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Abstract. The observation of non-classical correlations arising in two weakly
coupled Bose–Einstein condensates was recently reported by Estève et al (2008
Nature 455 1216). In order to observe relative number fluctuations between the
two condensates below the standard quantum limit, they utilized the process of
‘adiabatic passage’ to drive the system out of thermal equilibrium. They found
that this reduced the relative number fluctuations below that expected in thermal
equilibrium at the minimum experimentally realizable temperature. We present a
theoretical analysis that takes into account the spatial degrees of freedom of the
system, allowing us to calculate the expected correlations at finite temperature
in the system, and to verify the hypothesis of reduced number fluctuations via
adiabatic passage by comparing the dynamics to the idealized model.
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1. Introduction

Interacting quantum systems are incredibly complex, allowing a range of states that span
an enormous Hilbert space. Some of these quantum states, such as squeezed and entangled
states, can be utilized for quantum information [1, 2] and precision measurement [3] purposes,
potentially providing practical improvements over classical techniques. For instance, many
common measurements based on quantum mechanical principles are usually limited to a much
lower precision than allowed by the fundamental Heisenberg limit. The so-called standard
quantum limit can be obtained by using the quantum analogue of classical states, such as the
coherent state of light [4], to probe quantities ranging from positions and velocities, to magnetic
fields and atom numbers. One can improve the precision by using entangled or squeezed states
as inputs to interferometric measurement procedures [3, 5].

Experimentally realizing such quantum states presents many technical challenges.
Macroscopic superpositions (or Schrödinger cat states) can, in principle, be used to perform
Heisenberg-limited measurements [5], but in practice are extremely difficult to engineer. There
has been much success in creating squeezed states of light [6] and the spin of atomic samples [7]
that can be used to make measurements more accurate than the standard quantum limit.
Interactions between samples of photons and/or atoms can create these squeezed states, but
excess technical and thermal noise place practical limitations on the amount of squeezing
generated. In order for quantum information and precision measurement techniques based on
squeezed states to be practical, these excess fluctuations must be reduced.

Several methods of creating relative number squeezing and entanglement in ultra-cold
gases have been proposed, and some realized, such as four-wave mixing [8]–[10] and the Kerr
effect [11], molecular dissociation [12, 13], Josephson junction analogies [14, 15] and coupling
with squeezed light [16]. Recently, Estève et al [15] reported number difference squeezing
and entanglement between multiple ultra-cold atomic clouds. The experiment involved loading
repulsive rubidium-87 atoms into two or more potential wells at low temperatures. The repulsion
between the atoms reduces atomic bunching, and at zero temperature causes the fluctuations
in the population differences between the wells to be smaller than the ‘classical’ binomial
distribution. This experiment was the first to perform accurate atom counting within each well,
while simultaneously having access to phase correlations between the wells through expansion
and interference measurements. Combining these procedures, they observed relative number
squeezing that could be used, in principle, to perform measurements at a precision 3.8 dB better
than the standard quantum limit.

One of the cornerstone features of this experiment is a technique employed to reduce
the level of thermal fluctuations of the quantum state. Producing multiple condensates by
evaporative cooling into multiple wells produced results close to the standard quantum limit.
Estève et al found improved results by first cooling the atoms in a single trap, before
modifying the potential to split the condensate between several wells. They postulated that this
improvement is due to an adiabatic following of the quasiparticles representing the (quantized)
fluctuations. Briefly, the energy of the excitations causing fluctuations is higher in the single
condensate than after the splitting; therefore, the number of quasiparticle excitations at a given
temperature is lower prior to splitting. As the potential is modified, the system is driven out of
thermal equilibrium while the number of quasiparticles remains approximately fixed, and the
level of fluctuations becomes lower than what would result from a thermal state at the minimum
realizable temperature. If true, this is a fascinating example of a non-integrable system taken
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gently out of thermal equilibrium, to generate statistics more favourable to the experimenter,
and producing a state that appears to be static over the observed timescales. In [15], the authors
test their hypothesis by comparing with a simple, two-mode model, with reasonable agreement
between the results.

Here we present a critique of the two-mode model and the hypothesis of adiabatic passage.
Going beyond the two-mode model reveals regimes where two modes are sufficient, or when
the approximation fails. Higher-order spatial modes contribute to the physics when the wells are
not well separated, if the atom number is not large, or at higher energy or temperature scales.
We employ the perturbative Bogoliubov method [17], taking into account the full multi-mode
structure of the system, and find the two-mode description is quite accurate for well-separated
clouds. We compare the assumption of adiabatic passage to a model of full rethermalization,
where the system remains in thermal equilibrium as the clouds are separated while the entropy
of the isolated quantum system is constant. As the entropy of the total system depends on
contributions from each spatial mode, the full multi-mode statistics need to be calculated for
this comparison. We find that only the adiabatic model produces the dramatic improvement in
squeezing observed in the experiment. Finally, we perform truncated Wigner [18] simulations
of the dynamics, similar to previous calculations in one-dimensional lattices [19], and find they
agree well with the adiabatic model for a sufficiently large system. Thus we can conclude that
thermalization between the quasiparticle modes in this system is slow, and adiabatic passage is
a good model for experiments performed on these timescales.

2. System model

The experiment begins by evaporatively cooling a cloud of 87Rb atoms in an optical double-
well potential. The double-well potential is created by superimposing an optical lattice onto a
harmonic dipole trap [15, 20]. The potential in the region of the condensate is given by

V (x, y, z)=
1

2
mω2

⊥
(x2 + y2)+

1

2
mω2

z z2 +
VL

2
cos(2kLz), (1)

where the atomic mass of 87Rb is m ≈ 1.44 × 10−25 kg. The trap is cylindrically symmetric
and elongated in the direction of the lattice, ωz < ω⊥. The trap has radial trapping frequency
ω⊥ ≈ 2π × 425 Hz and, for the two-well experiment, a longitudinal trapping frequency of ωz ≈

2π × 60 Hz. The optical lattice creates a barrier between two (or more) low-energy regions, or
wells, such as that depicted in figure 1, and is generated by interfering two phase-locked lasers at
an angle producing a lattice spacing of a ≈ 5.7µm, where the lattice wave vector is kL = π/a.
The peak-to-peak depth VL begins at 2π h̄ × 430 Hz before being ramped up.

The atoms are described by the Hamiltonian

Ĥ =

∫
ψ̂†

[
−h̄2

2m
∇

2 + V (r, t)+
U0

2
ψ̂†ψ̂

]
ψ̂ d3r. (2)

The interaction constant is U0 = 4π h̄2as/m, where the s-wave scattering length is as ≈ 5.39 nm.
We are interested in the low-temperature limit, at or near the ground state of the system. To

the lowest order of approximation, the solution is given by the ground-state mean-field wave-
function ψ0, which we find by integrating the imaginary-time Gross–Pitaevskii equation,

−h̄
∂ψ0

∂τ
=

−h̄2

2m
∇

2ψ0 + (V (r)+ U0|ψ0|
2)ψ0 −µψ0, (3)
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Figure 1. A schematic of the double-well potential (dashed red) and ground-
state mean-field density (solid black) when the chemical potential µ is close to
the barrier height. The ground state can be interpreted as a superposition of the
atoms being in the left and right wells, sketched by the respective dotted-line
‘wave functions’.

until the state reaches equilibrium. The chemical potential µ is adjusted to give the required
atom number N0 =

∫
|ψ0|

2 d3r = 1600. If µ is close to the barrier height, the solution is that of
two weakly coupled condensates, sketched in figure 1.

The peak-to-peak depth of the optical lattice begins at 2π h̄ × 430 Hz. As the gas is cooled,
a Bose–Einstein condensate (BEC) forms in the trap with the potential barrier between the
wells significantly smaller than the chemical potential µ—thus at this stage it can be considered
a single condensate. The evaporative cooling method is unable to reduce the temperature T
significantly below the level of the chemical potential [15], so kBT ∼ µ.

The potential barrier is slowly ramped up by increasing the intensity of the lasers. In the
experiment, this was achieved adiabatically (i.e. slowly enough that additional heating was not
observed) at a rate where the peak-to-peak lattice potential VL increases by approximately
2π h̄ × 2 Hz ms−1. The BEC is coherently split into two, whereupon the atoms configure
themselves in a low-energy state possessing relative number squeezing.

The experiment was then able to directly detect the atoms in situ, and count the atoms in
each well, Ni to a greater accuracy than the shot-noise limit (i.e. 1Ni <

√
Ni ). Defining the

relative number squeezing, or normalized variance, as

ξ = Var[N̂ 1 − N̂ 2]/〈N̂ 1 + N̂ 2〉, (4)

their results indicate squeezing of up to −6.6 dB, or a reduction in the number difference
variance by a factor of 4.5 compared to the binomial distribution expected from ideal,
uncorrelated condensates. To quantitatively determine the number variance we must go beyond
the Gross–Pitaevskii description, which does not include either quantum or thermal fluctuations
in the cloud.

3. Bogoliubov analysis

The Bogoliubov approach is a perturbative expansion valid in the weakly interacting or large
atom number limit [17, 21]. In either case, the ground state of the system is close to a coherent
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state given by the Gross–Pitaevskii equation. The Bogoliubov approach treats fluctuations about
the mean-field perturbatively, by writing ψ̂ (r, t)= [ψ0(r)+ δψ̂ (r, t)]e−iµt , and assuming δψ̂ is
‘small’ compared to ψ0. The linearized solutions for δψ̂ arising from equation (2) obey

ih̄
∂δψ̂

∂t
=

[
−h̄2

2m
∇

2 + V + 2U0|ψ0|
2
−µ

]
δψ̂ + U0ψ

2
0 δψ̂

†. (5)

One can diagonalize the above linear equation (which couples δψ̂ with δψ̂†) into their respective
eigenstates. The annihilation operators for the eigenstates have the form

b̂i = eiεi t/h̄

∫
u∗

i (r)δψ̂(r)+ vi(r)δψ̂†(r) d3r. (6)

The eigenstates with eigenvalue εi are defined by the functions ui(r) and vi(r). Combining the
above yields the Bogoliubov–de Gennes (BdG) equations[

LGP + U0|ψ0|
2

−U0ψ
2
0

U0ψ
∗2
0 −LGP − U0|ψ0|

2

][
ui

vi

]
= εi

[
ui

vi

]
, (7)

where for brevity we have defined the Gross–Pitaevskii operator LGP = (−h̄2/2m)∇2 +
V (r)+ U0|ψ0|

2
−µ. We implement the procedure presented in [21] to reliably solve

equation (7).
To efficiently solve the BdG equations, it is important to minimize the size of our

three-dimensional spatial basis. Here we implement the harmonic oscillator basis [22] as it
effectively represents the trapped BEC in the lowest energy states while allowing efficient
calculations of the matrix elements between the basis states φi(r), for example Vi j =∫
φ∗

i (r)(VL/2) cos(2kLz)φ j(r) d3r and Ui j =
∫

|ψ2
0 (r)|φ

∗

i (r)φ j(r) d3r can be found accurately
using the Gaussian quadrature sum rules [23, 24]. We further optimize the calculations by taking
advantage of x , y and z reflection symmetries, allowing us to reduce the computation cost by
roughly a factor of 82. The total system is truncated to the 2413 states having energy less than
90h̄ωz.

We display the condensate density and lowest energy quasiparticle mode solutions in
figure 2 for lattice depths of 430 and 1650 Hz. This lowest energy mode can be interpreted as
transferring particles from one well to the other and corresponds to Josephson-style oscillations
in population. For deep lattices, the lowest energy mode has a significant overlap with
the antisymmetrized ground state wave function; that is u(r) and v(r) are approximately
proportional to ψ0(r)× P(z), where P(z) is −1 for z < 0 and +1 otherwise (i.e. P(z)=

2(z)−2(−z), where 2 is the Heaviside step function). In figure 3 we see that the energy
of this lowest mode decreases as the lattice depth is increased, while the energy of the other
modes increase. For VL & 2π h̄ × 1500 Hz, the energy of the second excited mode is several
times that of the lowest excitations, and at low temperatures one would expect the majority of
quasiparticles in the lowest mode.

3.1. Calculating correlations

Based on the solutions to the BdG equations, one can calculate the variance of the atom
number difference between the two wells as a function of the total atom number, temperatures
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Figure 2. Results of the BdG approach at a lattice depth of (a,b,c) 430 Hz
and (d,e,f) 1650 Hz. (a,d) Density of the mean field |ψ0(r)|2 through the x–z
plane. As the lattice is ramped the condensate splits into two well-defined wells.
(b,c,e,f) The solutions for the lowest energy excitation, (b,e) u1(r) and (c,f) v1(r),
also through the x–z plane. This excitation removes particles from one well and
transfers them to the other.
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Figure 3. (a) Energies of the lowest quasiparticle excitations as a function of
lattice potential depth VL. The lowest energy state is indicated and bold. (b)
The first-order contributions to the number difference variance Ai , as given by
equations (9) and (10). The lowest energy state contributes most strongly to the
number difference variance.

and the potential. We begin by defining the regions of interest around each well, �1 and
�2. For the double well we choose �1 to be the region with z > 0 and �2 to be the region
with z < 0. The quantum operator describing the total number of atoms in the i th region is
N̂i =

∫
�i
ψ̂†(r)ψ̂ (r) d3r . Expanding the field operator about the mean field using the solutions
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to the BdG equations, ψ̂ (r)= ψ0(r)+
∑

i b̂i ui(r)− b̂†
i vi(r), and inserting into the above

gives

N̂i =

∫
�i

|ψ0(r)|2 +
∑

j

ψ0(r)(u∗

j(r)b̂
†
j − v∗

j (r)b̂ j)

+ ψ∗

0 (r)(u j(r)b̂ j − v j(r)b̂
†
j)

+
∑

jk

u∗

j(r)uk(r)b̂
†
j b̂k − u∗

j(r)vk(r)b̂
†
j b̂

†
k

− v∗

j (r)uk(r)b̂ j b̂k + v∗

j (r)vk(r)b̂ j b̂
†
k d3r. (8)

The system is symmetric under the transformation z → −z, and so we expect the wells
to be evenly balanced, 〈N̂1 − N̂2〉 = 0. We take an ansatz for the many-body density matrix
by assuming the Bogoliubov modes are in thermal (chaotic) states, with population 〈b̂†

i b̂i〉 =

[exp(εi/kBT )− 1]−1. The variance of the number difference is therefore

Var
[
N̂1 − N̂2

]
= N0

∑
j

|A j |
2(〈b̂†

j b̂ j〉 + 〈b̂ j b̂
†
j〉)

+
∑
i 6= j

(|B j i |
2 + B∗

i j B j i)(〈b̂
†
i b̂i〉〈b̂

†
j b̂ j〉 + 〈b̂i b̂

†
i 〉〈b̂ j b̂

†
j〉)

+
∑
i 6= j

(|Ci j |
2 + Ci j Di j)〈b̂

†
i b̂i〉〈b̂ j b̂

†
j〉

+
∑
i 6= j

(|Di j |
2 + Ci j Di j)〈b̂i b̂

†
i 〉〈b̂

†
j b̂ j〉, (9)

where we note the symmetry of the system causes the effects of condensate fluctuations to
cancel, simplifying the expression. We have defined the following integrals for brevity:

A j =

∫
P(z)(ψ∗

0 (r)u j(r)−ψ0(r)v∗

j (r)) d3r, (10)

Bi j =

∫
P(z)u∗

i (r)v
∗

j (r) d3r, (11)

Ci j =

∫
P(z)u∗

i (r)u j(r) d3r, (12)

Di j =

∫
P(z)vi(r)v∗

j (r) d3r, (13)

remembering P(z) is −1 for z < 0 and +1 otherwise. We note that some the terms in equation
(9) go beyond the accuracy of the first-order Bogoliubov method used to derive them, and
many authors therefore choose to disregard these terms. Here these terms are retained, without
loss of accuracy, to facilitate a better comparison with the truncated Wigner simulations in
section 4, where the full density matrix resulting from thermally occupied Bogoliubov modes is
implemented as initial conditions.

For large N0 and small fluctuations, the dominant contributions to the number variance
come from the first sum in equation (9), and in particular the lowest energy (Josephson) mode
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Figure 4. The number difference squeezing ξ [equation (4)] as a function of
barrier height for the full multi-mode analysis (black lines) and a simplified,
two-mode model involving just the lowest Bogoliubov excitation (red lines). The
dashed lines are the results at zero temperature, whereas the solid lines are for
T = 11 nK. The models agree best for large lattice heights, or well-separated
clouds.

has the largest contribution. In figure 3(b), we see that for deep lattices |A1|
2 is much larger

than those corresponding to other modes, and simultaneously the quasiparticle population in
the lowest energy mode is expected to be greatest. Together these might justify the two-mode
approximation for lattice intensities VL & 2π h̄ × 1500 Hz, whereas higher energy excitations
are important for weaker lattices.

This would indeed be the case for systems of larger particle number. However, in this
system the additional contributions to equation (9) that a two-mode model would fail to capture
are significant. Even for well separated wells (VL & 2π h̄ × 1500 Hz) these extra terms contribute
approximately one-third of the total variance at zero temperature. In this regime, we expect a
small loss of precision in our calculations due to the fact that those terms proportional to Bi j ,
Ci j and Dik go beyond the accuracy of the first-order Bogoliubov analysis used, and may be
poorly approximated.

In figure 4, we compare the results of the full multi-mode analysis presented here, and
a simplified model including just the lowest Bogoliubov excitation. This simplified model is
somewhat akin to a two-mode approximation, and we see that the two models show reasonable
agreement for large barrier heights. In this regime, the two atomic clouds are well-separated and
the two-mode approximation is expected to be accurate.

In figure 5, we plot the number squeezing ξ (equation (4)) as a function of barrier height and
temperature. Clearly, best squeezing is obtained at lower temperatures and with larger barrier
heights.

3.2. Adiabatic passage

We now compare our results to the double-well experiment performed at Universität Heidelberg
and examine the hypothesis of adiabatic passage presented in [15]. The experiment found
improved number squeezing when slowly raising the barrier after evaporation compared to
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performing evaporative cooling with the barrier at fixed height. If the lattice ramp is slow
compared to the energy gaps in the Bogoliubov spectrum, ε1, ε2 − ε1, etc, one might expect
the population in each quasiparticle mode to be fixed during the evolution. We will refer to this
first hypothesis as adiabatic passage, in analogy with the quantum adiabatic theorem.

If the hypothesis of adiabatic passage were true, then the system would no longer be
in thermal equilibrium, as the ratio of the excitation energies changes during the ramp (see
figure 3). The ramp ends with fewer quasiparticle excitations in the lowest mode than one would
expect at realizable temperatures.

On the other hand, for sufficiently slow ramps one might expect the system to rethermalize,
so that the population in each Bogoliubov changes to conform to a new global temperature
as the energy levels move, and we also consider this possibility. We will refer to this second
hypothesis as fully thermalized. The evolution of the potential, and therefore the quasiparticle
energies, is slow compared to the gaps in the Bogoliubov spectrum, but it is unclear whether
the quantum adiabatic theorem is satisfied for the evolution with respect to the full many-body
Hamiltonian. The first-order Bogoliubov description used here ignores interactions between the
quasiparticles that can lead to a redistribution of excitations and a return to thermal equilibrium.
Under the fully thermalized hypothesis, we assume this process of redistribution will occur by
some higher-order interaction between quasiparticles.

An isolated system undergoing quasi-static evolution will have constant entropy. The
entropy of mode i in a thermal state, in terms of the mean occupation, is [25]

Si = 〈b̂†
i b̂i〉 ln

(
1 +

1

〈b̂†
i b̂i〉

)
+ ln(1 + 〈b̂†

i b̂i〉). (14)

The entropy of the total system is S =
∑

i Si . As the lattice height, and therefore excitation
spectrum, varies, we calculate the new temperature required to keep the system in thermal
equilibrium with fixed entropy. As many modes make significant contributions to the total
entropy, and entropy is exchanged between modes, this analysis is not possible with a two-mode
model.
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Figure 6. A comparison of different thermalization models and experiment [15]
for the relative number squeezing as the lattice height is slowly ramped upwards
from 430 Hz (indicated by the vertical dotted line). In all cases, at a lattice
depth of 430 Hz we take a thermal distribution with T = µ/6. The dashed red
line is the squeezing where we assume the state remains in thermal equilibrium
with constant entropy. The solid black line is for the adiabatic model where the
number of quasiparticle excitations in each mode does not change. The green
triangles are the experimental data from [15] (note that error bars were not
reported by Estève et al). The adiabatic model agrees with the experimental
observation of significantly decreased number fluctuations when slowly ramping
up the lattice.

We compare the adiabatic and thermalized hypotheses as the lattice potential is increased
in figure 6. In all cases we begin in thermal equilibrium with a lattice strength of 430 Hz at
a temperature of kBT ≈ µ/6, chosen to roughly correspond to the experimentally observed
fluctuations.

As can be seen from figure 6, the adiabatic following process predicts a level of fluctuations
significantly lower than the fully thermalizing model. In a realistic experiment one might
expect the entropy to increase slightly, resulting in even greater fluctuations. As the experiment
observes strongly improved number difference squeezing as the lattice is ramped, one can rule
out the possibility of full rethermalization on the timescales of the experiment. On the other
hand, the assumption of adiabatic passage agrees well with the experimental results, and we
conclude that the mechanism of effective cooling proposed in [15] is correct.

4. Dynamical simulation

In this section we perform a direct dynamical simulation of raising the optical lattice potential
using the truncated Wigner method [10, 18, 19, 22, 26, 27] and compare the results to perfect
adiabatic passage. This approach has been successful in calculating the number squeezing
between sites in a one-dimensional optical lattice as the lattice height is raised [19].

The truncated Wigner method is an approximate phase space method that takes advantage
of the Wigner representation of a quantum field. Truncating the higher-order derivatives from
the equation of motion for the Wigner function results in a classical Liouville equation that
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can be efficiently sampled stochastically. Thus the problem of solving a nonlinear equation of
motion for a quantum field ψ̂ (r) is reduced to that of the nonlinear of motion of an ensemble of
classical fields ψ(r). The resulting trajectories obey the (real-time) Gross–Pitaevskii equation,
where the initial conditions are sampled from the initial Wigner distribution. Expectation
values of symmetrically ordered operators are equal to the ensemble average of their classical
counterparts; however, care must be taken when using a finite, non-uniform basis [22].

For our truncated Wigner simulations we construct our initial state by assuming that
the condensate is in a coherent state, and populating the Bogoliubov modes according to
a thermal Wigner distribution with populations given by Bose–Einstein statistics [17]. As
pointed out in the previous section, the number fluctuations of the double-well system
realized by Esteve et al [15] are sensitive to second-order interactions between the linearized
Bogoliubov modes. We have found that if we perform a truncated Wigner simulation for the
experimental parameters [15] even with a time-independent barrier, we observe a small but
noticeable redistribution of the quasiparticles as they interact. The system tends towards a
different equilibrium and the resulting effect on the relative number fluctuations obfuscates the
comparison between our truncated Wigner results and the results in section 3.2. In principle,
this could be rectified by modifying the construction of our initial state by making use of a
higher-order theory or numerical approach (e.g. [28]).

However, we have chosen a simpler approach to investigate the connection between the
adiabatic passage of quasiparticles and our dynamical simulations. We instead simulate a
modified system where the perturbations δψ̂ are small compared toψ0, and linearization is more
accurate. To minimize the changes to the system we investigate a system with the same mean
field such that the product N0U0 is unchanged. In principle, such a change could be realized
with a Feshbach resonance [17], although in practice this would be challenging.

The system we simulate has 1.6 × 105 atoms and a scattering length as = 5.39 × 10−11 m,
and begins in thermal equilibrium at VL = 2π h̄ × 430 Hz with a temperature T ≈ µ/6. This
system has 100 times more atoms than the experiment, but identical mean-field and BdG
solutions. We note that assuming the condensate mode is coherent satisfies neither the grand-
canonical ensemble nor a particle conserving picture, but condensate fluctuations are small
in this regime and we expect this approximation should have little effect on the dynamics
(although one could, in principle, use a number-conserving phase-space approach [29, 30]).
Further, assuming the condensate mode is coherent ensures the Wigner function is positive and
considerably simplifies the truncated Wigner approach. The Wigner distribution for such a state
is Gaussian and therefore straightforward to randomly sample. We evolve 4000 independent
trajectories with the Gross–Pitaevskii equation, while the lattice is ramped up at a rate
2π h̄ × 2 Hz ms−1. As we use the non-uniform Hermite–Gauss basis for our simulation, care
must be taken to extract the correct quantum expectation values from the averaged data. For
arbitrary basis {φi(r)} such that ψ(r)=

∑
ciφi(r) and matrix P defined by

Pi j =

∫
φ∗

i (r)P(r)φ j(r) d3r, (15)

we find the number difference

〈N̂1 − N̂2〉 =

∫
ψ̂†(r)P(r)ψ̂ (r)= c† Pc − Trace

[
P
]
/2, (16)

and the number difference squared

〈(N̂1 − N̂2)
2
〉 =

(
c† Pc − Trace[P]/2

)2
− Trace[P2]/4. (17)
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Figure 7. A comparison of the truncated Wigner dynamics (points), a model of
complete adiabatic following (black solid line), and the fully thermalized model
(red dashed line) for the system with 1.6 × 105 atoms and a small scattering
length. The dynamics agree with the model of adiabatic passage.

These relations allow us to efficiently calculate the number difference variance without
transforming to the spatial basis, while simplifying the symmetric Wigner corrections for a
non-uniform basis [22].

Our dynamical results are plotted in figure 7, along with the predictions for perfect
adiabatic following and full thermalization obtained by the same procedure as in the previous
section. We see that the number difference variance agrees with adiabatic model, validating the
hypothesis of adiabatic following on this timescale.

5. Systems with different geometry

It is worth discussing changes that occur in multi-well systems of different geometry. First,
double-well traps can be created in a variety of ways, such as the fully optical approach
analysed here [15] or with magnetic traps on atom chips [31]. The latter setup results in two
parallel, elongated condensates (with ωx � ωy and ωz). In such a system, one would expect
long wavelength excitations along the transverse dimension x , some of which will have energy
less than the Josephson mode. Similarly, one expects multiple Josephson-type modes within
a small energy band, coupling the typical double-well excitation with low lying transverse
modes (the limit of two infinite condensates can be found in [32]). In this case, a multimode
description such as is presented here is essential to analysing these systems. It is unclear,
however, if such a geometry is advantageous for creating sub-shot noise number correlations.
The increased density of states about the Josephson mode may make adiabatic following more
difficult. Furthermore, a clear definition of the relative phase of the condensates, as investigated
in [15], may be problematic as the phase may vary along the long axis of the system.

In [15] the authors also investigated systems of multiple wells. They presented improved
results for the inner pair of six coupled wells, which was theoretically investigated using a
six-mode Bogoliubov theory. We have performed a multi-mode analysis of this system, which
involved increased computational difficulty. In the multi-mode picture, we observed a band of
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five Josephson-type states of decreasing energy as the barrier height is increased—one mode for
each inter-well coupling—while the remaining excitations had increasing energy. Thus, we can
conclude that the adiabatic following technique should also be beneficial in this arrangement,
as was indeed verified experimentally [15]. We were unfortunately unable to repeat the full
analysis for that system because of the increased numerical difficulty.

6. Conclusion

We have performed a multi-mode Bogoliubov analysis of coupled BEC systems to find the
low-temperature physics and calculate the population fluctuations between the two wells.
At very low temperatures, repulsive interactions induce relative number squeezing and even
entanglement between the wells. We present a critical analysis of the adiabatic passage
hypothesis employed in [15] as the optical lattice separating the wells is ramped up. Our results
indicate that adiabatic evolution of the quasiparticles is possible, causing a decrease in number
fluctuations as the lattice height is increased. We conclude that the isolated system can be driven
out of thermal equilibrium, to reduce fluctuations to below that of the initial thermal state. It
remains to be seen if this procedure can be improved to reach the quantum regime, where the
vacuum fluctuations dominate the physics.

It is interesting to note that we have not found a tendency towards thermal equilibrium on
the observed timescales. Either this isolated system does not equilibrate to the standard thermal
distribution, or does so on a timescale much longer than the usual estimate of a few collisions per
atom and a couple of trapping periods. If so, this is an interesting manifestation of non-thermal
equilibration in a non-integrable quantum system.

There are several limitations to the Bogoliubov approximation; we are unable to investigate
either the low atom number or high-temperature limits. The transition between anti-bunching
due to repulsion and boson bunching at higher temperatures could be investigated by non-
perturbative methods. Quantum Monte Carlo techniques [33] provide the most accurate and
reliable results for high-temperature bosonic systems. The positive-P phase space method can
be implemented to find thermal statistics of a Bose gas [34]. The Popov approximation [17] is
similar to the approach used here, but considers the interactions between the excited modes and
back-action on the condensate, and may be an appropriate method for exploring this regime.
Related to these, Sinatra et al [28] have proposed a method for sampling the statistics of a Bose
gas described by a Gaussian density matrix.
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