calculations (for a small system) and by checking of
conserved quantities.
Although we have here reported only on 1D simulations,

we have also implemented 2D and 3D calculations and
found that the method works reliably in higher dimen-
sions. Extensions of the method to implement s-wave scat-
tering interactions will enable the study of non-equilibrium
dynamics in a broader class of fermionic systems of current
experimental interest, such as atomic Mott insulators in
optical lattices and the BCS-BEC crossover problem.

1More specifically, we perform an ensemble of PMFT calculations,
each one having a different initial average number of molecules N0,j ,
ranging over integer values between N0,j = 50 and N0,j = 150. The
results of each simulation are then averaged with a Poissonian weight
factor wj = (N0)

N0,j exp(−N0)/N0,j !. The resulting pair correlation
is given by g

(2)
mm =

∑
j wj |αj |4/(

∑
j wj |αj |2)2.

2As a simple example, consider the state |Ψ〉= (√61|0〉+ |1〉+
3
√
2|2〉)/4√5 . It has a value of g(2) � 2.1, corresponding to the peak

in fig. 3(f) at τ � 2.7, where 〈â†â〉 � 0.5.

36003-p5
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