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We develop a scheme to generate number squeezing in a Bose-Einstein condensate by utilizing interference
between two hyperfine levels and nonlinear atomic interactions. We describe the scheme using a multimode
quantum field model and find agreement with a simple analytic model in certain regimes. We demonstrate that
the scheme gives strong squeezing for realistic choices of parameters and atomic species. The number squeez-
ing can result in noise well below the quantum limit, even if the initial noise on the system is classical and
much greater than that of a Poissonian �shot-noise limit� distribution.
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden-
sates �BECs� has allowed the creation of macroscopic quan-
tum systems that are highly controllable and hence provide
an excellent system to test predictions of many-body quan-
tum dynamics. The generation of nonclassical states in
BECs, such as number-squeezed states, would allow for
measurements of particle number statistics that differ from
classical predictions �1�. However, while the motional state
of the atoms is reasonably simple to manipulate, the quantum
statistics governing the number distribution of the particles is
difficult to control, with BECs typically produced with a
large �5%� shot-to-shot variation in the number. The genera-
tion of nonclassical states in BECs is currently of great in-
terest �2�, as it could potentially enhance the sensitivity of
atomic interferometers �3� used to measure electric, mag-
netic, and gravitational fields, accelerations, and atomic in-
teractions. The generation of nonclassical states also pro-
vides a method for testing the fidelity of recent quantum state
transfer schemes �4�, and an atom laser produced from a
number-squeezed BEC will have a reduced linewidth �5�.

The generation of nonclassical states via self-interaction
in samples of cold atoms has been considered before �6–11�.
The schemes proposed in �6,7� describe the generation of
quadrature squeezing, which requires the use of a well-
defined phase reference in order to be observed. A well-
defined phase reference is difficult to obtain in atom optical
systems, especially in the presence of strong nonlinearities,
which are required to produce the quadrature squeezing,
thus, making the schemes somewhat unrealistic. In addition,
both of these schemes assume the the BEC is initially in a
coherent state rather than a more realistic statistical mixture
of coherent states with random phases. �8–10� have demon-
strated that the atomic nonlinearity can be used to generate
number difference squeezing, creating a state with angular
momentum projection below the standard quantum limit
�spin squeezing�. These schemes assume that the total num-

ber of particles is initially well defined. Recently, Esteve et
al. �2� directly observed squeezing in the number difference
between two adjacent lattice sites.

Chuu et al. �12� demonstrated the ability to produce small
condensates which exhibit number squeezing. By producing
a very stable trapping potential, they found that they were
able to produce condensates with a very well-specified
chemical potential. As the chemical potential is related to the
condensate number through the nonlinear interaction, this
leads to number-squeezed condensates.

In this paper, we describe a scheme that allows the cre-
ation of absolute number squeezing in a BEC �as opposed to
number difference squeezing�, which is experimentally real-
istic, utilizes only the relatively simple experimental tech-
nique of Ramsey interferometery and does not require ma-
nipulation of the scattering length via a Feshbach resonance
or a coherent phase reference for the atoms. We show that
our scheme achieves number squeezing below the quantum
limit even if there is initially considerable classical noise on
the number statistics and that this result holds even when we
realistically assume that the initial state of the BEC is a sta-
tistical mixture of states with random phase.

We consider a BEC with two internal states confined to an
optical trap, with all the atoms initially in one state. A short
state-dependent coupling is applied, transferring a small frac-
tion of the population to another state. The system is then left
to evolve for some time, allowing nonlinear interactions and
interference between the two states, before the coupling is
applied for a second time, transferring some of the popula-
tion back to the initial state. Provided the s-wave scattering
lengths of the atoms in the different internal states are not all
identical and by choosing appropriate coupling strengths
hold times and trap geometry, it is possible to generate num-
ber squeezing. An important difference between our scheme
and the schemes demonstrated in Refs. �2,12� is that our
scheme is based on the dynamic interference between the
two modes to obtain absolute number squeezing in one of the
modes, where as the schemes demonstrated in Refs. �2,12�
obtain their squeezing by adiabatically changing the potential
to one where the ground state of the system exhibits number
difference squeezing �in the case of �2�� or absolute number
squeezing �in the case of �12��.*haine@physics.uq.edu.au
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II. SCHEME

Our proposed scheme is based on a Ramsey interference
experiment between two hyperfine states of sodium, namely,
�F=2,mF=0���1� and �F=1,mF=+1���2�. The timing for
our scheme is outlined in Fig. 1. We begin with all the atoms
in a BEC in the �1� state in an optical trap. At t= t0, the
microwave coupling is turned on for a brief duration of time
�t1= t1− t0. During this time, a fraction of the atoms are then
transferred to state �2�. The coupling is switched off, and the
system is left to evolve for an amount of time thold= t2− t1
before we interfere the two modes with a second microwave
coupling pulse for a duration �t2= t3− t2. We assume that this
pulse is phase locked to the first, with an adjustable phase
shift �. This phase shift is an important ingredient, as it is
what allows us to ensure that the two modes interfere in such
a way as to produce number squeezing, independently of
thold, which controls the depth of squeezing. Nandi et al. �11�
recently published a scheme based on a Ramsey-Bordé inter-
ferometer but without including this adjustable phase shift �
at the second coupling pulse. As a result, their squeezing is
only observed at particular values of thold, when the nonlinear
phase shift acquired during the hold time is appropriate. The
inclusion of this phase shift gives us an additional degree of
freedom in our system, as we can choose thold independently
of the phase shift required to produce number squeezing and
thus optimize our squeezing depth. After t3, we separate the
two modes with a magnetic field and count the number of
atoms in mode �2� to determine the number statistics. The

Hamiltonian for the system is Ĥ=Ĥ0+Ĥc�t�, with

Ĥ0 = �
j=1,2

	 �̂i
†�r�Hj�̂i�r�d3r

+ �
i,j=1,2

Uij

2
	 �̂i

†�r��̂ j
†�r��̂i�r��̂ j�r�d3r , �1�

and

Ĥc =	 ����t�ei��̂2
†�r��̂1�r� + H.c.�d3r , �2�

where �̂i�r� represents the annihilation operator for state �i�,
Hj =

−�2

2m �2+Vopt�r�+ �j−1��� is the single-particle Hamil-
tonian, and Vopt�r� is the optical dipole potential. ��t� repre-
sents the microwave coupling field, which is switched on and
off to control the coupling between the two hyperfine levels.
The phase of this rf field can also be tuned between each

pulse. We will make the rotating wave approximation �1� and
assume that the coupling is on resonance, such that ��t�
=�0e−i�t, with �� as the hyperfine splitting between �1� and
�2�, and �0 is the Rabi frequency.

III. ANALYTIC MODEL

We first consider a two-mode model, which demonstrates
how atomic nonlinearities can be used to generate number
squeezing. A two-mode model can be derived from Eqs. �1�
and �2� by assuming that the atoms remain in the ground
motional state of the optical trap. With this assumption, the

modified Hamiltonian for the system is H̃=H̃0+H̃c, with

H̃0 = ��â2
†â2 + �

i,j=1,2
��ijâi

†âiâj
†âj , �3�

H̃c = ����t�ei�â2
†â1 + H.c.� , �4�

where â1�â2� annihilates an atom from state �1���2��, and
�ij =

Uij

2 
��0�r��4d3r, where �0�r� is the ground-state wave
function of the optical potential.

Beginning at t0, with the coupling initially switched off
��0=0�, and assuming that our initial state is a Poissonian
mixture of number states for mode �1�, and vacuum for mode
�2�, the density matrix for the system is

��t0� = e−�	0�2 �
n1=0


 ��	0�2�n1

n1!
�n1,0��n1,0� , �5�

where the state �n1 ,n2� denotes n1 atoms in mode �1� and n2
atoms in mode �2� and �	0�2�N0 is the mean number of
atoms. We note that ��t0� is mathematically equivalent to a
mixture of coherent states with random phases,

��t0� =
1

2�
	

0

2�

�	0ei���	0ei��d� � �0��0� , �6�

where �	��e−�	�2/2�n
	n

�n!
�n� denotes the Glauber coherent

state �1�. At times t t0, the evolution is trivial as � com-

mutes with H̃0.
At t0, the coupling is turned on for a duration �t1 coupling

a fraction of the atoms �sin2��0�t1�� into mode �2�. If �t1 is
sufficiently short that we can ignore the contribution to the

evolution due to the nonlinear part of H̃0, the density matrix
for the system becomes

��t1� = 	
0

2�

�	�t1�ei���	�t1�ei�� � ���t1�ei�����t1�ei��
d�

2�

=
e−�	�2−���2

2�
�

n1,n2,m1,m2

	
0

2�

ei��m1+m2−n1−n2�d�

�
	�t�n1	��t�m1��t�n2���t�m2

�n1 ! m1 ! n2 ! m2!
�n1,n2��m1,m2�

= �
n1,m1,n2

An1,m1,n2
�n1,n2��m1,n1 + n2 − m1� , �7�

with

time

|Ω|
Ω0

t t t t0 1 2 3

Δt Δt1 2

thold
First coupling
pulse

Second coupling
pulse + phase shift φ

FIG. 1. Timing for the coupling pulses in the proposed experi-
ment. The coupling field is turned on at t0 and then off again at t1.
After a duration thold, the coupling pulse is turned back on again at
t2 and finally turned off at t3. After this, the population of state �2�
atoms is measured.
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An1,m1,n2
= e−�	�t1��2−���t1��2

	�t1�n1	��t1�m1��t1�n2���t1�n1+n2−m1

�n1 ! m1 ! n2 ! �n1 + n2 − m1�!
,

�8�

and 	�t1�=	0 cos �1, ��t1�=−i	0 sin �1, where �1=�0�t1.
We note that although the condensate initially had no global
phase, a relative phase between the two modes has been
created by this first coupling pulse.

The coupling is now switched off, and the system is left to

evolve under H̃0 for a period of time thold. At t= t2, the den-
sity matrix for the system is now

��t2� = �
n1,n2,m1=0




An1,n2,m1
e−i�n1,n2,m1

thold�n1,n2�

��m1,n1 + n2 − m1� , �9�

with

�n1,n2,m1
= �11�n1�n1 − 1� − m1�m1 − 1�� + �22��m1 − n1�

��2n2 + n1 − m1 − 1�� + 2�12

��n1n2 − m1�n1 + n2 − m1�� + ��m1 − n1� . �10�

At this point, both modes still contain a Poissonian number
distribution, but the relative phase created in the previous
step has been “sheared” due to the nonlinear interaction. We
note that if �11=�22=�12, there is no phase shearing due to
this effect, and our scheme does not work. We chose sodium
as our atomic species, as it has a relatively large difference
between the scattering lengths of �F=1, mF=+1� and
�F=2, mF=0�.

Finally, we describe the dynamics caused by the second
microwave pulse in the Heisenberg picture, by noting that
the Heisenberg operators after the second pulse are â1H
= â1�0�cos �2− iâ2�0�sin �2ei�, and â2H= â2�0�cos �2
− iâ1�0�sin �2e−i�, with �2=�0�t2, where �t2 is the duration
of the second microwave pulse, and � is the phase of the
microwave field relative to the first pulse. Again, we have
assumed that the duration of the pulse is sufficiently short
that we can ignore the evolution due to the nonlinear com-

ponent of H̃0. As we are only interested in the number sta-
tistics, we can neglect the rest of the evolution after the sec-
ond microwave pulse, as the number operators for both

modes commute with H̃0. Assuming we can distinguish state
�2� atoms from state �1� atoms, we define the normalized

number variance for state �2� atoms as v�N̂2����N̂2
2�

− �N̂2�2� / �N̂2�, N̂2� â2H
† â2H. Figure 2 shows the v�N̂2� as a

function of thold and �, using the scattering properties of
sodium a11=a12=2.8 nm, a22=3.0 nm �13� in a 500 Hz
spherical harmonic trap. For some values of thold and �,

v�N̂2� dips below 0.01, as compared to the quantum limit

v�N̂2�=1 associated with a coherent state, indicating signifi-
cant number squeezing. The parameter space for this model
is quite large, as we can adjust the length of the first and
second coupling pulses, the hold time, and the phase of the
second coupling pulse. If we did not have the ability to ad-
just the phase of the second coupling pulse, we would be

constrained to a vertical line in Fig. 2 and not necessarily be
able to access the optimum value of the squeezing. We found
that the best number squeezing was obtained when the first
coupling pulse was quite weak �approximately 8% of the
atoms transferred�. We also found that we could still get a
good level of squeezing when we began with an initial state,
which had number fluctuations 150 times larger than a Pois-
sonian distribution �about 5% shot-to-shot fluctuations in the
number� �see Fig. 4�. When starting with such an initial con-
dition, the best squeezing was found when the first beam
splitter was relatively weak. This is due to the fact that the
addition of vacuum to a super-Poissonian number distribu-
tion drives it toward a Poissonian number distribution.

IV. MULTIMODE MODEL

To investigate if the approximations we made in the pre-
vious section to obtain an analytic solution were valid, we
performed a one-dimensional multimode simulation of the
system using a stochastic phase-space method. Specifically,
we utilize a truncated Wigner �TW� approach �14�. We re-
duce Eqs. �1� and �2� to one dimension by integrating out the
dynamics in the y and z dimensions. A Fokker-Plank equa-
tion �FPE� is then found from the master equation for the
system using the Wigner representation. This equation can
then be converted into a set of stochastic partial differential
equations �SPDEs�, which can be solved numerically. By av-
eraging over many trajectories with different noises, expec-
tation values of quantities corresponding to operators in the
full quantum field theory can be extracted. When converting

FIG. 2. �Color online� log10�v�N̂2�� as a function of thold and �.

For some values of thold and �, v�N̂2� dips below 0.01, indicating
significant squeezing. Parameters: �11=�12=0.018 s−1, �22

=0.019 s−1. The strength of the coupling pulses was �1=0.3 rad
and �2=0.025 rad for the first and second coupling pulses, respec-
tively. The initial occupation of the BEC was chosen to be a Poisson

distribution with �N̂�=107. These parameters correspond to the scat-
tering properties of sodium in a 500 Hz spherical harmonic trap.
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our FPE to SPDEs, we ignore third- and higher-order deriva-
tives in the FPE, as these terms do not have a simple map-
ping to the stochastic PDEs, and can be assumed to be neg-
ligible when the field has a high occupation number �14�.
This truncated Wigner approximation will eventually fail, as
it cannot describe negative components of the Wigner func-
tion, which eventually occur when evolving under a Hamil-
tonian such as Eq. �1�. However, we have checked our simu-
lations in limits where the multimode dynamics can be
neglected and they agree with the results obtained from our
two-mode analytical model. In addition, over our simulation
times no anomalous results, such as significant negative den-
sities, were seen, indicating that the truncation of third-order
derivatives was a valid approximation. The SPDEs describ-
ing the one-dimensional system are

i��̇1�x� = L1�1�x� + ���t��2�x� , �11�

i��̇2�x� = L2�2�x� + ����t��1�x� , �12�

with

L j = Hj + Ujj��� j�2 − 1/dx� + Uij���i�2 − 1/�2dx�� , �13�

where dx is the grid spacing of the numerical simulations.
The terms inversely proportional to dx compensate for the
mean field of the vacuum, which is nonzero in the Wigner
approach. The noise on the initial conditions for each trajec-
tory of the evolution of these equations was chosen such that
they corresponded to the specific initial state of interest.

Figure 3 shows the normalized density profile of state �2�

atoms ��̂2
†�x��̂2�x�� / �N̂2�, at t2, compared to the normalized

density profile at t1, as calculated by the TW model for two
different parameter regimes �cases I and II�. Case II shows
an example where the multimode dynamics is significant,
and the density profile at t2 has a pronounced difference from
the ground-state density profile. The multimode dynamics is
a consequence of the unequal scattering lengths, meaning
that when atoms are created in state �2�, they are no longer in
a motional eigenstate of the system. These dynamics are rela-
tively insignificant in case I, when only 0.25% of the atoms
are transferred in the first coupling pulse. However, in the
case II, 9% of the atoms are transferred in the first cou-
pling pulse, and the perturbation to the dynamics during the
hold time is significant, even though the system is left to
evolve for a much shorter time. Figure 4 shows the number
of atoms in state �2� and the variance in the number, after the
second coupling pulse, for cases I and II. In case I, there is an
excellent agreement between the multimode model TW and
the two-mode analytic model. However, in case II, the com-
parison between the two models is poor due to significant
multimode dynamics �which can be seen in Fig. 3�b��, pre-
venting the system acting as a two-mode system.

V. EXPERIMENTAL CONSIDERATIONS

This scheme relies on having a good control of micro-
wave fields in order to implement the precise timing and
resonance conditions. Precise control of microwave intensity
and pulse duration is routinely achievable in atom optics
laboratories �see, for example, �15��, and the control of mi-
crowave frequencies with sub-Hertz stability �much less than
the Fourier width of the pulses in our scheme� is routinely
achievable with off-the-shelf equipment. As the parameter
space for the experiment is large, a good knowledge of the
parameters such as the trapping frequency, the Rabi fre-
quency, and the scattering lengths will be required such that
theoretical modeling can predict roughly where to search for
the squeezing. The values of the scattering lengths will prob-
ably be the least well known of these quantities. To simulate
the effect of an imprecise knowledge of the scattering
lengths, we have investigated the effect of varying one of the
scattering lengths �a22�, while keeping all other parameters
fixed to the values used in Fig. 4 �case I�.

Figure 5 shows v�N̂2� as a22 is varied �a22=a0 corresponds
to the value of a22 used in Fig. 4, i.e., a0�3.0 nm�, while
keeping the phase of the second coupling pulse � fixed at the
optimum phase for squeezing ��=1.4�� as found in case I.
The squeezing is completely degraded as the scatting length
changes by about 3%. However, this is not because the de-
gree of phase shearing has been significantly altered. The
different scattering length causes a slight shift in the mean
phase between the two modes, such that it is shifted away
from the optimum phase for number squeezing. If we were to
rescan the phase of the second coupling pulse to search for
number squeezing �this would mean performing more shots
of the experiment in order to find the optimum phase�, we
may find that the squeezing is still present for a large range

of scattering lengths. Figure 6 shows v�N̂2� vs a22 for the
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FIG. 3. �Color online� Normalized density profile

��̂2
†�x��̂2�x�� / �N̂2� at t2 �blue solid line� compared to the normalized

density profile at t1 �black dashed line�, as calculated by the TW
model for two different parameter regimes. In case II, more atoms
are transferred in the first coupling pulse, which creates significant
multimode dynamics. In case I, the dynamics are much less pro-
nounced and the density profile at t2 differs only slightly from that
at t1. Parameters: case I: �t1=1 �s, �t2=0.5 �s, and thold

=16 ms. Case II: �t1=6 �s, �t2=0.5 �s, and thold=3.8 ms. In
both cases, we assumed �0=50 rad s−1, and a 500 Hz spherical
harmonic trap. We assumed an initial number distribution, which
was Poissonian, with a mean number of atoms N0=107.
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same parameters as case I, but this time optimizing the phase
of the second coupling pulse � for each value of a22. We see
that significant number squeezing can still be achieved as we
alter a22 by 30% in either direction. The exception is as a22
approaches a11 and a12, the squeezing vanishes.

When modeling the system with the multimode TW
model, we found that squeezing could still be obtained as we
varied a22 by about 10%, giving decent agreement with Fig.
6 in this range. However, we found that as �a22−a11� became
larger, the results differed significantly from the two-mode
model. As the TW model requires significantly more compu-
tational resources, we did not optimize the phase directly in
this model. Rather, we used the optimum phase as found by
the two-mode model �Fig. 6�. For example, with a22 /a0

=0.7, the two-mode model predicts v�N̂2�=0.0192 �at �
=0.899��, where as for the same value of � the multimode

TW predicts v�N̂2�=14.5. It is possible that the multimode
TW model predicts squeezing for some parameters for this
value of the scattering length. However, as the parameter
space is large ��t1, �t2, thold, and � can all be varied to find
the optimum parameter regime�, we found it almost impos-
sible to find squeezing by searching using the multimode TW
model alone. However, by utilizing the Gross-Pitaeveskii
equation we were able to search for a regime where the sys-
tem behaves approximately as a two-mode system and then
use the two-mode model to investigate the squeezing prop-

erties. We can then confirm the results by using the multi-
mode TW model. We found that significant squeezing was
achievable, with v�N̂2�=0.266 for �t1=0.5 �s, �t2
=0.25 �s, thold=16 ms, and �=0.536�.

Detection of atoms with high quantum efficiency will be
required in order to observe the squeezing. This is experi-
mentally challenging but has been demonstrated before
�2,16�. An addition effect that may degrade the squeezing is
atomic loss due to inelastic collisions. Using the three-body
recombination rates recently measured in �17�, we estimate
that roughly 10% of the atoms from state �1� �the state that
we are not looking for squeezing� are lost during the 16 ms
hold time. However, a more important concern is the two-
body inelastic collision rate, as it scales as 
��0�r��4d3r, that
is, the same way as �ij, the nonlinear interaction parameter,
so reducing the atomic density will not help, as the lifetime
due to collisions and the time taken to achieve squeezing
scale identically. It was observed in �17� that with mixtures
of different hyperfine states decayed on time scales of order
several milliseconds. However, if the maximal stretched
combination of states was used �18� �for example, �F
=1, mF=1�, �F=2, mF=2��, lifetimes of several seconds
were observed. Using this particular combination of states
would allow for squeezing under our scheme, as it has a11
�a12, and as these scattering lengths are similar one to the
ones used in this paper, one would expect a similar amount
of squeezing.
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FIG. 4. �Color online� Results from the multimode TW model �red dots� compared to the analytic two-mode model �black trace�, for two

different parameter regimes �case I �left column� and case II �right column�, respectively�. �a� and �b� show number variance v�N̂2�, while

�c� and �d� show �N̂2�, at t3. In both cases, we assumed an initial number distribution, which was Poissonian, with a mean number of atoms
N0=107. In case I ��a� and �c��, there is an excellent agreement between the multimode TW model and the two-mode model. In case II ��b�
and �d��, there is a significant disagreement between the two models because a larger fraction of atoms is transferred during the first coupling
pulse, which creates significant multimode dynamics, as can be seen in Fig. 3�a�. The blue dashed trace indicated results from the two-mode
model, when a super-Poissonian distribution was used at the initial state, with 5% number uncertainty �approximately 150 times noisier than
a Poisson distribution�. �a� shows that even with large amounts of classical noise, it is possible to number squeeze below the quantum limit.
Parameters: case I: �t1=1 �s, �t2=0.5 �s, and thold=16 ms. Case II: �t1=6 �s, �t2=0.5 �s, and thold=3.8 ms. In both cases, we
assumed �0=50 rad s−1, and a 500 Hz spherical harmonic trap.
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It may be possible to create an intensity-squeezed atom
laser via a similar technique to that discussed in this paper.
By outcoupling two copropagating hyperfine states and inter-
fering them at particular distance from the condensate, it
may be possible to create intensity squeezing in one of the
modes. However, this would require a species of atom with
two magnetic field insensitive states, with scattering lengths
a11+a22�2a12. This requirement could be avoided by using
a separated beam path interferometer, as the effective �12
goes to zero. However, it may be difficult to achieve the
required mode matching in this case.

Finally, we wish to note that the specific states used here
are illustrative, not optimal. We have presented a scheme that
allows the generation of significant amounts of number
squeezing in a BEC and demonstrated its effectiveness for

plausible states of an atom that can be Bose condensed.
However, scattering lengths are not well known for various
states of many atomic species and better candidates for gen-
erating number-squeezed BECs almost certainly exist.
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FIG. 5. �Color online� v�N̂2� as a22 is varied. All other param-
eters ��0, �t1, �t2, and thold� are the same as in Fig. 4 �case I�, and
the phase of the second coupling pulse was fixed at �=1.4�, which
was the optimum phase for Fig. 4 �case I�. The squeezing is rapidly
degraded as a22 moves away from a0. Black trace: results of the
analytic two-mode model. Red dots: results from TW simulation.
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FIG. 6. v�N̂2� as a22 is varied, as calculated by the two-mode
model. All other parameters ��0, �t1, �t2, and thold� are the same as
in Fig. 4 �case I�. The phase of the second coupling pulse � has
been optimized for maximum number squeezing for each value of
a22. Significant number squeezing can still be obtained as a22 is
altered by 30% in either direction. The exception is as a22 ap-
proaches a11 and a12 the squeezing vanishes.
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