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We calculate the mean-field thermodynamics of a spherically trapped Fermi gas with unequal spin popula-
tions in the unitarity limit, comparing results from the Bogoliubov–de Gennes equations and the local density
approximation. We follow the usual mean-field decoupling in deriving the Bogoliubov–de Gennes equations
and set up an efficient and accurate method for solving these equations. In the local density approximation we
consider locally homogeneous solutions, with a slowly varying order parameter. With a large particle number
these two approximation schemes give rise to essentially the same results for various thermodynamic quanti-
ties, including the density profiles. This excellent agreement strongly indicates that the small oscillation of
order parameters near the edge of trap, sometimes interpreted as spatially inhomogeneous Fulde-Ferrell-
Larkin-Ovchinnikov states in previous studies of Bogoliubov–de Gennes equations, is a finite-size effect. We
find that a bimodal structure emerges in the density profile of the minority-spin state at finite temperature, as
observed in experiments. The superfluid transition temperature as a function of the population imbalance is
determined and is shown to be consistent with recent experimental measurements. The temperature dependence
of the equation of state is discussed.
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I. INTRODUCTION

There has been considerable recent experimental progress
in creating strongly interacting ultracold atomic Fermi gases.
A primary tool for the manipulation of these systems is the
use of Feshbach resonances, through which the magnitude
and sign of the interatomic interaction can be tuned arbi-
trarily by an external magnetic field. For a two-component
�i.e., spin-1 /2� Fermi gas with equal spin populations, it has
been expected for some time that the system will undergo a
smooth crossover from Bardeen-Cooper-Schrieffer �BCS�
superfluidity to a Bose-Einstein condensate �BEC� of tightly
bound pairs. This scenario has now been confirmed unam-
biguously by some recent measurements on both dynamical
and thermodynamical properties �1–8�.

Since the population in each spin state can also be ad-
justed with high accuracy �9–12�, a subtle question of par-
ticular interest is the ground state of a spin-polarized Fermi
gas with different particle numbers in the spin-up and -down
states. As conventional BCS pairing requires an equal num-
ber of atoms for each spin component, exotic forms of pair-
ing are necessary in order to accommodate a finite spin
population imbalance. There are several scenarios suggested
in the weakly coupling BCS limit for a uniform gas, includ-
ing the spatially modulated Fulde-Ferrell-Larkin-
Ovchinnikov �FFLO� state �13�, the breached pairing �14� or
Sarma superfluidity �15–17�, and phase separation �18�. In
the strong-coupling, BCS-BEC crossover regime, a variety
of mean-field phase diagrams have been also proposed
�19–27�. However, no clear consensus on the true ground
state of spin-polarized fermionic superfluidity has been
reached as yet �28–36�.

Recent investigations �9–12� on atomic 6Li gases with
tunable population imbalance have opened up intriguing pos-
sibilities for solving this long-standing problem. These ex-

perimental observations have attracted intense theoretical in-
terest �37–51�. We note that there is no firm experimental
evidence for the various nonstandard superfluid states men-
tioned earlier, which involve homogeneous spin-polarized
environments. Various interesting phenomena have been
demonstrated experimentally, in optical traps of different
shapes and sizes.

�A� A shell structure is observed in the density profiles by
Zwierlein et al. �10�, with a bimodal distribution at finite
temperature, suggesting an interior core of a BCS superfluid
phase with an outer shell of the normal component. As a
result, the thermal wing may provide a direct route to ther-
mometry, in an environment where temperature is often
difficult to calibrate reliably.

�B� With increasing spin polarization, the gas shows a
quantum phase transition from the superfluid to normal state.
Close to the broad Feshbach resonance of 6Li at B�833 G,
a critical polarization Pc=0.70�3� has been determined
at low temperatures. Here, the relative polarization is
P= �N↑−N↓� / �N↑+N↓� where N� is the number of spin-up or
-down atoms. The value of Pc decreases with increased
temperature.

�C� A similar shell structure is also identified by Partridge
et al. �12� in an experimental trap configuration with a very
large aspect ratio. However, this bimodal structure disap-
pears below a threshold polarization of P*�0.10.

To make quantitative contact with the current experimen-
tal findings, it is crucial to take into account the trapping
potential that is necessary to prevent the atoms from escap-
ing. Therefore, the theoretical analysis is more complicated.
The simplest way to incorporate the effect of the trap is to
use a local density approximation �LDA�, where the system
is treated locally as being homogeneous, with spatial varia-
tion included via a local chemical potential that includes the
trap potential. Although this method has been extensively
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used to study the density profiles of spin-polarized Fermi
gases �37–46�, its validity has never been thoroughly exam-
ined.

Alternatively, within the mean-field approximation, one
may adopt the Bogoliubov–de Gennes �BdG� equations,
which include the full spatially varying trap potential from
the outset �47–51�. It has been claimed that the solution of
BdG equations includes FFLO states with spatially varying
order parameter �48–51�. However, the only evidence for
this statement is the observation that in such solutions the
sign and amplitude of the order parameter or gap function
exhibit a small oscillation near the edge of traps.

In this paper, we perform a comparative study of the ther-
modynamic properties of a trapped, spin-polarized Fermi
gas, by using both the mean-field BdG equations and the
LDA. While neither method is exact, since pairing fluctua-
tions beyond the mean-field approximation are neglected,
this comparison can give insight into the consequences of the
different types of approximation in common use. As the most
interesting experiments were in the BCS-BEC crossover re-
gime, we focus on the on-resonance situation. In this
regime—sometimes called the unitary limit �52�—the
s-wave scattering length diverges.

The purpose of this work is threefold. First of all, we have
developed an efficient and accurate hybrid method for solv-
ing the mean-field BdG equations, based on the combined
use of a mode expansion in a finite basis for low-lying states,
together with a semiclassical approximation for the highly
excited modes beyond a suitably chosen energy cutoff. The
cutoff is then varied to check the accuracy of the hybrid
approach. As a consequence, we are able to consider a Fermi
gas with a large number of atoms ��105� that is of the same
order as in experiment.

The second purpose is to use this gain in efficiency to
perform a detailed check on the accuracy of the LDA de-
scription in comparison with the BdG results. It is worth
noting that, unlike previous theoretical work, we do not in-
clude the Hartree term in the BdG equations, since this
should be unitarity limited in the BCS-BEC crossover re-
gime �53�. For a sufficiently large number of atoms, we find
an excellent agreement between these two approximation
schemes. In particular, small oscillations of the order param-
eter at the edge of traps, which were reported previously,
tend to vanish as the number of particles rises. Therefore, we
interpret this as a finite-size effect, rather than the appearance
of a spatially modulated FFLO state.

Finally, various thermodynamical quantities are calcu-
lated. The observed bimodal structure in the density distribu-
tion of the minority-spin component is reproduced theoreti-
cally. The transition temperature is determined as a function
of the spin population imbalance and is found to qualitatively
match the available experimental data. The temperature de-
pendence of the equation of state is also discussed.

The paper is organized as follows. In the next section, we
present the theoretical model for a spin-polarized, trapped
Fermi gas. In Secs. III and IV, we explain the LDA formal-
ism and then describe in detail how we solve the BdG equa-
tions. The relationship between these two methods is ex-
plored. In Sec. V, a detailed comparison between LDA and
BdG calculations is performed. Results for various thermo-

dynamical quantities are shown. Their dependence on the
population imbalance and on the temperature are studied.
Section VI gives our conclusions and some final remarks.

II. MODELS

We consider a spherically trapped spin-polarized Fermi
gas at the BCS-BEC crossover point, as found near a mo-
lecular Feshbach resonance. In general, a system like this
requires a detailed consideration of molecule formation
channels �54�, but near a broad Feshbach resonance, the
bound molecular state has a very low population �55�. Ac-
cordingly, the system can be described approximately by a
single-channel Hamiltonian �56,57�

H = �
�
� d3r��

†�r�	−
�2

2m
�2 + V�r� − ��
���r�

+ U� d3r�↑
†�r��↓

†�r��↓�r��↑�r� , �2.1�

where the pseudospins �= ↑ ,↓ denote the two hyperfine
states and ���r� is the Fermi field operator that annihilates
an atom at position r in the spin � state. The number of total
atoms is N=N↑+N↓. Two different chemical potentials �↑,↓
=�±�� are introduced to take into account the population
imbalance �N=N↑−N↓, V�r�=m�2r2 /2 is the isotropic har-
monic trapping potential with the oscillation frequency �,
and U is the bare interatomic interaction strength. We now
describe the LDA and BdG theories.

III. LOCAL DENSITY APPROXIMATION

If the number of particles becomes very large, it is natural
to assume that the gas can be divided into many locally
uniform subsystems with a local chemical potential �38�.
Then, within the LDA, the trap terms in the Hamiltonian, Eq.
�2.1�, are absorbed into the chemical potential, so that we
have effective space-dependent chemical potentials

�↑�r� = �↑ − V�r� ,

�↓�r� = �↓ − V�r� . �3.1�

Note that the local chemical potential difference ���r�
= ��↑�r�−�↓�r�� /2=�� is always a constant, but the average
��r�= ��↑�r�+�↓�r�� /2 decreases parabolically away from
the center of trap.

A. Effective Hamiltonian

If the global potentials �↑ and �↓ are fixed, we can con-
sider a locally uniform Fermi gas in a cell at position r with
local chemical potentials �↑�r� and �↓�r�, whose Hamil-
tonian takes the form

H�r� = �
k�
	�2k2

2m
− ���r�
ck�

† ck� + U �
kk�p

ck↑
† cp−k↓

† cp−k�↓ck�↑.

�3.2�

Here ck� represents the annihilation operator for an atom
with kinetic energy �2k2 / �2m�. For simplicity we restrict
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ourself to homogeneous superfluid states for the locally uni-
form cell; i.e., the local order parameter has zero center-of-
mass momentum. By taking the mean-field approximation,
an order parameter of Cooper pairs ��r�=U�k�ck↓c−k↑� is
therefore introduced, whose value depends on position ow-
ing to the spatial dependence of �↑�r� and �↓�r�. The local
Hamiltonian �3.2� then becomes

Hmf�r� = �
k�
	�2k2

2m
− ���r�
ck�

† ck� −
�2�r�

U

− ��r��
k

�ck↓c−k↑ + H.c.� . �3.3�

We have neglected the Hartree terms U�k�ck↑
+ ck↑� and

U�k�ck↓
+ ck↓� in this mean-field factorization. Their absence is

owing to the following reasons.
�i� The use of contact interactions leads to an unphysical

ultraviolet divergence and requires a renormalization that ex-
presses the bare parameter U in terms of the observed or
renormalized value �4��2a /m�−1—i.e.,

m

4��2a
=

1

U
+ �

k

1

2	k
, �3.4�

where a is the background s-wave scattering length between
atoms and 	k=�2k2 / �2m�. Generically, this renormalization
requires an infinitely small bare parameter, in order to com-
pensate the ultraviolet divergence in the summation
�k�1/2	k�. Therefore, strictly speaking, within a mean-field
approximation the Hartree terms should vanish identically.

�ii� For weak couplings, one may indeed obtain Hartree
terms like �4��2a /m�n↑,↓. With renormalization, these cor-
rections are beyond mean field and are effective only in the
deep BCS limit. Towards the unitarity limit with increasing
scattering length, they are no longer the leading corrections
and become even divergent. Higher-order terms are needed
in order to remove the divergence at unitarity. For example,
one may use Páde approximations in the equation of state
�58�. Thus, throughout the BCS-BEC crossover region, the
neglect of the Hartree terms is not an unreasonable approxi-
mation.

The above mean-field Hamiltonian can be solved by the
standard Bogoliubov transformation �59�. The resulting
mean-field thermodynamic potential has the form


mf�r� = −
m

4��2a
�2�r� + �

k
	�k − Ek +

�2�r�
2	k



+

1

�
�
k

�ln f�− Ek+� + ln f�− Ek−�� , �3.5�

where f�x�= �exp��x�+1�−1 is the Fermi distribution function
��=1/kBT� and Ek±=Ek±���r� are the quasiparticle ener-
gies with Ek= ��k

2 +�2�r��1/2 and �k=�2k2 /2m−��r�. Given
local potentials ��r� and ���r�, we determine the value of
order parameters ��r� by minimizing the thermodynamic
potential—i.e., �
mf�r� /���r�=0 or, explicitly,

m

4��2a
= �

k
	 1

2	k
−

1 − f�Ek+� − f�Ek−�
2Ek


 . �3.6�

We note that a non-BCS superfluid solution, the so-called
Sarma state �15–17�, may arise in solving the gap equation
�3.6�. However, on the BCS side such a solution suffers from
instabilities with respect to either the phase separation or a
finite-momentum paired FFLO phase �16�. Further, the
Sarma state is not energetically favorable �22� and thereby
will be discarded automatically in the numerical calculations.

B. Thermodynamic quantities

Once the local order parameter is fixed, it is straightfor-
ward to calculate the various thermodynamic quantities. The
local particle densities are calculated according to
n↑�r�=−�
mf�r� /��↑�r� and n↓�r�=−�
mf�r� /��↓�r� or

n↑�r� = �
k
	Ek + �k

2Ek
f�Ek−� +

Ek − �k

2Ek
f�− Ek+�
 ,

n↓�r� = �
k
	Ek + �k

2Ek
f�Ek+� +

Ek − �k

2Ek
f�− Ek−�
 , �3.7�

while the entropy and the energy are determined, respec-
tively, by

S�r� = − kB �
k,=±

�f�Ek�ln f�Ek� + f�− Ek�ln f j�− Ek��

�3.8�

and

E�r� = 
mf�r� + TS�r� + �↑n↑�r� + �↓n↓�r� . �3.9�

Then, the integration over the whole space gives rise to

N��,��� =� d3r�n↑�r� + n↓�r�� ,

�N��,��� =� d3r�n↑�r� − n↓�r�� , �3.10�

and S=d3rS�r� and E=d3rE�r�. The global chemical po-
tentials � and �� should be adjusted to satisfy N�� ,���
=N and �N�� ,���=�N. The numerical calculation thereby
involves an iterative procedure.

We note that, on physical grounds, a general picture can
be drawn for the density profiles �39�. Near the center of the
trap, where �� is small compared to ��r�, the densities of
the two spin states are forced to be equal and we have a BCS
core extended up to a radius RBCS. Outside this radius a nor-
mal state is more favorable than a superfluid phase. At zero
temperature, the Thomas-Fermi radius of the minority �spin-
down atoms� and majority �spin-up atoms� are given by
RTF

�1�= �2��−��� / �m�2��1/2 and RTF
�2�= �2��+��� / �m�2��1/2,

respectively, as we neglect the interactions between the two
components in the normal state.

We finally remark that this entire approach is less accurate
at Feshbach resonance and especially on the BEC side of
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resonance, where it becomes essential to include quantum
fluctuations beyond the mean-field approximation �64�.

IV. BOGOLIUBOV–de GENNES MEAN-FIELD THEORY

We next consider the Bogoliubov–de Gennes theory of an
inhomogeneous Fermi gas, starting from the Heisenberg
equation of motion of Hamiltonian �2.1� for �↑�r , t� and
�↓�r , t�:

i�
��↑
�t

= 	−
�2

2m
�2 + V − �↑
�↑ + U�↓

†�↓�↑,

i�
��↓
�t

= 	−
�2

2m
�2 + V − �↓
�↓ − U�↑

†�↓�↑. �4.1�

A. Mean-field approximation

Within the mean-field approximation as before, we re-
place the terms U�↓

†�↓�↑ and U�↑
†�↓�↑ by their respec-

tive mean-field approximations U�↓�↑�↓
†=−��r��↓

†

+Un↓�r��↑ and U�↓�↑�↑
†=−��r��↑

†+Un↑�r��↓, where we
define a gap function ��r�=−U��↓�↑� and n��r�= ���

†���.
The Hartree terms Un��r� are infinitely small in the mean-
field treatment due to the regularization of the bare interac-
tion U→0, as discussed in greater detail below. We keep
them in the derivation at the moment for clarity. The above
decoupling thus leads to

i�
��↑
�t

= �H↑
s − �↑��↑ − ��r��↓

†,

i�
��↓
�t

= �H↑
s − �↓��↓ + ��r��↑

†, �4.2�

where H�
s =−�2�2 / �2m�+V�r�+Un�̄�r�. We solve the equa-

tion of motion by the insertion of the standard Bogoliubov
transformation:

�↑ = �
j

�uj↑�r�cj↑e
−iEj↑t/�/ + v j↓

* �r�cj↓
† eiEj↓t/�� ,

�↓
† = �

j

�uj↓
* �r�cj↓

† eiEj↓t/� − v j↑�r�cj↑e
−iEj↑t/�� . �4.3�

This yields the well-known BdG equations for the Bogoliu-
bov quasiparticle wave functions uj��r� and v j��r� with
excitation energies Ej�,

	H�
s − �� ��r�

�*�r� − H�̄
s + ��̄


	uj��r�
v j��r� 
 = Ej�	uj��r�

v j��r� 
 ,

�4.4�

where uj��r� and v j��r� are normalized by dr��uj��r��2
+ �v j��r��2�=1. The number densities of different hyperfine
states n↑�r�= ��↑

†�↑� and n↓�r�= ��↓
†�↓�, and the BCS

Cooper-pair condensate ��r�=−U��↓�↑�, can then be writ-
ten as

n��r� =
1

2�
j

��uj��2f�Ej�� + �v j�̄�2f�− Ej�̄�� ,

��r� =
U

2 �
j

�v j↑
* uj↑f�Ej↑t� − uj↓v j↓

* f�− Ej↓�� , �4.5�

where the statistical averages �cj�
† cj��= f�Ej�� and �cj�cj�

† �
= f�−Ej�� have been used.

The solutions of the BdG equations contain both positive
and negative excitation energies. Thus, to avoid double
counting, a factor of half appears in the summation in Eq.
�4.5�. Furthermore, the presence of the chemical potential
difference breaks the particle-hole symmetry and therefore
leads to different quasiparticle wave functions for the two
components. One can easily identify that there is a one-to-
one correspondence between the solution for the spin-up and
spin-down energy levels—i.e.,

Ej� ↔ − Ej�̄ �4.6�

and

	uj��r�
v j��r� 
 ↔ 	− v j�̄

* �r�

+ uj�̄
* �r� 
 . �4.7�

By exploiting this symmetry of the BdG equations, therefore,
we need to solve the BdG equations for the spin-up part only.
This has the following, form after removing the spin index;
i.e., we let uj�r�=uj↑�r� and v j�r�=v j↑�r�, to give

	H↑
s − �↑ ��r�

�*�r� − H↓
s + �↓


	uj�r�
� j�r� 
 = Ej	uj�r�

� j�r� 
 . �4.8�

B. Hybrid BdG technique

We now wish to address the issue of how to use the BdG
equations in a practical numerical application. Accordingly,
the density distributions and the gap function can be
rewritten as

n↑�r� = �
j

�uj�r��2f�Ej� ,

n↓�r� = �
j

�v j�r��2f�− Ej� ,

��r� = U�
j

uj�r�v j
*�r�f�Ej� . �4.9�

Equations �4.8� and �4.9� can then be solved self-
consistently, with the constraints that

N��,��� =� d3r�n↑�r� + n↓�r�� = N �4.10�

and

�N��,��� =� d3r�n↑�r� − n↓�r�� = �N . �4.11�

LIU, HU, AND DRUMMOND PHYSICAL REVIEW A 75, 023614 �2007�

023614-4



In any practical calculation, due to computational limita-
tions, one has to truncate the summation over the quasipar-
ticle energy levels. For this purpose, we introduce a hybrid
strategy by introducing a high-energy cutoff Ec, above which
the local density approximation may be adopted �60� for suf-
ficiently high-lying states. Following this approach, we then
have

n↑�r� = n↑,d�r� + n↑,c�r� ,

n↓�r� = n↓,d�r� + n↓,c�r� ,

��r� = �d�r� + �c�r� , �4.12�

where

n↑,d�r� = �
�Ej��Ec

�uj�r��2f�Ej� ,

n↑,c�r� = �
�Ej��Ec

�uj�r��2f�Ej� ,

n↓,d�r� = �
�Ej��Ec

�v j�r��2f�− Ej� ,

n↓,c�r� = �
�Ej��Ec

�v j�r��2f�− Ej� �4.13�

and

�d�r� = U �
�Ej��Ec

uj�r�v j
*�r�f�Ej� ,

�c�r� = U �
�Ej��Ec

uj�r�v j
*�r�f�Ej� . �4.14�

We consider below separately the contributions from the
quasicontinuous high-lying states ��Ej��Ec� and discrete
low-energy states ��Ej��Ec�. This allows us to take into ac-
count the spatial variation of the low-lying trapped quasipar-
ticle wave functions, without having to treat all high-energy
states in this formalism.

C. LDA for high-lying states

For the BdG equation �4.8�, the local density approxima-
tion is the leading order of a semiclassical approximation and
amounts to setting

uj�r� → u�k,r�exp�ik · r� ,

v j�r� → v�k,r�exp�ik · r� ,

Ej → E�k� , �4.15�

where u�k ,r� and v�k ,r� are normalized by �u�k ,r��2
+ �v�k ,r��2=1 and the level index “j” has now been replaced
by a wave vector k. So Eq. �4.8� is reduced to the algebraic
form

	H↑
s�k,r� − �↑ ��r�

�*�r� − H↓
s�k,r� + �↓


	uk

vk

 = E�k�	uk

vk

 ,

�4.16�

where the quasiclassical single-particle Hamiltonian is

H�
s �k,r� = �2k2/�2m� + V�r� + Un�̄�r� . �4.17�

We obtain two branches of the excitation spectra, E�k , + �
=Ek−��−U�n↑�r�−n↓�r�� /2 and E�k ,−�=Ek+��+U�n↑�r�
−n↓�r�� /2, which may be interpreted as the particle and hole
contributions, respectively. Here Ek= ��k

2 +�2�r��1/2 and �k
=�2k2 /2m+V�r�−�+Un�r� /2. Note that consistent with the
definition in Sec. III, we have reversed the sign of the exci-
tation spectrum of the hole branch; that is, for the particle
branch E�k�= +E�k , + �, while for holes E�k�=−E�k ,−�. The
eigenfunctions of the two branch solutions are, respectively,

uk
2 =

1

2
�1 +

�k

Ek
� ,

vk
2 =

1

2
�1 −

�k

Ek
� ,

ukvk
* = +

��r�
2Ek

�4.18�

and

uk
2 =

1

2
�1 −

�k

Ek
� ,

vk
2 =

1

2
�1 +

�k

Ek
� ,

ukvk
* = −

��r�
2Ek

, �4.19�

Thus, above the energy cutoff, the quasicontinuous contribu-
tion of high-lying states to the density profiles and the gap
function can be obtained by

n↑,c�r� = �
E�k,+��Ec

f„E�k, + �…
2

�1 +
�k

Ek
�

+ �
E�k,−��Ec

f„− E�k,− �…
2

�1 −
�k

Ek
� ,

n↓,c�r� = �
E�k,+��Ec

f„− E�k, + �…
2

�1 −
�k

Ek
�

+ �
E�k,−��Ec

f„E�k,− �…
2

�1 +
�k

Ek
� �4.20�

and
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�c�r� = U �
E�k,+��Ec

��r�
2Ek

f„E�k, + �…

− U �
E�k,−��Ec

��r�
2Ek

f„− E�k,− �… . �4.21�

It is worth noting that if we reduce the energy cutoff Ec to
zero, we recover the LDA expressions for the density profiles
in Sec. III �see, for example, Eq. �3.7��. Moreover, Eq. �4.21�
reduces to the LDA gap equation �3.6�.

At the other extreme, for a sufficiently large energy cutoff
��Ec�1�, we may discard the Fermi distribution function in
Eqs. �4.20� and �4.21�. As a result we have the following
simplified gap equations for the above cutoff LDA contribu-
tions:

n↑,c�r� = �
E�k,−��Ec

1

2
�1 −

�k

Ek
� ,

n↓,c�r� = �
E�k,+��Ec

1

2
�1 −

�k

Ek
� , �4.22�

and

�c�r� = U �
E�k,−��Ec

	−
��r�
2Ek


 . �4.23�

D. BdG equations for low-lying states

Let us now turn to the low-lying states by solving the
BdG equation �4.8�. As we consider a spherical trap, it is
convenient to label the Bogoliubov quasiparticle wave func-
tions uj�r� and v j�r� in terms of the usual quantum numbers
j= �nlm� and write

uj�r� =
unl�r�

r
Ylm��,�� ,

v j�r� =
vnl�r�

r
Ylm��,�� . �4.24�

Here unl�r� /r and vnl�r� /r are the standard radial wave func-
tions and Ylm�� ,�� is the spherical harmonic function. The
BdG equations are then given by

	H↑
s�l� − �↑ ��r�

��r� − H↓
s�l� + �↓


	unl

vnl

 = Enl	unl

vnl

 ,

�4.25�

where

H�
s �l� =

− �2

2m
	 d2

dr2 +
l�l + 1�

r2 
 + V�r� + Un�̄�r� �4.26�

is the single-particle Hamiltonian in the l sector. We solve
these equations by expanding unl�r� and vnl�r� with respect to
the eigenfunctions �l�r� of a three-dimensional �3D� har-
monic oscillator radial Hamiltonian Hosc�l�=−�2 / �2m�
��d2 /dr2+ l�l+1� /r2�+V�r�. These have energy eigenvalues

	l= �2+ l+3/2���, and the resulting expansion is

unl�r� = �


Anl
 �l�r� ,

vnl�r� = �


Bnl
 �l�r� . �4.27�

The problem is then converted to obtain the eigenvalues and
eigenstate of a symmetric matrix

		l↑�� + M�
↑ ��

�� − 	l↓�� − M�
↓ 
	Anl

�

Bnl
� 
 = Enl	Anl



Bnl
 
 ,

�4.28�

where we have defined 	l�=	l−�� and

�� =� dr�l�r���r���l�r� ,

M�
↑ =� dr�l�r�Un↓�r���l�r� ,

M�
↓ =� dr�l�r�Un↑�r���l�r� . �4.29�

We note that the renormalization condition unl�r� and vnl�r�,
dr�unl

2 �r�+vnl
2 �r���1, is strictly satisfied, since ��Anl

 �2

+ �Bnl
 �2=1. Once unl�r� and vnl�r� are obtained, we calculate

the gap equation for the low-lying states ��Enl��Ec� and the
corresponding number equations

�d�r� = U�
nl

2l + 1

4�r2 unl�r�vnl�r�f�Enl� ,

n↑,d�r� = �
nl

2l + 1

4�r2 unl
2 �r�f�Enl� ,

n↓,d�r� = �
nl

2l + 1

4�r2 vnl
2 �r�f�− Enl� . �4.30�

E. Regularization of the bare interaction U

We now must replace the bare interaction U by the corre-
sponding s-wave scattering length, using standard renormal-
ization techniques. The combination of expressions �4.23�
and �4.30� gives the full gap equation

��r�
U

= �
�Ej��Ec

uj�r�v j
*�r�f�Ej� − �

E�k,−��Ec

��r�
2Ek

, �4.31�

which is formally ultraviolet divergent due to the use of the
contact potential. However, the form of the second term on
the right side of the equation suggests a simple regularization
procedure. We substitute 1 /U= �4��2a /m�−1−�k1/2	k into
the above equation and obtain
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m

4��2a
��r� = �

�Ej��Ec

uj�r�v j
*�r�f�Ej� + �

k

��r�
2	k

− �
E�k,−��Ec

��r�
2Ek

. �4.32�

Thus we may rewrite the gap equation in terms of an effec-
tive coupling constant Uef f�r�; i.e.,

��r� = Uef f�r� �
�Ej��Ec

uj�r�v j
*�r�f�Ej� , �4.33�

where we have introduced an effective coupling constant
Uef f�r� defined so that

1

Uef f�r�
=

m

4��2a
− 	�

k

1

2	k
− �

E�k,−��Ec

1

2Ek

 .

�4.34�

The ultraviolet divergence now cancels in the bracketed ex-
pression. The effective coupling constant Uef f�r� will depend
on the cutoff energy. However, the resulting gap in Eq. �4.33�
is essentially cutoff independent.

The use of the uniform regularization relation 1/U
= �4��2a /m�−1−�k�1/2	k� leads to an infinitely small bare
interaction coupling. One therefore has to replace U by zero
anywhere if there is no ultraviolet divergence in the summa-
tions. As mentioned earlier, this replacement is the proper
treatment within mean-field theory. Certainly, this procedure
neglects the Hartree correction, which is of importance in the
deep BCS regime. However, around the unitarity regime of
interest here, the usual expression for the Hartree correction
becomes divergent and requires a more rigorous theoretical
treatment which shows that it is no longer significant �58�.
Consistent with this treatment, we note that these mean-field
Hartree shifts are not observed experimentally in the energy
spectra in the BCS-BEC crossover regime �53�. In other
words, the Hartree terms should be unitarity limited at cross-
over.

It is important to point out that, in principle, the regular-
ization procedure proposed above is equivalent to the use of
a pseudopotential, as suggested by Bruun and co-workers
�61�. However, the pseudopotential regularization involves a
calculation of the regular part of the Green function associ-
ated with the single-particle Hamiltonian Hs and is numeri-
cally inefficient. Alternative simplified regularization proce-
dures have also been introduced by Bulgac and Yu �62� and
Grasso and Urban �63�. Our prescription �4.34� may be
regarded as a formal improvement of these regularization
procedures.

F. Summary of BdG formalism

We now summarize the BdG formalism by converting the
summation over the momentum k in the high-lying levels to
a continuous integral of the energy.

We find that the total spin densities are given by

n↑�r� = �
�Enl��Ec

2l + 1

4�r2 unl
2 �r�f�Enl� + �

Ec

�

d	n↑,c�	,r� ,

n↓�r� = �
�Enl��Ec

2l + 1

4�r2 vnl
2 �r�f�− Enl� + �

Ec

�

d	n↓,c�	,r� ,

�4.35�

with a modified gap equation of

��r�
Uef f�r�

= �
�Enl��Ec

2l + 1

4�r2 unl�r�vnl�r�f�Enl� . �4.36�

The above cutoff contributions are given by

n↑,c�	,r� =
�2m3/2

4�2�3 	 	 + ��

��	 + ��� − �2�r�
− 1


� ���	 + ��� − �2�r� + � − V�1/2,

n↓,c�r� =
�2m3/2

4�2�3 	 	 − ��

��	 − ��� − �2�r�
− 1


� ���	 − ��� − �2�r� + � − V�1/2, �4.37�

and the value under the square root is understood to be non-
negative. Moreover, in an integral form the effective cou-
pling takes the form

1

Uef f�r�
=

m

4��2a
−

kc

2�2 −
�2m3/2

4�2�3 �
Ec

�

d	f�	,r� ,

�4.38�

where

kc = ���Ec − ��� − �2�r� + � − V�1/2,

f�	,r� =
���	 − ��� − �2�r� + � − V�1/2

��	 − ��� − �2�r�

� 	 	 − ��

��	 − ��� − �2�r� + � − V
− 1
 . �4.39�

The radial wave functions in Eqs. �4.35� and �4.36� are cal-
culated by solving the eigenvalue problem �4.28�. As the
matrix involves the gap function, a self-consistent iterative
procedure is necessary. For a given number of atoms
�N=N↑+N↓ and �N=N↑−N↓�, temperature, and s-wave scat-
tering length, we �a� start with the LDA results or a previ-
ously determined better estimate for ��r�, �b� solve Eq.
�4.38� for the effective coupling constant, �c� then solve Eq.
�4.28� for all the radial states up to the chosen energy cutoff
to find unl�r� and vnl�r�, and �d� finally determine an im-
proved value for the gap function from Eq. �4.36�.

During the iteration, the density profiles n↑�r� and n↓�r�
are updated. The chemical potentials � and �� are also ad-
justed slightly in each iterative step to enforce the number-
conservation condition that 0

�dr4�r2�n↑�r�+n↓�r��=N and
0

�dr4�r2�n↑�r�−n↓�r��=�N, when final convergence is
reached. To make contact with the experimental observed
density profiles �10,12�, we calculate the axial and radial
column densities
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n↑��� = �
−�

�

dzn↑���2 + z2� ,

n↓��� = �
−�

�

dzn↓���2 + z2� �4.40�

and

n↑�z� = �
0

�

2��d�n↑���2 + z2� ,

n↓�z� = �
0

�

2��d�n↓���2 + z2� . �4.41�

G. Entropy and energy

Apart from the density profiles and gap function, we can
also determine the entropy and total energy of the imbal-
anced Fermi gas by using the expressions

S = − kB�
nl

�2l + 1��f�Enl�ln f�Enl� + f�− Enl�ln f�− Enl��

�4.42�

and

E =� d3r��
�

���
+�r�H�

s ���r�� −
���r��2

U � . �4.43�

The energy can further be written as

E = 	�↑N↑ + �↓N↓ −
m

4��2a
� d3r���2
 + �

j

Ej	 f�Ej�

−� d3r�v j�2
 +� d3r�
k

���2

2	k
, �4.44�

where we have replaced the bare interaction U by the s-wave
scattering length. The contribution of the high-energy part to
the entropy is essentially zero.

For the total energy, we must take into account both the
low-lying states and high-lying states. Therefore, we divide
the energy into two parts E=Ed+Ec, where

Ed = 	�↑N↑ + �↓N↓ −
m

4��2a
�

0

�

dr4�r2���2

+ �

�Enl��Ec

�2l + 1�Enl	 f�Enl� − �
0

�

drvnl
2 �r�


�4.45�

and

Ec =� d3r
1

2	− �
E�k,+��Ec

�1 −
�k

Ek
�E�k, + �

− �
E�k,−��Ec

E�k,− ��1 −
�k

Ek
� + �

k

���2

	k

 . �4.46�

By converting the summation into an integral, we obtain
Ec=0

�dr4�r2Ec�r�, where

Ec�r� =
���r��2

2 � kc,1

2�2 +
kc,2

2�2 − �
Ec

�

d	�Ec,1�	,r� + Ec,2�	,r��� ,

�4.47�

kc,1 = ���Ec + ��� − �2�r� + � − V�r��1/2,

kc,2 = ���Ec − ��� − �2�r� + � − V�r��1/2, �4.48�

and

Ec,1�	,r� =
�2m3/2

2�2�3

�E+ + � − V�r��1/2

E+

� 	 	

	 + �� + E+
−

�	 + ���/2
E+ + � − V�r�
 ,

Ec,2�	,r� =
�2m3/2

2�2�3

�E− + � − V�r��1/2

��	 − ��� − �2�r�

� 	 	

	 − �� + E−
−

�	 − ���/2
E− + � − V�r�
 ,

�4.49�

where E±=��	±���−�2�r�.

V. NUMERICAL RESULTS AND DISCUSSIONS

To be concrete, we will focus on the on-resonance �uni-
tarity� situation in our numerical calculation, in which the
s-wave scattering length goes to infinity. It will be conve-
nient to use “trap units”—i.e.,

m = � = � = kB = 1. �5.1�

Therefore, the length and energy will be measured in units of
the harmonic oscillator length aho= �� / �m���1/2 and ��, re-
spectively. The temperature is then taken in units of �� /kB.
It is also illustrative to define some characteristic scales, con-
sidering a spherically trapped ideal Fermi gas with equal
populations in two hyperfine states �i.e., N↑=N↓=N /2�. At
zero temperature, a simple LDA treatment of the harmonic
potential leads to a Fermi energy EF= �3N�1/3�� and a Fermi
temperature TF= �3N�1/3�� /kB. Accordingly, the Thomas-
Fermi �TF� radius of the gas is rTF= �24N�1/6aho and the cen-
tral density for a single species is nTF�0�
= �24N�1/2 / �3�2�aho

−3.
In a uniform situation, the universality argument gives

�=�	F in the unitary limit �52�, where 	F=�2kF
2 / �2m� with a

Fermi wavelength kF= �3�2n�1/3. The mean-field BCS theory
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predicts ��0.59. Therefore, a better mean-field estimate of
the chemical potential and the TF radius for a trapped uni-
tarity Fermi gas will be �TF,unitarity=�1/2EF and rTF,unitarity
=�1/4rTF.

For most calculations, we use a number of total atoms,
N=20 000, which is one or two orders of magnitude smaller
than in current experiments. We take a cutoff energy Ec
=64��, which is already large enough because of the high
efficiency of our hybrid strategy. Typically we solve the BdG
equation �4.28� within the subspace n�nmax=72 and l
� lmax=120. The value of nmax and lmax is determined in such
a way that the subspace contains all the energy levels below
Ec. The calculations usually take a few hours for a single run
in a single-core computer with 3.0 GHz CPU, for a given set
of parameters T, N, �N, and 4��2a /m. Further increase of
the number of total atoms to 105 or 106 is possible, but very
time consuming.

Below we will present some numerical results. In particu-
lar we will examine the validity of the LDA at zero tempera-
ture and at finite temperature. We analyze some previous
suggestions of the apparent appearance of the FFLO states in
the mean-field BdG theory. Finally, we will investigate the
thermodynamical behavior of the spin-polarized Fermi gas.

A. LDA versus BdG

We present in Fig. 1 the density profiles of two spin states
at temperatures T=0.01TF and T=0.20TF for different popu-
lation imbalances P= �N↑−N↓� / �N↑+N↓�=0.23, 0.48, and
0.84 as indicated. The results from the BdG and LDA ap-
proaches are plotted using solid lines and dashed lines, re-
spectively. There is an apparent phase separation phenom-
enon, with a superfluid inner core and normal shell outside,
which is consistent with the recent experimental observation
by Zwierlein et al. �10� and Partridge et al. �12�. Particularly,
for P=0.84 at T=0.20TF the minority �spin-down� profile is
enhanced at center, which in turn induces a slight decrease of
the central density of the majority component. The appear-

ance of a dense central feature in the minority-spin profile
agrees well with the on-resonance measurement reported by
Zwierlein et al. �10�. It clearly resembles the bimodal struc-
ture in the density distribution of a BEC.

FIG. 1. �Color online� Density profiles of spin-up and spin-down atoms for a spin-polarized unitary Fermi gas at different population
imbalances and temperatures, as indicated in the figures. The number of total atoms is N=20 000. The density profiles are normalized by the
Thomas-Fermi center density of an ideal symmetric Fermi gas with the same number of total atoms, nTF�0�= �24N�1/2aho

−3 / �3�2�, while the
length is renormalized by the corresponding Thomas-Fermi radius rTF= �24N�1/6aho. The solid lines and dashed lines refer to the BdG results
and LDA results, respectively.

FIG. 2. �Color online� Gap functions at different temperatures
T=0.01TF �a� and T=0.20TF �b� for various population imbalances
as labeled. The number of total atoms is N=20 000. The solid lines
are the BdG predictions, while the dashed lines are the LDA results.
The value of gap is renormalized by the noninteracting Fermi en-
ergy of an ideal symmetric Fermi gas EF= �3N�1/3��. Note that the
small oscillation in the gap function at the superfluid-normal inter-
face at low temperature T=0.01TF vanishes when the temperature
becomes high enough.
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For all the spin polarizations considered, we find reason-
able agreement between these two methods at the chosen
total number of atoms, N=20 000. As we shall see below, the
agreement persists in various thermodynamical quantities,
such as the chemical potential, entropy, and total energy.
From the density profiles, the agreement is excellent at a
small or intermediate population imbalance. The difference
between the BdG and LDA predictions tends to be smaller as
the temperature increases. For a large population imbalance,
however, the agreement becomes worse. This can be under-
stood from the corresponding gap functions as given in Fig.
2. The gap function in the LDA experiences a sudden de-
crease at the superfluid-normal interface. With increasing
population imbalance, the drop is much more apparent, and

accordingly, the BdG gap function shows a very pronounced
oscillation behavior. Therefore, the deviation of the BdG
density profiles from the LDA predictions becomes larger.

It is important to note that only the axial column density
or radial column density can be measured by the absorption
imaging technique in the experiment. In Figs. 3�a� and 3�b�,
we plot, respectively, the axial column profile and radial col-
umn profile at T=0.01TF for the imbalance P=0.84. The
minor difference between BdG and LDA results shown in the
three-dimensional density profiles is essentially washed out.

B. FFLO state at the superfluid-normal interface?

The consistency between BdG and LDA treatments re-
ported here is in sharp contrast with some previous studies
�48–51�, where a notable discrepancy of BdG and LDA re-
sults is found. In those studies the small oscillation of the
gap functions at the superfluid-normal interface is interpreted
as the appearance of a spatially modulated FFLO state. Thus,
the discrepancy is explained as due to the breakdown of the
LDA for FFLO states. From our results, the oscillation in the
order parameters at the interface appears to be a finite-size
effect. This idea is supported by the observation that the BdG
formalism naturally reduces to that of the LDA if we set the
cutoff energy Ec to zero as we mentioned earlier. On the
other hand, as shown in Fig. 4, if we increase the number of
total particles, the oscillation behavior of gap functions be-

FIG. 3. �Color online� Radial �a� and axial �b� column density
profiles for N=20 000 and P=0.84 at T=0.01TF. The difference
between the BdG results �solid lines� and LDA results �dashed
lines� becomes extremely small due to the integration over the extra
dimensions.

FIG. 4. �Color online� Dependence of the gap function on the
number of total atoms at T=0.01TF and P=0.48. The solid line is
the LDA result, and the others are BdG results with N=105 �dash-
dotted line�, N=20 000 �dotted line�, and N=4000 �dashed line�.

FIG. 5. �Color online� Chemical potentials as a function of the
population imbalance at two temperatures T=0.01TF and T
=0.20TF.

FIG. 6. �Color online� Total energy per particle as a function of
the population imbalance P at two temperatures T=0.01TF and T
=0.20TF. The inset shows the first-order derivation with respect to
the population imbalance at T=0.20TF. The jump at P�0.9 marks
the phase transition to the normal state.
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comes gradually weaker. We thus infer that the oscillation
will vanish finally in the limit of a sufficiently large number
of atoms.

To understand the discrepancy of the BdG and LDA ap-
proaches found in previous studies �48–51�, several remarks
may be in order. First, in these studies, the mean-field Har-
tree terms—i.e., Un↓�r� and Un↑�r�—appear in the decou-
pling of the interaction Hamiltonian in the BdG theory. How-
ever, the Hartree terms is absent in the corresponding LDA
treatment. These terms cannot survive in the regularization
procedure of the bare interaction U, but are incorrectly in-
cluded in Refs. �48–51� as �4��2a /m�n↓�r� and
�4��2a /m�n↑�r�, respectively.

We note that the absence of the mean-field shift due to
Hartree terms in the strongly interacting BCS-BEC crossover
regime is already unambiguously demonstrated experimental
by Gupta et al. �53�. We conclude that there are three main
reasons for the differences between the conclusion we find
here that the two approaches are compatible, as opposed to
earlier conclusions to the contrary.

�i� The incorrect inclusion of Hartree terms in one ap-
proach, but not in the other, is the most likely reason for the
discrepancy of the BdG and LDA results shown in these
previous works.

�ii� The accuracy of numerical results depends crucially
on the regularization procedure used to treat the bare inter-
action U. Proper treatment of regularization is essential.

�iii� For a large population imbalance, the BdG equations
converge very slowly. Thus, a rigorous criterion is required
to ensure complete convergence.

C. Thermodynamic behavior of the imbalanced Fermi
gas at unitarity

We finally discuss the thermodynamics of the gas at uni-
tarity. In Figs. 5–7, we graph the chemical potential, total
energy, and entropy of the gas as a function of the population
imbalance at various temperatures. Again, we find good
agreement between the BdG results and LDA predictions.
With increasing population imbalance, the chemical potential
decreases. For a given temperature there is a critical imbal-
ance, beyond which the Fermi gas transforms into a fully
normal state. The decrease of the chemical potential becomes
very significant when the phase transition occurs. In contrast,
as population imbalance increases, the total energy increases.

The impact of the phase transition on the total energy can
scarcely be identified since the transition is smooth.

As shown in the inset of Fig. 6, it can be exhibited clearly
in the first-order derivative of the energy with respect to the
population imbalance, resembling the behavior of the spe-
cific heat as a function of temperature. The entropy, on the
other hand, shows a nonmonotonic dependence at a tempera-
ture �0.20TF. We identify this peak position as the phase
transition point.

To determine accurately the critical population imbalance
as a function of temperature or vice versa, we plot in Fig. 8
an averaged order parameter at different temperature, which
is defined via

FIG. 7. �Color online� Entropy per particle as a function of the
population imbalance at various temperatures.

FIG. 8. �Color online� Average order parameter defined in Eq.
�5.2� as a function of the population imbalance at three tempera-
tures T=0.01TF, T=0.20TF, and T=0.25TF. The position where the
average order parameter vanishes determines the critical population
imbalance towards the normal state at a fixed temperature.

FIG. 9. �Color online� �a� BCS mean-field critical temperature
as a function the population imbalance, determined from the LDA
calculations �solid line�. Open symbols are available experimental
points from Zwierlein et al. �10,11� and Kinast et al. �7�. The
dashed line shows a rescaled BCS critical temperature as described
in the text. �b� The critical entropy �the entropy at the critical tem-
perature� against the population imbalance.
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�ave = ��0

�

dr4�r2�2�r�

N
�

1/2

. �5.2�

The condition �ave=0 therefore determines the critical popu-
lation imbalance Pc at a fixed temperature. The resulting Pc
from the BdG calculation depends, of course, on the number
of total atoms. To remove this dependence, we present the
LDA prediction for critical temperature in Fig. 9�a�. To com-
pare with the experiments, we also show four known experi-
mental points in the figure. The discrepancy between our
theoretical predictions and the experimental data is most
likely attributed to the strong pair fluctuations beyond the
mean field; i.e., for a symmetric gas, the fluctuation shifts
Tc,BCS from 0.37TF to around 0.27TF �7�, while at zero tem-
perature, it reduce Pc,BCS from 1.0 to about 0.70 �9,10�.

Pair fluctuations must be taken into account in the
strongly interacting unitarity regime for quantitative com-
parisons, as we have shown in earlier calculations �64� with-
out spin polarization. This is certainly the most challenging
problem in BCS-BEC crossover physics. Naively, we may
linearly rescale the BCS critical temperature and population
imbalance in such a way that both the theoretical Tc at P
=0 and Pc at T=0 fit the experimental data. The third and
fourth experimental points of the critical temperature at P
=0.56�3� and P=0.59�3� now agree approximately with the
rescaled BCS Tc curve.

For strongly interacting Fermi gases at low temperature,
there is generally no reliable thermometry technique. The
bimodal structure in the density profile of the minority com-
ponent may provide a useful method to determine tempera-
ture �10�. However, its accuracy requires further theoretical
investigations due to the strongly correlated nature of the
gas. Entropy is an alternative quantity that may be used to
characterize the temperature in adiabatic passage experi-
ments �65�. In Fig. 9�b�, we show also the critical entropy of
a trapped unitary gas against the population imbalance. The
calculated dependence is essentially similar to that for
temperature.

VI. CONCLUSIONS

We have developed an efficient and accurate hybrid pro-
cedure to solve the mean-field BdG equations for a spheri-
cally trapped Fermi gas with spin population imbalance. This
enables us to thoroughly examine the extensively used LDA
approach. For a moderately large particle number ��104�,

the LDA appears to work very well. The discrepancy of BdG
and LDA results reported in previous studies is attributed to
the incorrect inclusion of a mean-field Hartree term in the
BdG equations. We note, however, that the trap used in the
current experiments is elongated in the axial direction. The
spherical trap considered in this work may be regarded as
approximately representative of the experimental setup by
Zwierlein et al. �9–11� with an aspect ratio of approximately
5. The trap in the experiment by Partridge et al. �12� is ex-
tremely anisotropic, and therefore the LDA description could
break down. The solution of the BdG equations for such
elongated systems is numerically intensive and requires
further investigation.

Our derivation of the BdG formalism and the numerical
results with varying particle number in Fig. 4 strongly sug-
gests that the calculated small oscillation in the order param-
eter at the superfluid-normal interface arises from finite-size
effects. This is in marked contrast with the previous interpre-
tation of this effect as due to a finite-momentum paired
FFLO state �48–51�. The detailed structure of the proposed
FFLO state is not clear, even in the homogeneous situation.
How to extend the current BdG formalism to incorporate the
FFLO state is therefore a fascinating issue. Another possibil-
ity is that the extremely narrow window for FFLO states in
3D is closed or reduced in size due to the presence of the
harmonic trap.

We have reported various mean-field thermodynamical
properties of the imbalanced Fermi gas at unitarity, which is
believed to be qualitatively reliable at low temperature. The
experimentally observed bimodal distribution in the profile
of the minority-spin state has been reproduced. We have de-
termined the BCS superfluid transition temperature as a
function of the population imbalance and have shown that it
is consistent with recent experimental measurements. Quan-
titative theories of the imbalanced Fermi gas that take ac-
count of large quantum fluctuations that occur in the strongly
correlated unitarity regime still need to be developed. A
promising approach is to take into account pair fluctuations
within the ladder approximation �64�. This problem will be
addressed in a future publication.
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