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Numerical stochastic integration is a powerful tool for the investigation of quantum dynamics in inter-
acting many-body systems. As with all numerical integration of differential equations, the initial condi-
tions of the system being investigated must be specified. With application to quantum optics in mind, we
show how various commonly considered quantum states can be numerically simulated by the use of
widely available Gaussian and uniform random number generators. We note that the same methods
can also be applied to computational studies of Bose–Einstein condensates, and give some examples of
how this can be done.
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1. Introduction

The theoretical study of non-equilibrium quantum many-body
dynamics is a growing area, especially since the experimental
achievement of trapped Bose–Einstein condensates. Many of the
methods used for theoretically investigating condensates have
been adapted from theoretical quantum optics [1], with varying
degrees of success. One particular approximation technique that
proved extremely successful in quantum optics is linearisation of
the fluctuations about solutions of the classical equations of mo-
tion. This technique, if used appropriately, is a very powerful tool
for the calculation of the steady-state spectra of intracavity para-
metric processes [2]. However, in a dynamically evolving system,
or one operating near phase transitions or critical points, this
method can give incorrect answers [3,4]. The validity of the
approximation depends on three conditions. The first of these is
that the solution of the classical equations is the same as the
mean-field solution of the full quantum equations. The second
and third are that the fluctuations about these solutions are in
some sense small and that they can be represented as Gaussian,
so that moments of higher than second order vanish. In the study
of trapped Bose–Einstein condensates, the Hartree–Fock–Bogo-
Elsevier B.V.
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liubov (HFB) method is a closely related approximation [5], and
therefore needs to be used with the same care as the linearised
fluctuation approximation in quantum optics.

When these conditions are not met, there are still a number of
ways to proceed. In some very rare cases it may be possible to solve
directly either a master equation for the density matrix, or even the
Heisenberg equations of motion for the actual system operators.
However, the most interesting quantum dynamics are not gener-
ally restricted to such cases. One set of methods which has been
very successful is the phase-space representations originally used
to develop stochastic differential equations in quantum optics
[6]. These allow common classes of quantum Hamiltonians to be
mapped via master and Fokker–Planck equations onto stochastic
differential equations. In some cases the Fokker–Planck equation
may be solved directly for a pseudoprobability distribution which
then allows for the calculation of operator moments [1,7]. Once
again, these cases are rare and can often only be solved in the stea-
dy-state regime. The method of choice if we wish to obtain dynam-
ical quantum information is then to numerically integrate the
stochastic equations of motion. As with any numerical analysis of
differential equations, this then requires that the initial conditions
be specified, as these can have marked effects on the subsequent
dynamics, in both optical [8,9] and interacting atomic and molec-
ular systems [10–16]. In what follows we will begin with a brief
outline of the theory behind the phase-space representations and
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then show how to numerically simulate some of the more common
and useful initial quantum states of optics and condensed atom
physics, in both the positive-P [17] and Wigner representations
[18].
2. Phase-space representations of the density matrix

Phase space techniques are a powerful tool to investigate the
full quantum dynamics of interacting quantum systems in cases
where it is impractical to solve either the Heisenberg equations
of motion or the master (von Neumann) equation for the density
matrix. Instead of working with operators or density matrices, they
allow us to work directly with classical c-number variables, which
are amenable to manipulation on available computers. Perhaps
more importantly, the complexity of the computation scales with
the number of interacting modes rather than with the size of the
Hilbert space, which is often completely intractable. In fact, a sin-
gle-mode quantum calculation has been performed using these
methods for the order of 1023 interacting quanta [19], which would
be completely out of the question using other methods. There are a
number of phase-space representations, among them being the
Wigner representation [18], the Glauber–Sudarshan P representa-
tion [20,21], the Q representation [22] (sometimes known as the
Husimi representation), the complex P representation [17], and
the R representation [20]. The most useful for numerical work
are the positive-P and truncated Wigner representations [23], the
latter being an approximation to the full Wigner representation.

2.1. Truncated Wigner equations

Historically, the first of these phase-space representations was
the Wigner representation [18], which was formulated as a
pseudoprobability function for the position and momentum of a
particle. Mathematically, the quadrature phase amplitudes of
quantum optics are completely equivalent to position and momen-
tum, so that the Wigner function is a frequently used tool for
describing nonclassical states of bosonic fields. Quantum mechan-
ical expectation values for operator products expressed in sym-
metrical order are found naturally in the Wigner representation
as classical averages of the corresponding Wigner variables. As
an example, making the correspondence between the single-mode
annihilation operator â and the complex Wigner variable a, we find
that

a�a ¼ 1
2
hâyâþ ââyi ¼ N þ 1

2
; ð1Þ

where N is the number of quanta in the mode. Given a general Ham-
iltonian which is some combination of bosonic creation and annihi-
lation operators, H, we find the von Neumann equation as

i�h
dq
dt
¼ H;q½ �; ð2Þ

from which the equation of motion for the Wigner function, W , is
found using the correspondence rules,

âq$ aþ 1
2

@

@a�

� �
W; âyq$ a� � 1

2
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� �
W;

qâ$ a� 1
2

@

@a�

� �
W; qây $ a� þ 1

2
@

@a

� �
W: ð3Þ

Following the standard methods [24], as long as the equation found
by the above procedure has no derivatives of higher than second or-
der, it can be mapped onto a set of stochastic differential equations
for the variables a and a�. Unfortunately, all interesting problems
result in derivatives of third order or more and, although methods
exist for mapping the resulting generalised Fokker–Planck equa-
tions onto stochastic difference equations [25], these are not very
useful in practice. A common practice is to truncate the partial dif-
ferential equation for the Wigner function at second order, often
justified by claiming that the effect of these terms is small. This pro-
cedure may be formally justified by requiring the system modes to
be highly occupied, and results in stochastic differential equations
in what is known as the truncated Wigner representation. If there
are no second order derivatives, the resulting equations are regular
and quantum noise enters via the initial Wigner distribution for the
variables. In optical problems, this then becomes functionally
equivalent to stochastic electrodynamics [26] and has been shown
to give misleading results in some cases [27,28]. This approximate
method has also been used with some success in the study of
Bose–Einstein condensates [29–32] and is closely related to ‘‘classi-
cal field methods”, including the stochastic Gross–Pitaevski equa-
tion [33–36]. The appropriate initial states to use in the truncated
Wigner equations are exactly the same as those that would be used
in a full Wigner representation, with the approximations entering
into the equations of motion.
2.2. Positive-P representation

The Glauber–Sudarshan P representation [20,21] is another rep-
resentation of the density matrix in terms of coherent states and
gives averages of the phase-space variables which are equivalent
to normally-ordered operator expectation values,

ða�Þman ¼ hðâyÞmâni: ð4Þ

As photodetectors naturally measure normally-ordered averages,
this would at first glance seem to be an extremely useful represen-
tation. It does, however, have two serious drawbacks. The first is
that it is difficult to represent any state which is ‘‘more quantum”
than a coherent state, as these do not possess positive and analytic
P-functions. Although a P-function can be written for any quantum
state in terms of generalised functions [37], it is difficult to see how
to sample these numerically. The second drawback arises when we
consider the P-representation Fokker–Planck equation, found using
the operator correspondences

âq$ aP; âyq$ a� � @

@a

� �
P;

qâ$ a� @

@a�

� �
P; qây $ a�P: ð5Þ

It is readily seen that, for any interesting problem, the resulting
Fokker–Planck equation will not have a positive-definite diffusion
matrix and therefore will not be able to be mapped onto stochastic
differential equations. The positive-P representation [17] was devel-
oped to circumvent this problem by using a doubled phase space.
For Hamiltonians which lead to derivatives of no higher than second
order, this results in a Fokker–Planck equation which always has a
positive-definite diffusion matrix and therefore can always be
mapped onto stochastic differential equations. The price which
has to be paid is that, instead of having a and a� as complex conju-
gate variables, the variables corresponding to this pair become
independent. These are written in various ways, but in this article
we will write the pair as a and aþ, and the appropriate equations
can be found by naively using the P representation correspondences
of Eq. (5) and then substituting aþ for a�. The independence of the
variables can cause serious stability problems with the numerical
integration, but for problems where the integration converges, the
positive-P representation is an extremely powerful theoretical tool
[38]. As a final remark, we note that a method has been developed
for mapping Hamiltonians which would give higher than second or-
der derivatives in a generalised Fokker–Planck equation onto sto-
chastic difference equations [39], which is useful for analysing
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processes such as third harmonic generation [40] and others which
go beyond the common three and four-wave mixing processes of
quantum optics and trapped ultra-cold gases.
3. Representation of quantum states

As always with the numerical integration of differential equa-
tions, initial conditions must be specified. In this section we will
describe how this can be done for a number of quantum states
which typically arise in quantum optics and BEC problems. We
note here that we do not specify the type of stochastic differential
equation, and all our results may be used as initial conditions for
either regular (common in the truncated Wigner for systems with
quadratic Hamiltonians) or stochastic (common in positive-P and
truncated Wigner for damped systems) differential equations. For
simplicity, we will consider single-mode representations of the
states, with a multi-mode extension being relatively straightfor-
ward. We will also show how our choices for these states represent
the correct quantum statistics, in terms of both quadrature and
intensity variances. Note that we use quadrature definitions such
thatbX ¼ âþ ây; bY ¼ �i â� ây

� �
; ð6Þ

so that the coherent state variances are equal to 1.

3.1. Coherent states

The simplest initial condition to model in the positive-P repre-
sentation is a coherent state, jbi, defined by âjbi ¼ bjbi. When the
Glauber P-function for a given state is well-behaved, we may also
use this as the positive-P function. This means that a coherent state
can be represented by the pseudoprobability distribution
Pða;aþÞ ¼ dða� bÞdðaþ � b�Þ. Numerically, this means using the
same complex conjugate pair, b and b�, for each of the stochastic
trajectories. This state is an appropriate choice to represent a
well-stabilised laser output and is also commonly used as an initial
condition for single-mode BEC analyses.

The Wigner function for the coherent state is a Gaussian,

Wða;a�Þ ¼ 2
p

exp �2ja� bj2
� �

: ð7Þ

This is simply represented numerically by choosing the initial con-
dition for each trajectory as

a ¼ bþ 1
2

g1 þ ig2ð Þ; ð8Þ

where the gj are sampled from a real normal Gaussian distribution,
such as is given by the Matlab function randn. These have the cor-
relations gj ¼ 0 and gjgk ¼ djk, where the overline denotes an aver-
age over many samples. It is readily shown that a ¼ b and
jaj2 ¼ jbj2 þ 1

2 and that the quadrature variances both give 1, as
required.

3.2. Thermal or chaotic states

These states, which can be used to represent, for example, a
mechanical oscillator in a thermal bath [41], have a particularly
simple P-function, with

PðbÞ ¼ 1
p�n

expð�jbj2=�nÞ; ð9Þ

where �n is the average number present in the mode [1]. We see
immediately that, as expected, there is no phase information in this
state. The appropriate distribution can be sampled from a normal
Gaussian distribution multiplied by

ffiffiffi
�n
p

and a random phase term,
a ¼
ffiffiffi
�n
p

g� exp 2pifð Þ; ð10Þ

where g is again a normal Gaussian variable and f is uniformally
distributed on ½0;1�. Gaussian and uniform variables may be easily
sampled using, for example, the Matlab functions randn and rand

respectively. Numerical checks of this distribution show that, with
sufficient samples ðJ 104Þ, it reproduces well the intensity, �n, and
the quadrature variances, VðbXÞ ¼ VðbY Þ ¼ 2�nþ 1. If the state is a
mixture of coherent and chaotic states, i.e., a chaotic state with a
coherent displacement, the P-function is written as

PðbÞ ¼ 1
p�n

expð�jb� b0j
2
=�nÞ; ð11Þ

where b0 is the coherent displacement. This may be easily sampled
as

a ¼ b0 þ
ffiffiffi
�n
p

g� exp 2pifð Þ; ð12Þ

where the random variables are as in Eq. (10).
The Wigner function for the chaotic state may be found as a

convolution of the P-function with a Gaussian of standard devia-
tion one-half. In this case, where the P-function is itself a Gaussian,
this results in a broader Gaussian, which can be sampled via

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nþ 1=2

p
g� exp 2pifð Þ; ð13Þ

where the random terms are the same as in Eq. (10). Samples from
this distribution reproduce well the required intensities and quad-
rature variances, always remembering that the Wigner distribution
represents symmetrically ordered operator products.

3.3. Squeezed states

Squeezed states are those in which the variance of one quadra-
ture of the field is below the coherent state value. Due to the Hei-
senberg uncertainty principle, which requires that VðbXÞVðbY ÞP 1,
this means that the variance in the conjugate quadrature must
be greater than that of a coherent state [42]. They can now be rou-
tinely produced in the laboratory and are a useful resource for such
things as nonclassical pumping of parametric processes, outcou-
pling squeezed atom laser beams [43] and quantum-limited mea-
surement [44]. Theoretically, a minimum uncertainty squeezed
state with VðbXÞVðbY Þ ¼ 1 is defined by the action of the squeezing
operator,

Sð�Þ ¼ exp½ð��Þ2a2=2� �2ðayÞ2=2�; ð14Þ

on the vacuum, followed by the coherent displacement operator,

DðgÞSð�Þj0i ¼ jg; �i; ð15Þ

where � ¼ re2i/ [1]. The role of the squeeze factor, r, is apparent
when we look at the quadrature variances (setting / ¼ 0 for
convenience),

VðbXÞ ¼ e�2r ; VðbY Þ ¼ e2r: ð16Þ

Another point to note is that the squeezing process adds quanta to
the mode, so that

hg; �jâyâjg; �i ¼ jgj2 þ sinh2r: ð17Þ

We will demonstrate here how to develop a numerical simulation
of squeezed states using a canonical expression for an arbitrary po-
sitive-P function [17]. Given a density matrix q̂, a particular form of
the positive-P function is

Pða;aþÞ ¼ 1
4p2 jhðaþ ða

þÞ�Þ=2jq̂jðaþ ðaþÞ�Þ=2ij2e�ja�ða
þÞ�j2=4: ð18Þ

We now use the linear transformation

l ¼ ðaþ ðaþÞ�Þ=2; c ¼ ða� ðaþÞ�Þ=2; ð19Þ
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which has the Jacobian

@ðax;ay;aþx ;aþy Þ
@ðlx;ly; cx; cyÞ

					
					 ¼ 4; ð20Þ

so that the normalised distribution in terms of the new variables
becomes

Pðl; cÞ ¼ jhljg; �ij
2

p
e�jcj

2

p
: ð21Þ

The displacement property

DyðlÞDðgÞ ¼ Dyðl� gÞ exp½�iImðlg�Þ�; ð22Þ

can then be used to obtain

hljg; �i ¼ h0jDyðl� gÞSð�Þj0i exp½�iImðlg�Þ�: ð23Þ

It is now convenient to make another change of variables by setting

l� g ¼ ei/m; ð24Þ

and also make use of the normally ordered form of the squeeze
operator,

Sðr;/Þ ¼ ðcoshrÞ�1=2 exp �C
2

ay2
� �

exp½� lnðcoshrÞaya�exp
C�

2
a2

� �
;

ð25Þ

where C ¼ e2i/ tanhðrÞ. Making these substitutions in Eq. (23), we
find

jhljg; �ij2 ¼ e�jmj
2�ðm2þm�2Þðtanh rÞ=2

coshðrÞ ; ð26Þ

and finally arrive at the separable Gaussian form

Pðm; cÞ ¼ e�m2
x =ðe�r cosh rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pe�r cosh r
p e�m2

y=ðer cosh rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
per cosh r
p e�jcj

2

p
; ð27Þ

which can be sampled using standard methods. We sample Eq. (27)
and invert to find the appropriate random variables for the positive-
P distribution initial condition as

a ¼ ei/mþ cþ g; ð28Þ
aþ ¼ e�i/m� � c� þ g�; ð29Þ

where, given Gaussian random variables satisfying nj ¼ 0 and
njnk ¼ djk,

c ¼ 1ffiffiffi
2
p ðn1 þ in2Þ; ð30Þ

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�r cosh r

2

r
n3 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er cosh r

2

r
n4: ð31Þ

This distribution can be checked numerically and gives the appro-
priate values for the quadrature variances and intensities, with
more samples needed for accuracy as the squeezing parameter be-
comes larger. The squeezed states are very simply modelled in the
Wigner representation, by deforming the coherent state distribu-
tion in the appropriate manner. For a squeezed state with coherent
displacement g, this is done by sampling

a ¼ gþ 1
2

f1e�r þ if2erð Þ; ð32Þ

with the f being real normal Gaussian variables. A numerical check
of this distribution shows that it also reproduces the analytically
calculated intensities and quadrature variances very accurately.

3.4. Number or Fock states

The Fock state is a quantum state with a fixed number of quan-
ta. In optics, for example, the decay of an excited two-level atom
can give a one photon Fock state. Here we will give a method
which was previously used to model spontaneous emission from
single-atom bosonic states [45] in the positive-P representation.

The Fock state with n quanta has density operator q̂ ¼ jnihnj,
which we will again sample using Eq. (18). Introducing the new
variables

l ¼ a� ðaþÞ�

2
and c ¼ aþ ðaþÞ�

2
; ð33Þ

we find the separable expression

Pðl; cÞ ¼ e�jcj
2

p
jlj2ne�jlj

2

pn!
¼ e�jcj

2

p
Cðjlj2;nþ 1Þ

p
; ð34Þ

where

Cðx;nÞ ¼ e�xxn�1

ðn� 1Þ! ð35Þ

is the Gamma distribution. Once again c ¼ ðn1 þ in2Þ=
ffiffiffi
2
p

is easily
sampled via standard methods, while the Gamma distribution
may be easily and efficiently sampled using a method given by
Marsaglia and Tsang [46] to give z ¼ jlj2, and l ¼

ffiffiffi
z
p

eih, where h
is uniform on ½0;2pÞ. We then invert to find

a ¼ lþ c and aþ ¼ l� � c�; ð36Þ

which are now correctly distributed to represent the Fock state jni.
Numerical checks once again show that the intensities and vari-
ances are represented well if enough samples are taken. As seen
in Ref. [45], the use of this method for the initial state also leads
to analytically known dynamics being reproduced.

To model a Fock state in the Wigner representation, we adapt an
approximation developed by Gardiner et al. [33] which allows us to
approximately represent these without having to deal with nega-
tive pseudoprobabilities. The Wigner function for the Fock state
jNi is

Wða;a�Þ ¼ 2
ð�1ÞN

p
expð�2jaj2ÞLNð4jaj2Þ; ð37Þ

where LN is the Laguerre polynomial of order N. This distribution is
oscillatory and can obviously be either positive or negative, so can-
not be easily simulated numerically. However, in the large N regime
Gardiner has made the observation [33] that the cumulative distri-
bution behaves very like a step function centered at jaj2 ¼ N. This
distribution can then be approximated by a Gaussian which gives
the right moments for the mean and variance and approximates
the higher moments well. The appropriate distribution is

PNðn; hÞ ¼
ffiffiffiffi
2
p

r
exp �ðn� N � 1=2Þ2

2ð1=4Þ

 !
; ð38Þ

where we have taken a ¼
ffiffiffi
n
p

eih, with h uniform on ½0;2pÞ. The first
three moments of this distribution are

a�a ¼ N þ 1
2
; ð39Þ

a�2a2 ¼ N þ 1
2

� �2

þ 1
4
; ð40Þ

a�3a3 ¼ N þ 1
2

� �3

þ 3
4

N þ 1
2

� �
; ð41Þ

so that mean and variance are in agreement with what we expect
analytically. We can now show that such an approximation in fact
generates all moments of (37), up to a correction of order 1=N2,
which is negligible for large N.

Using the differential recursion relation for the Laguerre
polynomials,
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x
d
dx

LNðxÞ ¼ NðLNðxÞ � LN�1ðxÞÞ; ð42Þ

a recursion relation for arbitrary even moments can be found.
Writing

ða�mamÞN ¼ 2
ð�1ÞN

p

Z
d2a expð�2jaj2ÞLNð4jaj2Þjaj2m

; ð43Þ

we can use (42) to find

ða�mamÞN ¼
N þm

2
ða�m�1am�1ÞN þ

N
2
ða�m�1am�1ÞN�1: ð44Þ

The first three moments are

ða�aÞN ¼ N þ 1=2; ð45Þ
ða�2a2ÞN ¼ ðN þ 1=2Þ2 þ 1=4; ð46Þ

ða�3a3ÞN ¼ ðN þ 1=2Þ3 þ 5
4
ðN þ 1=2Þ; ð47Þ

and comparison with (39) shows that the Gaussian approximation
is exact for the mean and variance, and accurate to Oð1=N2Þ for
m ¼ 3. It is easily shown by induction on m that the exact moments
satisfy

ða�mamÞN ¼ ðN þ 1=2Þm þ OðNm�2Þ; ð48Þ

so that the correction is always of order 1=N2 relative to the leading
term. Returning to the Gaussian approximation, we see that it gives

a�mam ¼
ffiffiffiffi
2
p

r Z 1

�1
dz ðzþ N þ 1=2Þm expð�2z2Þ

¼
ffiffiffiffi
2
p

r Z 1

�1
dz ðN þ 1=2Þm þmðN þ 1=2Þm�1z
h

þ OðNm�2Þ
i

expð�2z2Þ

¼ ðN þ 1=2Þm þ OðNm�2Þ; ð49Þ
which will be an adequate description of the number state statistics
for large N.

To simulate this distribution numerically, consider the choice
a ¼ pþ qg; ð50Þ
where g is a normal Gaussian random variable, and p and q are yet
to be determined. As we are using a Gaussian approximation, it is
sufficient to reproduce the first two moments of a2. (Note that a
is a real variable here, with the phase distribution to be added later).
We need to reproduce a2 ¼ N þ 1=2 and a4 ¼ ðN þ 1=2Þ2 þ 1=4. The
choices

p ¼ 1
2

2N þ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ N

q� �1=2

; ð51Þ

and

q ¼ 1
4p

ð52Þ

reproduce the required distribution to a high degree of accuracy.
The a thus chosen are then multiplied by the factor expð2ipnÞ,
where n is randomly chosen from the uniform distribution ½0;1Þ.
3.5. Crescent states

The crescent state is given this name because its Wigner con-
tours are sheared in phase-space due to a vð3Þ (Kerr) nonlinearity,
and is consistent with quantum states which have been proposed
for trapped Bose–Einstein condensates [47–49], where s-wave
scattering is equivalent to a Kerr nonlinearity. In this section we
will treat the Wigner distribution first, because we will use the cor-
responding Q-distribution to sample a positive-P distribution for
the crescent state.
In the Wigner representation a sheared state with coherent dis-
placement a0 is simulated by beginning with the squeezed state
representation given previously, and transforming this by a factor
expðiqg3Þ, where q is the shearing factor,

a ¼ a0 þ
1
2

g1e�r þ igerð Þ

 �

eiqg3 : ð53Þ

The real noise terms have the correlations

gj ¼ 0; gigj ¼ dij: ð54Þ

Numerical checks of distributions produced using these methods
again show that they give the expected values for average numbers
and quadrature variances.

The Q-distribution Qðl;l�Þ can be simulated as a simple broad-
ening of the Wigner distribution, so that we sample

l ¼ a0 þ
1ffiffiffi
2
p g1e�r þ igerð Þ


 �
eiqg3 : ð55Þ

We can then make use of Eq. (18) to construct samples of the cor-
responding positive-P distribution: transforming to the variables

l ¼ ðaþ ðaþÞ�Þ=2; c ¼ ða� ðaþÞ�Þ=2; ð56Þ

we have

Pðl; cÞ ¼ hljqjli
p

e�jcj
2

p
¼ Qðl;l�Þ e

�jcj2

p
ð57Þ

so that given the Q-function samples (55), and c ¼ ðn1 þ in2Þ=
ffiffiffi
2
p

,
we have the crescent state sampling for the positive-P distribution

a ¼ lþ c and aþ ¼ l� � c�: ð58Þ
3.6. Interacting many-body states

Generating the many-body states appropriate for ultra-cold
Bose gas simulations is difficult to illustrate within the single mode
approach taken in this article. We note, however, that a number of
Wigner states which are commonly used in modelling Bose–Ein-
stein condensates may be sampled relatively easily and we provide
a brief outline of currently available methods. We refer the reader
to Ref. [36] for a detailed review of Wigner sampling methods for
Bose gases. The methods may be summarized as follows:

(1) Coherent state. At zero temperature, a first approximation to
the state of a BEC is a coherent state. In a continuous field
theory the modes orthogonal to the condensate must neces-
sarily contain vacuum noise in the Wigner representation. A
simple and effective means to construct a coherent state is
to simply add this noise, corresponding to half a quanta
per mode, to the appropriate mean field solution of the GPE.

(2) Bogoliubov state. Steel et al. [29] demonstrated that an
improved approximation at low temperatures, the Bogo-
liubov state, may be readily constructed from a stationary
solution of the Gross–Pitaevskii equation once the Bogo-
liubov modes are known. This approach has also been
extended to include Uð1Þ symmetry constraints imposed
by number conservation by Sinatra et al. [30–32].

(3) Adiabatic mapping. Polkovnikov and Wang [35] used the
quantum adiabatic theorem to show that interacting states
at zero temperature may be obtained by sampling the
appropriate non-interacting state and then adiabatically
ramping up interactions to the desired final value.

(4) High temperature states. In the vicinity of Tc a first approxi-
mation for the Wigner distribution is given by the non-inter-
acting Bose–Einstein distribution. This may be used as a
starting point for evolution according to the stochastic
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Gross–Pitaevskii equation [14,15,33,34] which evolves the
Bose field toward a sample from the grand canonical ensem-
ble for the many-body system.

4. Conclusions

In conclusion, we have shown how to take numerical samples in
phase space of some of the most commonly appearing quantum
states in quantum and atom optics. These techniques are impor-
tant when we wish to investigate the effects of different initial
states on dynamical quantum processes and possess straightfor-
ward generalisations to many-mode problems. These methods will
become more useful and important as the dynamics and quantum
features, such as entanglement, of interacting many-body systems
are further investigated.
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