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We discuss a quantum-metrology protocol designed to estimate a physical parameter in a Bose-Einstein
condensate of N atoms, and we show that the measurement uncertainty can decrease faster than 1 /N. The 1 /N
scaling is usually thought to be the best possible in any measurement scheme. From the perspective of quantum
information theory, we outline the main idea that leads to a measurement uncertainty that scales better than
1 /N. We examine in detail some potential problems and challenges that arise in implementing such a mea-
surement protocol using a Bose-Einstein condensate. We discuss how some of these issues can be dealt with by
using lower-dimensional condensates trapped in nonharmonic potentials.
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I. INTRODUCTION

In quantum metrology, the description “Heisenberg-
limited scaling” refers to the best possible scaling of the
measurement uncertainty with the resources put into a mea-
surement. The phrase arises not from Heisenberg uncertainty
relations, but from uncertainty relations of the Mandelstam-
Tamm type �1�,

�� ��2K�1/2 �
1

2
, �1.1�

in units with �=1. The uncertainty �� in a parameter � that,
in part, determines the state of a quantum system is related to
the standard deviation of the operator K that generates trans-
lations of the state along a path parameterized by �. A se-
quence of logical and mathematical steps is needed to pro-
vide a rigorous connection between the problem of
measurement uncertainty in quantum metrology and uncer-
tainty relations of the Mandelstam-Tamm type. The pioneer-
ing work of Helstrom �2�, Holevo �3�, Braunstein, Caves,
and Milburn �4,5�, and others laid out and elucidated these
steps. We summarize them below for the sake of complete-
ness.

The discussion in this paper is restricted to single-
parameter estimation. The first step in estimating the value
of a parameter is to identify an elementary physical system
that is sensitive to changes in the parameter, just as one
would choose a balance to measure weight or a thermometer
to measure temperature. One or more of these elementary
systems make up the measuring device or probe. The mea-
surement uncertainty is a property of this measuring device.
In quantum metrology this means that we expect the mea-
surement uncertainty to depend on the initial state of the
quantum probe, its evolution, and the measurement made on
the probe to extract information about the parameter. The

quantum Cramér-Rao bound quantifies the idea that the op-
timal measurement uncertainty is inversely proportional to
the change in the state of the probe corresponding to small
changes in the value of the parameter

����2 �
1

�dsDO/d��2 =
1

I��,t�
. �1.2�

Here dsDO denotes a distance element in the space of density
operators of the probe and I�� , t� is the quantum Fisher in-
formation. The uncertainty in determining � is quantified by
the units-corrected root-mean-square deviation of one’s esti-
mate of the parameter, �est, from the true value �,

�� = �� �est

	���est�/��	
− �
2�1/2

. �1.3�

In classical statistics, the Cramér-Rao bound on measure-
ment uncertainty is given by

����2 �
1

I���
, �1.4�

where

I��� � �� �

��
ln p��	��
2� , �1.5�

called the Fisher information, is an average over the prob-
ability distribution p�� 	�� for a random variable � and is a
measure of the information that � can provide about �. The
classical Cramér-Rao bound �1.4� can generally be achieved
only asymptotically in a large number of trials, i.e., indepen-
dent measurements of �. The requirement of many trials to
achieve the Cramér-Rao bound is important, but as a purely
classical effect, it is not germane to our discussion of quan-
tum limits, so we do not consider it further in the remainder
of this paper.*shaji@unm.edu
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If the probe used to estimate the value of � were a clas-
sical system, then � would label the possible states of the
probe at the end of the measurement, with p�� 	�� being
the probability of finding the probe in each of these states.
For a quantum probe in a state ��� , t� at the end of the
measurement process, � labels the possible outcomes of a
measurement performed on the probe, which is described by
POVM elements E���, with d�E���=1 and p�� 	� , t�
=tr�E������ , t��. The classical Fisher information I�� , t�, de-
fined using p�� 	� , t�, clearly depends on the choice of
POVM. The quantum Fisher information, which is indepen-
dent of the choice of POVM, is therefore defined as

I��,t� � max
E���

I��,t� . �1.6�

The maximization over all possible measurements in the
above equation is a rather daunting prospect, but it can be
shown that �2–5�

I��,t� = tr����,t�L2��,t�� = �L2��,t�� . �1.7�

The symmetric logarithmic derivative, L�� , t�, is the Hermit-
ian operator defined implicitly by the equation

1

2
�L� + �L� =

��

��
. �1.8�

We now make two simplifying assumptions. First, we as-
sume that translations in the parameter are generated by a
unitary operator. This allows us to characterize the transla-
tions in terms of a Hermitian generator K�� , t� defined by

����,t�
��

= − i�K��,t�,���,t�� . �1.9�

Second, we assume that the state of the probe is pure, which
implies �2�� , t�=��� , t�. Under these two assumptions, we
can identify the symmetric logarithmic derivative as

L��,t� = 2
��

��
= − 2i�K��,t�,���,t�� , �1.10�

and the quantum Fisher information becomes

I��,t� = 4 tr��K2 − �K�K� = 4��2K��,t�� . �1.11�

Thus, using Eq. �1.2�, we obtain

�� �
1

2��2K��,t��1/2 , �1.12�

which is a rigorous statement of the Mandelstam-Tamm un-
certainty relation �1.1�. Our two simplifying assumptions can
be relaxed �2–5�, but we do not need the more general forms
of the Cramér-Rao bound in this paper.

We can further simplify Eq. �1.12� by noting that the vari-
ance of a Hermitian operator is bounded from above by
��2K�� �K�2 /4, where � · � is defined as the difference be-
tween the largest and smallest eigenvalues of a Hermitian
operator �this is a seminorm for Hermitian operators�. The
quantum Cramér-Rao bound then becomes

�� �
1

�K��,t��
. �1.13�

We mentioned the elementary quantum systems, sensitive
to �, that are used to build the probe. The number N of such
elementary units of the probe can be regarded as the most
significant resource that goes into a measurement scheme.
The differences between the tensor-product state space of a
composite quantum system of N probe units and the
Cartesian-product state space of an equivalent classical com-
posite system is the motivation for investigating whether a
composite quantum probe offers advantages over classical
ones in the relationship between �� and N.

From Eq. �1.13� we see that theoretically the N depen-
dence of the bound on �� comes solely from the dependence
of the generator K on N. In any particular quantum-
metrology scheme, however, this bound might not be achiev-
able, and additional dependence of �� on N can come from
the nature of the state of the probe as well. To see these
dependences clearly and to understand what “Heisenberg-
limited scaling” means, we view quantum metrology from
the perspective of quantum information theory using the lan-
guage of quantum circuits in Sec. II. We also explain how
one can construct measurement protocols in which �� scales
with N in a manner not thought to be possible until recently.
Section III examines in some detail how such an enhanced
metrology protocol might be implemented in a Bose-Einstein
condensate �BEC� of N atoms and considers various prob-
lems and issues that might arise in a BEC realization of the
proposed metrology scheme.

II. QUANTUM METROLOGY FROM AN INFORMATION-
THEORETIC PERSPECTIVE

In this section, we follow Giovannetti et al. �6� in using
quantum circuits to describe and analyze metrology proto-
cols. From this perspective, we first look at a couple of well-
known measurement schemes that were considered in
�6�—Ramsey interferometry �Sec. II A� and interferometry
using a Schrödinger-cat state �superposition of macroscopi-
cally distinct states� �Sec. II B�—with the aim of generaliz-
ing these circuits to new protocols that were introduced in
�7,8�. In these initial discussions of Ramsey interferometry
and cat-state interferometry, we assume that the elementary
quantum systems that make up the probe are qubits. The
quantization axis is taken to be along the z direction of a
Bloch-sphere representation, with the standard basis states
along this direction denoted as 	0� and 	1�. Despite the nota-
tion the actual qubits need not be spin-1/2 particles; they
could very well be atoms in which only two energy levels are
relevant or a variety of other suitable systems. In the subse-
quent general discussions of linear and nonlinear interferom-
etries �Secs. II C and II D�, we allow the probe units to be
any quantum system. It turns out, however, that optimal sen-
sitivities are always attained by using only two levels of each
unit, so in the end we can always regard the probe units as
qubits.

In all the quantum circuits depicted in this section, we use
N=3 probe units as an example.

A. Ramsey interferometry

A typical Ramsey interferometer, such as the one in �9�,
can be represented by the quantum circuit in Fig. 1. In this
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measurement protocol, each of the N qubits that make up the
probe evolves independently. All the qubits are initialized in
the state 	0�, which might represent the ground state in Ram-
sey interferometry using atoms. The Hadamard gate H puts
each of the qubits in an equal superposition of the two basis
states, �	0�+ 	1�� /�2. The parameter-dependent evolution of
the quantum probe is generated by the Hamiltonian

HRamsey = ��
j=1

N

	z;j/2 = �Jz, �2.1�

where 	z;j denotes the 	z operator acting on the jth probe
qubit and Jz is the z component of the “total angular momen-
tum” for all the qubits.

Evolution under this Hamiltonian for a time t introduces a
relative phase 
��t between the two components of the
superposition, changing the state of the probe qubits to
�e−i
/2	0�+ei
/2	1�� /�2. The last set of Hadamard gates
changes the parameter-dependent phases in the superposition
into amplitude �population� information. Thus the state of the
probe qubits just before the readout is cos�
 /2�	0�
+sin�
 /2�	1�. The final readout in Ramsey interferometry is
done by measuring each of the qubits along the z direction.
This leads to a measured signal

�Jz� � � 1

2�
j=1

N

	z;j� =
1

2
N cos 
 . �2.2�

The variance in the signal is

��2Jz� =
1

4
N��2	z� =

1

4
N sin2 
 . �2.3�

The uncertainty in the estimate of � from the measured sig-
nal in Eq. �2.2� is

��Ramsey =
��2Jz�1/2

	d�Jz�/d�	
=

1

t�N
. �2.4�

For the Ramsey Hamiltonian �2.1�, the generator of trans-
lations in � is tJz. Thus, according to the quantum Cramér-
Rao bound �1.13�, the measurement uncertainty is bounded
from below by

�� �
1

t�Jz�
=

1

tN�	z/2�
=

1

tN
. �2.5�

The Ramsey interferometer described here does not achieve
the best measurement uncertainty given by the quantum
Cramér-Rao bound. The Hamiltonian HRamsey that governs
the evolution of the probe qubits is fixed by the choice of
physical systems that are the qubits. Given a choice of probe

qubits, however, we still have the freedom to choose an op-
timal initial state for the probe and an optimal measurement
of the qubits to minimize the measurement uncertainty. It
turns out that the best possible scaling for the measurement
uncertainty can be achieved if the probe is initialized in an
entangled “Schrödinger-cat” state �10,11�.

B. Cat-state interferometry

The quantum circuit that uses a probe initialized in a
Schrödinger-cat state is depicted in Fig. 2. The Hadamard
gate on the first qubit, followed by the controlled-NOT gates
to the remaining qubits, initializes the probe in the state
	cat�= �	0. . .0�+ 	1. . .1�� /�2. This state is often referred to as
the Schrödinger-cat state because when the number of qubits
is large, it is a superposition of two macroscopically distinct
states.

The probe qubits evolve under the same Hamiltonian �Eq.
�2.1�� as in Ramsey interferometry. The parameter-dependent
evolution of the probe for a duration t changes the probe
state to �e−iN
/2	0. . .0�+eiN
/2	1. . .1�� /�2, where 
=�t. After
the parameter-dependent evolution, one way to handle the
readout, depicted in the circuit above, is to subject the qubits
to a sequence of gates that kick the phases picked up by the
two components of the cat state into amplitudes on the first
qubit, so that the state of the probe just before readout is
�cos�N
 /2�	0�+sin�N
 /2�	1�� � 	0���N−1�. The readout of the
probe can then be performed by measuring the 	z operator
on the first qubit. This leads to a measured signal and vari-
ance given by

�	z;1� = cos N
 and ��2	z;1� = sin2 N
 . �2.6�

The frequency of the �-dependent fringe in cat-state interfer-
ometry is N times greater than the frequency of the signal in
ordinary Ramsey interferometry. This leads to an enhanced
sensitivity in the estimate of � in cat-state interferometry,
which achieves the Cramér-Rao bound:

��cat =
��2	z;1�1/2

	d�	z;1�/d�	
=

1

tN
. �2.7�

C. Heisenberg-limited metrology with linear Hamiltonians

We can put our interferometry circuits in a general setting
by considering the case in which the probe units are arbitrary
systems and the probe Hamiltonian is of the form

FIG. 1. Quantum circuit for Ramsey interferometry. FIG. 2. Quantum circuit for cat-state interferometry.

QUANTUM-LIMITED METROLOGY AND BOSE-EINSTEIN… PHYSICAL REVIEW A 80, 032103 �2009�

032103-3



Hlinear = �hlinear = ��
j=1

N

hj . �2.8�

Here the operators hj denote identical couplings to the probe
units; the use of independent couplings to the parameter is
the source of our appelation “linear” for this Hamiltonian.
The generator of translations in � is K�� , t�= thlinear, so the
quantum Cramér-Rao bound �1.13� on the uncertainty in a
determination of � takes the form

�� �
1

t�hlinear�
=

1

tN�� − ��
, �2.9�

where � and � are the largest and smallest eigenvalues of the
single-unit operators hj. Achieving the Cramér-Rao bound
only requires using two levels of each unit, the eigenstates
	�� and 	�� corresponding to the largest and smallest eigen-
values of the operators hj, so we can always regard the units
as qubits with 	0�= 	�� and 	1�= 	��.

The quantum circuit that represents a measurement proto-
col of this sort is drawn in Fig. 3. The dashed boxes highlight
the three stages of this protocol: probe preparation, dynam-
ics, and readout. All the probe units begin in a standard state
	S�. The arbitrary unitary operator P can then prepare any
initial state as input to the dynamics. In the dynamics stage,
the gates U
 imprint information about the parameter on the
probe. The final readout stage includes an arbitrary unitary
interaction R among the probe units and with an arbitrary
ancilla system. This unitary followed by measurements on
each subsystem in a standard basis can be used to perform
any quantum measurement. The quantum Cramér-Rao bound
�2.9� applies to all circuits of the above form. Indeed, the
bound actually applies to somewhat more general situations
in which the unitary operator R is interleaved with the gate
dynamics and the results of ancilla measurements are fed
back onto the probe �7�.

If the preparation unitary P is omitted from the circuit,
making the input to the dynamics a product state, then the
uncertainty in the generator of � displacements is bounded
by ��2K�1/2� t�N��−�� /2. The resulting bound on mea-
surement uncertainty, from Eq. �1.12�, is

�� �
1

t�N�� − ��
� ��QNL. �2.10�

This bound, a general form of that for standard Ramsey
interferometry, is called the quantum noise limit �QNL� or

the shot-noise limit. The optimal 1 / t�N sensitivity for
product-state inputs can be achieved by using initial state
	S�= �	��+ 	��� /�2 for each unit and by making a final prod-
uct measurement of an equatorial-plane spin component on
each unit �in the qubit Bloch sphere formed from 	0�= 	��
and 	1�= 	���.

One can achieve the Cramér-Rao bound �2.9� by operat-
ing the circuit in a way that takes advantage of entangled
input states. The preparation operator is chosen to take the
initial product of standard states to the “catlike” state
�	� , . . . ,��+ 	� , . . . ,��� /�2. In the dynamics stage, this “cat-
like” initial state is subject to a period of parameter-
dependent evolution that changes it to �e−iN�
	� , . . . ,��
+eiN�
	� , . . . ,��� /�2. The readout process kicks back the dif-
ferential phase shift into amplitude information, which pro-
duces fringes with frequency proportional to N��−��, thus
achieving the optimal measurement uncertainty,

�� =
1

tN�� − ��
� ��HL, �2.11�

of the Cramér-Rao bound �2.9�. This optimal measurement
uncertainty, a general form of that for cat-state interferom-
etry, is often called the Heisenberg limit.

The general quantum-metrology scheme considered in
this subsection indicates that probe preparation gives an en-
hancement of 1 /�N over the case where the probe qubits are
initialized in a product state. Readout has already been opti-
mized to take advantage of this entangled input, so we con-
clude that when the parameter-dependent dynamics acts in-
dependently on the probe qubits, Heisenberg-limited scaling
is indeed the 1 /N scaling. The one remaining way of explor-
ing whether the 1 /N scaling can be improved is to consider
more general dynamics �7,8,12–17�; we turn to that possibil-
ity in the next subsection.

D. Heisenberg-limited metrology with nonlinear Hamiltonians

A generalized quantum-metrology scheme in which the
dynamics of the probe is generated by a Hamiltonian that
includes all k-body couplings between the probe qubits was
first considered in �7�. This nonlinear coupling Hamiltonian
has the form

Hnonlinear = �hnonlinear = ���
j=1

N

hj
k

= � �
j1,. . .,jk=1

N

hj1
hj2

¯ hjk
.

�2.12�

The generator of translations in � is K�� , t�= thnonlinear, so the
quantum Cramér-Rao bound for this dynamics is

�� �
1

tNk��max − �min�
, �2.13�

where �max and �min are functions of � and �, the largest
and smallest eigenvalues, respectively, of the single-unit op-
erators hj. For instance, if both � and � are positive, then
�max=�k and �min=�k for all values of k. The other possible
signs of � and � are discussed in �8�; they all lead to a 1 /Nk

scaling.

FIG. 3. Quantum circuit for a general linear interferometer.
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The quantum circuit for metrology with nonlinear Hamil-
tonians has the form shown in Fig. 4. This circuit has the
same overall form as that for linear quantum metrology, with
the same three stages highlighted by the dashed boxes. The
only difference comes in the dynamics stage, where the gate
that imprints information about the parameter on the probe
involves simultaneous coupling to all the probe units.

To achieve the 1 /Nk scaling made available by using a
nonlinear Hamiltonian, the probe units have to be initialized
in an entangled state that is very much like a cat state. Ex-
perimental limitations up until now have precluded making
such catlike states for large numbers of systems. To avoid
this difficulty, Boixo et al. �8� analyzed the performance of
quantum-metrology protocols employing nonlinear Hamilto-
nians when the initial state of the probe is a product state. In
this case the optimal measurement uncertainty scales as

�� �
1

tNk−1/2 . �2.14�

The factors multiplying this scaling depend on the particular
nonlinear coupling Hamiltonian �8�. It is noteworthy that the
optimal 1 / tNk−1/2 sensitivity can be achieved using product
measurements of equatorial spin components in the effective
qubit space formed from 	�� and 	��. The key point is that
for a k-body coupling Hamiltonian, the use of a product-state
input costs only a factor of ��N relative to the optimal sen-
sitivity �2.13�. The quantum noise limit and the Heisenberg
limit of linear metrology are a special case of this �N loss of
sensitivity when using input product states as opposed to an
optimal entangled state.

With two-body couplings and an initial product state for
the probe, a measurement uncertainty scaling as 1 /N3/2 is
possible. Since two-body coupling between all probe units is
not an especially onerous requirement for a probe system,
the prospect of improving upon the 1 /N Heisenberg scaling
motivates us to investigate candidate systems for such me-
trology schemes. In the next section we consider a BEC as
such a candidate system with the aim of developing a de-
tailed, realistic, and viable proposal for an experiment that
achieves better than 1 /N scaling for the measurement uncer-
tainty in quantum single-parameter estimation.

E. Role of entanglement

The more general point of view provided by nonlinear
quantum metrology allows us to see exactly what benefit
entanglement bestows on quantum metrology. Entanglement

permits one to marshal the available resources in a quantum-
metrology protocol into an initial state that can achieve the
best possible scaling for the measurement uncertainty as laid
out by the quantum Cramér-Rao bound. The use of an ap-
propriately entangled input state purchases a sensitivity boost
by a factor of �1 /�N relative to the use of an optimal initial
product state. Initial entanglement is, however, not necessary
for getting to or improving upon the 1 /N Heisenberg scaling.

When specialized to qubits, with hj =	z;j /2, and to qua-
dratic couplings, the nonlinear probe Hamiltonian of Eq.
�2.12� becomes Hnonlinear=�Jz

2. This Hamiltonian generates
entanglement during the dynamics stage of the protocol. De-
spite the evidence from the quantum Cramér-Rao bound that
entanglement only helps in the initial state, one might rea-
sonably ask whether this dynamically generated entangle-
ment plays a role in improving upon the 1 /N scaling. The Jz

2

probe Hamiltonian was analyzed in detail in �8�. The optimal
initial product state is �cos� /8�	0�+sin� /8�	1���n. Evolu-
tion under the Jz

2 Hamiltonian for a short time t��−1, fol-
lowed by a measurement of Jy, gives a measurement preci-
sion ��=2 /N3/2, which is the optimal precision for this
Hamiltonian and initial state. As a consequence of the Jz

2

evolution, however, the probe qubits become entangled and
suffer from an associated “phase dispersion” that makes the
measurement uncertainty large for separable measurements
when �t becomes large. Far from being an aid, the generated
entanglement seems only to make it impossible to achieve
the 1 /N3/2 sensitivity using product measurements.

In �18� it was pointed out that in addition to the Jz
2 Hamil-

tonian, Hnonlinear=�NJz can also be used to get an optimal
measurement uncertainty 1 /N3/2 when the probe qubits all
start off in the state �	0�+ 	1�� /�2. The NJz Hamiltonian does
not produce entanglement between the probe qubits, nor does
it produce phase dispersion. Indeed, the NJz Hamiltonian acts
like a linear coupling whose strength is enhanced by a factor
of N. In this case it is clearly the dynamics alone that leads to
the enhanced scaling for the measurement uncertainty, since
there is no entanglement between the probe qubits at any
stage in the metrology protocol.

On physical grounds, the NJz Hamiltonian cannot be a
fundamentally linear coupling whose strength is enhanced by
addition of qubits, but rather must come naturally from qua-
dratic couplings to the parameter. Such a coupling does ap-
pear in the Hamiltonian for a two-mode BEC, as was pointed
out in �18�. We introduce this BEC implementation in the
next section and discuss it in some detail.

III. BOSE-EINSTEIN CONDENSATE
AS A QUANTUM PROBE

A. Nonlinear BEC interferometry

The many-body Hamiltonian for a dilute Bose gas con-
sisting of atoms of mass m in a trapping potential V�r� at
zero temperature, in second-quantized notation, is given by
�19–22�

Ĥ =� dr� �2

2m
� �̂† · ��̂ + V�r��̂†�̂ +

1

2
g�̂†�̂†�̂�̂
 ,

�3.1�

where �̂†�r� and �̂�r� are creation and annihilation field op-
erators that obey bosonic commutation relations,

FIG. 4. Quantum circuit for a general nonlinear
interferometer.
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��̂�r�,�̂†�r��� = ��3��r − r��,

��̂�r�,�̂�r��� = ��̂†�r�,�̂†�r��� = 0, �3.2�

and the coupling constant g, for a dilute gas in which the
interparticle spacing is much larger than the scattering
length, is related to the s-wave scattering length a by

g =
4�2a

m
. �3.3�

In a zero-temperature BEC, to a very good approximation,
all the atoms are in the ground state �N�r�, which is the
N-dependent ground-state solution �normalized to unity� of
the time-independent Gross-Pitaevskii �GP� equation for a
trapping potential V�r� and a scattering term with coefficient
g,

�−
�2

2m
�2 + V�r� + g�N − 1�	�N	2
�N = �N�N. �3.4�

Here �N is the chemical potential. At this level of approxi-
mation, the expansion of the field operator in terms of modal
annihilation operators can be truncated to just one term,

�̂�r� = �N�r�â , �3.5�

where â annihilates a particle with wave function �N�r�. The
number operator â†â for this single mode can be treated as
the c-number N because the number of atoms is a constant.
The Hamiltonian then reduces to the c-number mean-field
energy for this single mode, H=E0N+ 1

2g�NN�N−1�, where

E0 =� dr� �2

2m
	��N	2 + V�r�	�N	2
 �3.6�

is the single-particle kinetic plus trapping energy, and the
quantity

�N =� dr	�N�r�	4 �3.7�

is a measure of the inverse volume occupied by the ground-
state wave function. The product g�N, which has units of
energy, is a scattering strength normalized by this effective
volume. The average number density in the atomic cloud is
N�N.

So far we have assumed that all the atoms in the BEC are
in a single atomic state, but as mentioned earlier, we want
these atoms to be two-level systems, or qubits, in order for
them to serve as the probe units in the quantum-metrology
protocols we are interested in. We therefore consider two-
mode BECs in which the atoms can occupy one of two in-
ternal states, labeled 	1� and 	2�. These two states are typi-
cally hyperfine levels of the atoms. In practice, the atoms are
cooled to form the BEC while they are all in the same inter-
nal state, and then an external field is used to drive transi-
tions between the two levels to achieve the desired coherent
superposition of atomic population between the two levels.
The effect we are looking for is the difference between the
integrated nonlinear phase shifts experienced by the two lev-
els, the difference being due to the different scattering inter-

actions experienced by the two levels. This differential inte-
grated phase shift is detected by driving a second transition
between the levels, which transfers the phase information
into the populations of the two levels.

For an initial analysis of this scenario in this section, we
make three simplifying assumptions.

�1� The external field that drives the transitions between
the two states 	1� and 	2� acts only for a short time compared
to the phase-shift dynamics that leads to the estimate of the
parameter we are interested in. We therefore treat these tran-
sitions as effectively instantaneous and do not include the
driving field in the Hamiltonian.

�2� The collisions between the atoms are elastic. Thus the
only allowed scattering processes are 	1�	1�→ 	1�	1�, 	2�	2�
→ 	2�	2�, and 	1�	2�→ 	1�	2�, with scattering coefficients g11,
g22, and g12, where g��=4�2a�� /m=g��, with Greek letters
used to label the internal states.

These first two assumptions imply that the many-body
Hamiltonian takes the form

Ĥ = �
�
� dr� �2

2m
� �̂�

† · ��̂� + V�r��̂�
†�̂�


+
1

2�
�,�

g��� dr�̂�
†�̂�

†�̂��̂�, �3.8�

where �̂��r� is the field annihilation operator for internal
state �. In writing this Hamiltonian, we assume that any
energy splitting between the two internal states has been re-
moved by going to an interation picture. Our third assump-
tion is by far the most problematical of the three.

�3� The two modes retain the same spatial wave function
�N�r� as they evolve. Since the atoms that form the initial
BEC are all in the state 	1�, in the mean-field approximation
they all share the spatial wave function �N�r�, which is the
N-dependent ground-state solution of the time-independent
GP Eq. �3.4� with scattering coefficient g11. Immediately
after the nearly instantaneous action of the external field,
the wave function for both internal states is �N�r�. We fur-
ther assume that the second internal state is chosen so that it
sees the same trapping potential V�r�. Even though the two
internal states have identical initial wave functions and
experience identical trapping potentials, their wave func-
tions will gradually become different because of the differ-
ence in their scattering lengths. What we are assuming now
is that the integrated nonlinear phase shifts that we are inter-
ested in accumulate on a time scale that is shorter than the
time scale for the two wave functions to differentiate spa-
tially. Thus, for the present, we take the two wave functions
to be identical. We return to the question of the time scale for
differentiation of the two wave functions at the end of this
section, in Sec. III F.

Using the third assumption, we can write the field annihi-
lation operators as

�̂��r� = �N�r�â�. �3.9�

Since the total number of atoms is fixed, we can treat the
total number operator,
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N̂ � â1
†â1 + â2

†â2, �3.10�

as a c-number N. We can then put the two-mode Hamiltonian
in the form

Ĥ = E0N +
1

2
�N�

�,�
g��â�

† â�
† â�â�

= H0 + �1�N�N − 1�Ĵz + �2�NĴz
2, �3.11�

where E0 and �N are as in Eqs. �3.6� and �3.7�. The operator

Ĵz is defined by

Ĵz �
1

2
�â1

†â1 − â2
†â2� , �3.12�

and we have also introduced a c-number energy,

H0 = E0N +
1

4
�1

2
�g11 + g22� + g12
�NN2 −

1

4
�g11 + g22��NN ,

�3.13�

which includes the common-mode part of the mean-field
scattering energy. Finally, we define two coupling constants
that characterize the interaction of the two modes,

�1 �
1

2
�g11 − g22� and �2 �

1

2
�g11 + g22� − g12.

�3.14�

The Hamiltonian �3.11� is often called the Josephson ap-
proximation.

The common-mode energy H0 in Eq. �3.11� can be ig-
nored because its only effect is to introduce an overall phase
in the evolved state of the probe. In the other two terms, we

have �N−1�Ĵz and Ĵz
2 couplings, suggesting that we might be

able to measure the coupling constants �1 and �2 with an
accuracy that scales as 1 /N3/2 with the number of atoms in
the BEC.

To see how this works out, suppose the first optical pulse
puts each atom in a superposition c1	1�+c2	2�, where c1 and
c2 can be assumed to be real �i.e., the first optical pulse
performs a rotation about the y axis of the Bloch sphere�. For

short times, we can make a linear approximation to Ĵz
2 in the

Josephson Hamiltonian, i.e., we can set Ĵz
2= ��Ĵz�+�Ĵz�2

��Ĵz�2+2�Ĵz��Ĵz, with �Ĵz�=N�c1
2−c2

2� /2. The linear ap-
proximation amounts to neglecting the phase dispersion and

corresponding entanglement produced by the Ĵz
2 term. We

need not make any such short-time approximation for the

�N−1�Ĵz term. Up to irrelevant phases, the resulting evolu-
tion is a rotation of each atom’s state about the z axis of the
Bloch sphere with angular velocity

�N

�
��N − 1��1 + N�c1

2 − c2
2��2� �

�N − 1��N

�
��1 + �c1

2 − c2
2��2�

� �N, �3.15�

where in the second form, we approximate N as N−1. Under
these circumstances, the BEC acts like a linear Ramsey in-
terferometer whose rotation rate is enhanced by a factor of

�N−1��N, leading to a sensitivity that scales as 1 /�N�N
−1��N�1 /N3/2�N. If �2=0, the optimal initial state has c1
=c2=1 /�2, but if �1=0, the optimal choice is c1=cos� /8�
and c2=sin� /8� �8�.

Achieving a 1 /N3/2 scaling requires that �N have no de-
pendence on N. As noted above, however, �N

−1 is a measure
of the volume occupied by the ground-state wave function
�N. As atoms are added to a BEC, the wave function spreads
because of the repulsive scattering of the atoms, thereby re-
ducing �N as N increases. To pin down how the measurement
accuracy scales with N, we need to determine how �N be-
haves as a function of N.

B. Two critical atom numbers

Since we first create a BEC of N atoms all in hyperfine
state 	1�, before putting them in a superposition of states 	1�
and 	2�, we can focus on the N dependence of �N for a
single-mode BEC of atoms in state 	1�. Thus, in this subsec-
tion and the next two, we deal with the single-mode GP Eq.
�3.4� with g=g11 and a=a11.

An obvious strategy to suppress the N dependence of �N
is to constrain the BEC within a hard-walled trap so that it
cannot expand as more atoms are added. BECs effectively
confined to two or one dimensions and held in power-law
trapping potentials along these dimensions are the sort found
in real experiments. Thus we look at the dependence of �N
on N for a BEC that is loosely trapped in d dimensions,
referred to as longitudinal �L� dimensions, and tightly
trapped in D=3−d dimensions, referred to as transverse �T�
dimensions. We assume that in the longitudinal dimensions,
the atoms are trapped in a power-law potential of the form

VL�r� =
1

2
krq, q = 1,2, . . . , �3.16�

and that in the transverse dimensions, the trapping potential
is harmonic,

VT��� =
1

2
m�T

2�2. �3.17�

The parameter q characterizes the hardness of the longitudi-
nal trapping potential. We deal with a three-dimensional �3D�
trap by setting D=0, meaning there are no transverse dimen-
sions.

When N is small, the mean-field scattering energy is neg-
ligible compared to the atomic kinetic energy of the atoms
and the trapping potential energy. In this situation, the scat-
tering term in the GP equation can be neglected, and the
ground-state wave function is the solution of the Schrödinger
equation for the trapping potential VL�r�+VT���. As more
atoms are added to the BEC, the repulsive scattering term in
Eq. �3.4� comes into play and causes the wave function to
spread. We define two critical atom numbers, NL and NT,
which characterize the onset of spreading in the longitudinal
and transverse dimensions. The lower critical atom number,
NL, is defined as the atom number at which the scattering
term in the GP equation is as large as the longitudinal
kinetic-energy term and thus characterizes when the wave
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function begins to spread in the longitudinal dimensions. The
upper critical atom number, NT, is defined as the atom num-
ber at which the scattering term is as large as the transverse
kinetic energy and thus characterizes when the wave function
begins also to spread in the transverse dimensions. The no-
tion of an upper critical atom number only makes sense for
one-dimensional �1D� and two-dimensional �2D� traps and
not for d=3.

For small atom number, i.e., N�NL, as just noted, the
scattering term in the GP equation can be neglected, and the
ground-state solution of the GP equation is the
N-independent product ground state of the Schrödinger equa-
tion,

�0��,r� = �0����0�r� . �3.18�

Here �0��� is the Gaussian ground state for the transverse
dimensions,

�0��� =
1

�2�0
2�D/4exp�−

�2

4�0
2
 , �3.19�

whose corresponding probability density has half-width

�0 � � �

2m�T

1/2

, �3.20�

and �0�r� is the bare ground state for the loosely confined
longitudinal dimensions. We can estimate the half-width of
�0 by equating the trapping potential energy �PE� and the
kinetic energy �KE� per dimension, i.e., kr0

q /2=�2 /2mr0
2,

which gives

r0 � � �2

mk

1/�q+2�

. �3.21�

In accordance with our assumptions, we assume that r0 is
much larger than �0. A hard-walled trap in the longitudinal
dimensions corresponds to the limit q→� with r0 held con-
stant.

The trapped BECs we consider are thus characterized by
three length scales: �i� the scattering length a; �ii� the bare
transverse trap half-width �0; and �iii� the bare longitudinal
trap half-width r0. Typical values, which we use for estimates
in the following, are a=10 nm, �0=1 �m, and r0
=100 �m. For 87Rb atoms �which have a=a11=5.3 nm�,
the corresponding transverse trap frequency is �T=58 Hz;
we can also identify an approximate longitudinal trap fre-
quency,

�L =
�L

2
�

1

2

�

mr0
2 � 10−2 Hz, �3.22�

associated with the bare longitudinal ground state.
Whenever the wave function is a product of transverse

and longitudinal wave functions, �N is also a product, �N
=�T�L. When N�NL, �N��0 is independent of N since

�T =� dD�	�0���	4 =
1

�4�D/2�0
D , �3.23�

�L =� ddr	�0�r�	4 �
1

Vdr0
d , �3.24�

where Vd is the volume of a unit sphere in d dimensions
�V1=2, V2=, and V3=4 /3�, The lower critical atom num-
ber, NL, is defined by setting

�2

2mr0
2 � �longitudinal KE� � �scattering term�

� �NL − 1�g�0 �
�2

2m
�NL − 1�

1

�d

a

�0
Dr0

d , �3.25�

where

�d �
Vd

2�4��d−1�/2 �3.26�

is a geometric factor ��1=1 , �2=� /4, �3=1 /6�. Thus we
define

NL − 1 � �d
r0

a
��0

r0

D

. �3.27�

For the typical length scales mentioned above, the lower
critical atom number is about 1700 for a 3D trap, 45 for a 2D
trap, and 2 for a 1D trap. The small value of NL for a 1D trap
is the reason we retain the −1 wherever it appears in our
discussion of atom numbers, even though it could be
dropped in most situations.

For NL�N�NT, the tight confinement in the transverse
dimensions means that the wave function continues to be a
product,

�N��,r� = �0����N�r� , �3.28�

but with the longitudinal wave function satisfying a GP equa-
tion,

�−
�2

2m
�L

2 + VL�r� + g�N − 1��T	�N	2
�N = �L�N,

�3.29�

where �L=�N−D��T /2 is the longitudinal part of the
chemical potential. As atoms are added to the trap in this
intermediate regime, the wave function spreads in the longi-
tudinal dimensions. We can estimate the longitudinal half-
width rN by noticing that �N=�T�L, where �T is given by
Eq. �3.23� and

�L =� dr	�N�r�	4 �
1

VdrN
d , �3.30�

and then equating the attractive longitudinal trapping PE to
the repulsive scattering term,
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1

2
krN

q � �longitudinal PE� � �scattering term�

� �N − 1�g�N �
�2

2m
�N − 1�

1

�d

a

�0
DrN

d

=
�2

2m

N − 1

NL − 1

r0
d−2

rN
d , �3.31�

where we have used Eq. �3.27� in the last step. This leads us
to define

rN

r0
� � N − 1

NL − 1

1/�d+q�

. �3.32�

We now define the upper critical atom number by setting

�2

2m�0
2 � �transverse KE� � �scattering term�

� �NT − 1�g�NT
=

�2

2m

NT − 1

NL − 1

r0
d−2

rT
d , �3.33�

where rT is the longitudinal half-width at the upper critical
atom number,

rT

r0
� �NT − 1

NL − 1

1/�d+q�

. �3.34�

Using Eq. �3.33� and the definitions in Eqs. �3.34� and �3.27�
we end up with the definition

NT − 1 � �NL − 1�� r0

�0

2�d+q�/q

= �d
�0

a
� r0

�0

d�q+2�/q

.

�3.35�

We stress that the notion of an upper critical atom number
only makes sense for 1D and 2D traps and not for d=3.
Using the typical values mentioned above, we have that the
upper critical atom number for a harmonic longitudinal trap
�q=2� is about 4�109 for a 2D trap and about 106 for a 1D
trap; for a hard longitudinal trap �q→��, NT is about 4
�105 for a 2D trap and about 104 for a 1D trap. Using Eq.
�3.35� we can rewrite the longitudinal radius in Eq. �3.32� as

rN

r0
= � r0

�0

2/q� N − 1

NT − 1

1/�d+q�

. �3.36�

It should be noted that

rT

�0
= � a

�0

NT − 1

�d

1/d

. �3.37�

For a 1D trap, this gives rT=a�NT−1�, making the relation
between rT and NT independent of the parameters of the trap.
Another way of thinking about Eq. �3.37� is that the number
density at the upper critical atom number,

NT

�d�0
DrT

d �
1

a�0
2 , �3.38�

is independent of the properties of the longitudinal trap, with
typical value 1014 cm−3.

As the atom number increases from NT, the transverse
kinetic energy becomes unimportant compared to the trans-
verse trapping energy and the scattering term. The wave
function continues to spread in the longitudinal dimensions
and also spreads in the transverse dimensions, with the lon-
gitudinal and transverse radii, rN and �N, given by

1

2
krN

q �
1

2
m�T

2�N
2 � �scattering term�

� �N − 1�g�N � �N − 1�g
1

VD�N
DVdrN

d , �3.39�

which leads us to define in the regime N�NT,

rN

r0
� � r0

2�0

�N

�0

2/q

, �3.40�

��N

�0

5−d+2d/q

�
4�4�D/222d/q

VD

N − 1

NT − 1
. �3.41�

C. Renormalization of the nonlinear interaction terms
and the sensitivity scaling

The estimates in the previous subsection tell us how �N
scales with atom number. For atom numbers smaller than the
lower critical atom number, �N has the constant value �0, a
consequence of the fact that the repulsive scattering has neg-
ligible effect on the atomic wave function. In the intermedi-
ate regime of atom numbers, i.e., for atom numbers between
NL and NT, the wave function expands in the longitudinal
dimensions, making �N scale as

�N �
1

rN
d � �NL − 1

N − 1

d/�d+q�

. �3.42�

For atom numbers above the upper critical atom number, as
the wave function spreads in all dimensions, �N scales as

�N �
1

�N
DrN

d �
1

�N
3−d+2d/q � �NT − 1

N − 1

�3−d+2d/q�/�5−d+2d/q�

.

�3.43�

In the measurement schemes we contemplate, the uncer-
tainties in determining �1 and �2 scale as

��1,2 �
1

�N�N − 1��N

�
1

N� , �3.44�

where in the final form we neglect 1 compared to N. For
atom numbers below NL, the scaling exponent � is 3/2; for
NL�N�NT, it takes on the value

� =
3

2
−

d

d + q
=

d + 3q

2�d + q�
, �3.45�

and for N�NT, � is given by

� =
3

2
−

3 − d + 2d/q
5 − d + 2d/q

. �3.46�

For atom numbers above NT, harmonic 1D and 2D traps have
�=9 /10, a hard-walled 1D trap has �=1, and a hard-walled
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2D trap has �=7 /6. Our main interest is the intermediate
regime of Eq. �3.45�. The scaling exponent in this regime is
plotted in Fig. 5 as a function of q for 1D, 2D, and 3D traps.

D. Thomas-Fermi approximations

Although we have determined how the scaling exponent
behaves with d and q, we can do a better job of evaluating
�N, determining more precisely the constants in front of the
scaling, by using the Thomas-Fermi �TF� approximation. In
the intermediate regime of atom numbers, the wave function
is the product �3.28�, with the longitudinal wave function
�N�r� satisfying the GP Eq. �3.29� in d dimensions. When N
is much larger than NL, we can ignore the kinetic-energy
term in the reduced GP equation, which gives the TF prob-
ability distribution,

	�N�r�	2 =
�L − krq/2
�N − 1�g�T

. �3.47�

Since 	�N�r�	2 must be positive, the radial extent of the BEC
in the longitudinal dimensions is bounded by r̃N such that

�L =
1

2
kr̃N

q . �3.48�

Normalization yields

1 =� ddr	�N�r�	2 � I1�N,d,q� . �3.49�

Integrals over TF probability distributions, such as I1, are
defined and evaluated in the Appendix. Using Eq. �A.7�, we
find

r̃N

r0
= �d + q

q

N − 1

NL − 1

1/�d+q�

�3.50�

�cf. Eq. �3.32�� or, equivalently, using Eqs. �A.1� and �A.4�,

�L

�N − 1�g�T
=

d + q

q

1

Vdr̃N
d

=
1

Vdr0
d�d + q

q

q/�d+q��NL − 1

N − 1

d/�d+q�

.

�3.51�

Now, from Eq. �A.8�, we can find

�L = I2�N,d,q� =
2q

d + 2q

�L

�N − 1�g�T

=
1

Vdr0
d

2q

d + 2q
�d + q

q

q/�d+q��NL − 1

N − 1

d/�d+q�

�3.52�

and thus determine �N=�T�L �cf. Eq. �3.42��. Numerical
computation of �N in the intermediate regime indicates that
this expression is quite accurate in spite of the approxima-
tions that went into obtaining it.

When N is much larger than NT, we can again use a TF
approximation, this time ignoring the kinetic-energy term in
the 3D GP Eq. �3.4�, which gives the probability distribution

	�N��,r�	2 =
�N − m�T

2�2/2 − krq/2
�N − 1�g

. �3.53�

Positivity of this distribution requires that ���̃N and r
� r̃N���, where

1

2
m�T

2�̃N
2 = �N, �3.54�

1

2
kr̃N

q ��� =
1

2
m�T

2��̃N
2 − �2� . �3.55�

The extent of the atomic cloud in the longitudinal direction is
characterized by r̃N� r̃N�0�, i.e., r̃N /r0= ��r0 /2�0���̃N /�0��2/q.
Normalization yields

1 =� dD�ddr	�N��,r�	2 � K1�N,d,q� . �3.56�

Using Eq. �A.11�, we find

� �̃N

�0

5−d+2d/q

=
1

dJ1+d/q�D,2�J1�d,q�
4�4�D/222d/q

SD−1

N − 1

NT − 1

�3.57�

�cf. Eq. �3.41��. We can also write

0 2 4 6 8 10
q

0.5

1.0

1.5

Ξ

0 20 40 60 80 100
q
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1.0

1.5

Ξ

FIG. 5. �Color online� Sensitivity scaling exponent �= �d
+3q� /2�d+q� in the intermediate regime of atom numbers, NL

�N�NT, plotted as a function of hardness parameter q of the lon-
gitudinal trapping potential for 1D �red, solid�, 2D �green, dashed�,
and 3D �blue, dotted� traps in the intermediate regime of atom
numbers �for 3D traps, there is no upper critical atom number NT�.
To achieve super-1/N scaling ���1� requires q�d. A harmonic 1D
trap has super-1/N scaling �=7 /6, a harmonic 2D trap has Heisen-
berg scaling �=1, and a 3D harmonic trap has sub-1/N scaling �
=9 /10. This sub-1/N scaling for 3D harmonic traps is still markedly
better than the QNL scaling of �=1 /2. A hard-walled trap �q→��
in any dimension has �=3 /2.
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�N

�N − 1�g
=

1

4�4�D/2�0
DVdr0

d��0

r0

2q/d� �̃N

�0

2NT − 1

N − 1

�3.58�

and

�N � K2�N,d,q� =
2�d + q�

�D/2 + d/q + 1��d + 2q�
�N

�N − 1�g
.

�3.59�

The scaling of �N agrees with that in Eq. �3.43�.

E. Bose-condensed 87Rb atoms

A good candidate for implementing the generalized me-
trology protocol is a BEC made of rubidium �87Rb� atoms
�23–26�. Initially the atoms in the condensate are in the
ground electronic state. In most experiments �24–26�, the
	F=1;MF=−1��	1� state is trapped and cooled to the con-
densation point. Once the atoms in 	1� have accumulated in
the condensate ground state, a two-photon drive is used to
couple the 	1� state to the 	F=2;MF=+1��	2� state. The
two-photon drive involves applying both microwave and
radio-frequency electromagnetic fields to the condensate.
Both hyperfine states are not cooled simultaneously to form a
condensate in a superposition of the two states because the
lifetime of atoms in the 	2� state in a trap is much shorter
than the lifetime of atoms in the 	1� state. As mentioned
earlier, we assume that the driving field that initializes the
atoms in a desired superposition of the 	1� and 	2� states is
instantaneous in comparison to the dynamics that is part of
the parameter-estimation process.

The s-wave scattering lengths for the three processes,
	1�	1�→ 	1�	1�, 	2�	2�→ 	2�	2�, and 	1�	2�→ 	1�	2� are nearly
degenerate for 87Rb, with the ratios �a22:a12:a11�
= �0.97:1 :1.03� �a11=5.31 nm� �23�. These values for the
scattering lengths mean that �2= �g11+g22� /2−g12=0 for
87Rb. Therefore, the 87Rb BEC realizes the generalized

quantum-metrology protocol with just the �1�N−1��NĴz cou-
pling in Hamiltonian �3.11�.

The optimal initial state for metrology with the �1�N
−1��NĴz coupling is the one in which all atoms are initialized
in the equatorial plane of the Bloch sphere, say, in the +1
eigenstate of 	x, �	1�+ 	2�� /�2. The quantity estimated by
this measurement scheme is �1= �g11−g22� /2, which is small,
but finite in the case of a 87Rb BEC. Once the probe is
initialized in the optimal initial state, we let it evolve for a

time t under the influence of the �1�N−1��NĴz Hamiltonian,
which simply rotates the state of each atom about the z axis
of the Bloch sphere with angular velocity �1�N−1��N /�. At
the end of this evolution, we measure an equatorial compo-

nent of Ĵ �Ĵy for short evolution times�, which is achieved by
a  /2 pulse about the desired equatorial axis, followed by a

measurement of Ĵz, i.e., of the difference in the populations
of the two internal states.

Precision experiments with two-component 87Rb BECs in
modestly nonspherical harmonic traps have been reported in
�27,28�. These experiments were carried out with atom num-

bers in excess of 100 000 and thus operated in the full TF
regime well above the upper critical atom number.

F. Differentiation of the spatial wave functions

The strongest assumption we made in obtaining Hamil-
tonian �3.11� was that the wave functions for the two modes
remain identical throughout the duration of the proposed
measurement scheme. Here we examine this assumption
more carefully.

We noted earlier that even if the two modes see the same
trapping potential, the difference in their scattering lengths
will cause the two wave functions to evolve differently �24�.
The initial effect of the difference in scattering lengths is to
produce a relative phase between 	1� and 	2�. This relative
phase depends on the local density within the condensate.
The integrated �or average� part of the relative phase pro-
vides the signal for our measurement protocol, whereas the
residual position-dependent part of the relative phase reduces
the visibility of the fringes on which the signal relies. For our
protocol to succeed, we need the integrated phase to accu-
mulate more rapidly than the residual position-dependent
phase. Yet a further effect is that the position-dependent
phases drive differences between the atomic densities asso-
ciated with the two hyperfine levels, but as this occurs on a
longer time scale than the accumulation of the position-
dependent phase shift, we do not consider it here.

We can analyze this scenario in the following way. Ini-
tially all atoms are in the state �N�� ,r�	1�. After the first
optical pulse, the state becomes �N�� ,r��c1	1�+c2	2��, where
c1 and c2 are the amplitudes to be in the hyperfine states. We
can assume that c1 and c2 are real, i.e., that the initial optical
pulse produces a rotation about the y axis of the Bloch
sphere. The different scattering lengths make the wave func-
tions for the two modes evolve differently, so that after a
time t, the atomic state becomes c1�N,1�� ,r , t�	1�
+c2�N,2�� ,r , t�	2�, where the wave functions for the two
modes evolve according to time-dependent coupled GP equa-
tions

i�
��N,�

�t
= �−

�2

2m
�2 + V + �N − 1��

�

g��c�
2 	�N,�	2
�N,�.

�3.60�

The second optical pulse is a  /2 pulse about an equatorial
axis of the Bloch sphere. For the discussion here, we assume
that this rotation is about the x axis so that subsequent count-
ing of the populations of the two hyperfine levels is equiva-

lent to measuring Ĵy before the second optical pulse. The
state after the pulse is

c1�N,1
1
�2

�	1� − i	2�� + c2�N,2
1
�2

�− i	1� + 	2��

=
1
�2

�c1�N,1 − ic2�N,2�	1� −
i

�2
�c1�N,1 + ic2�N,2�	2� .

�3.61�

The corresponding probabilities to be in the two states,
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p1,2 =
1

2
�1 � 2c1c2 Im���N,2	�N,1��� , �3.62�

are determined by the overlap of the two spatial wave func-
tions,

��N,2	�N,1� =� dD�ddr�N,2
� �N,1. �3.63�

In a ground-breaking set of experiments, Anderson et al.
�28� measured the position-dependent phase shifts in a two-
component 87Rb BEC, trapped in a modestly nonspherical
trap, and saw the associated reduction in fringe visibility.
The details of the experiment were shown to be well ac-
counted for by numerical integrations of the two-component
GP Eq. �3.60� with a loss term included. The experiment was
carried out with atom number N�1.5�105, well above the
upper critical atom number.

To compare the time scales for the integrated and
position-dependent phase shifts in our protocol, we assume
that we are operating in the intermediate regime of atom
numbers, i.e., NL�N�NT. In this regime, the wave func-
tions for the two modes factor into transverse and longitudi-
nal wave functions, i.e.,

�N,���,r,t� = �0����N,��r,t�, � = 1,2, �3.64�

where �0 is the time-independent Gaussian ground state in
the transverse dimensions and the longitudinal wave func-
tions obey time-dependent coupled longitudinal GP equa-
tions,

i�
��N,�

�t
= �−

�2

2m
�L

2 + VL + �T�N − 1��
�

g��c�
2 	�N,�	2
�N,�.

�3.65�

To estimate the time scales, we assume that N is large
enough relative to the lower critical atom number to justify
the TF approximation in the longitudinal dimensions, thus
allowing us to ignore the kinetic-energy terms in the coupled
GP equations. With these assumptions, the probability densi-
ties do not change with time, i.e.,

	�N,��r,t�	2 = 	�N�r,0�	2 � q0�r� , �3.66�

and the evolution under the coupled GP equations only in-
troduces a phase,

�N,��r,t� = �q0 exp�−
it

��VL + �T�N − 1�q0�
�

g��c�
2
� .

�3.67�

This gives an overlap ��N,2 	�N,1�= ��N,2 	�N,1�
=ddrq0e−i� �r�, where the relative phase is given by

� �r� =
�T�N − 1�q0�r��gt

�
= �Nt�1 +

q0�r� − �L

�L

 ,

�3.68�

with

�g � c1
2�g11 − g12� − c2

2�g22 − g12� = �1 + �c1
2 − c2

2��2.

�3.69�

In the second equality of Eq. �3.68�, we have separated out
the integrated phase shift, which has angular frequency

�N �
�N − 1��N�g

�
= �L

�g

g11

q

d + 2q
� q

d + q

N − 1

NL − 1

q/�d+q�

�3.70�

�cf. Eqs. �3.15� and �3.22��, leaving the residual position-
dependent phase shift as a correction. The final expression
for �N uses the TF approximation to evaluate �N in the in-
termediate regime. For the 87Rb protocol outlined in Sec.
III E, in which �2 is essentially zero, we choose c1

2=c2
2

=1 /2 in order to maximize the fringe visibility in Eq. �3.62�.
It is worth emphasizing how this approach based on

coupled GP equations differs from use of Josephson Hamil-
tonian �3.11�. Although the GP equations yield a position-
dependent phase, which cannot be obtained from the Joseph-
son Hamiltonian, this comes at a price: the integrated relative
phase in Eq. �3.68� amounts to making the linear approxima-

tion to Ĵz
2 described in the paragraph containing Eq. �3.15�.

The linear approximation is essential because the Ĵz
2 coupling

does not preserve product states, whereas the GP equations
assume a product state. It means that the GP equations miss

the phase dispersion generated by the Ĵz
2 coupling and the

associated dynamically generated entanglement.
We can now write the overlap as

��N,2	�N,1� = e−i�Nt� ddrq0e−i�Nt�q0−�L�/�L

� e−i�Nt exp�−
�N

2 t2

2�L
2 � ddrq0�q0 − �L�2
 ,

�3.71�

where the second expression comes from expanding the ex-
ponential inside the integral to second order and then con-
verting to an equivalent Gaussian at the same order. The
contribution from the first-order term vanishes since �L
=ddrq0

2. We can identify a time scale !pd for the position-
dependent phase as the time set by the half-width of the
Gaussian, i.e.,

�N!pd � �L�� ddrq0�q0 − �L�2
−1/2

=�2�d + 3q�
d

.

�3.72�

The final form comes from using TF approximation �3.47�
for the density q0 and the results in the Appendix to evaluate
the integral.

What this result means is that to retain good fringe vis-
ibility, our protocol will generally be restricted to operating
well within the first fringe. One can expect, however, that as
the longitudinal trap becomes more hard walled, the TF den-
sity becomes more and more flat topped, eventually ap-
proaching a box, with the result that the residual position-
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dependent phase shift becomes smaller and smaller. This ex-
pectation is borne out by Eq. �3.72�, which reports that !pd
gets larger as the hardness parameter q increases; e.g., for a
1D trap with q=10, �N!pd�8.

To investigate further this way of reducing the effect of
the position-dependent phase requires numerical simulations
and more accurate approximation procedures, both of which
we have undertaken. Initial results, to be reported elsewhere,
suggest that things turn out better than is suggested by the
crude approximations that go into Eq. �3.72�.

G. Other practical considerations

1. Loss of atoms

For a one-component BEC, the total number of atoms for
a given trap is limited by three-body losses. This process is
usually the most significant loss channel, with all other
losses being negligible. For a two-component BEC, however,
things are different because other loss channels, such as in-
elastic two-atom �spin-exchange� collisions, become signifi-
cant even when the number of atoms in the trap is such that
three-body collisions are unimportant. Just as in the case of
three-body collisions, the spin-exchange collisions can be
considered as a process that leads to loss of atoms from the
trap.

Spin-exchange collisions in a two-component BEC of
87Rb atoms in the two hyperfine levels we are interested in
were considered in �27,28�. The effect of inelastic spin-
exchange interactions was modeled by including non-
Hermitian potentials in the coupled GP Eqs. �3.60�,

−
i�

2
�N − 1�"12c2

2	�2	2 for mode 1, �3.73�

−
i�

2
�N − 1��"12c1

2	�1	2 + "22c2
2	�2	2� for mode 2.

�3.74�

The loss constants in 87Rb were measured to
be "12=0.780�19��10−13 cm3 /s and "22=1.194�19�
�10−13 cm3 /s. If we assume that the wave functions are the
same for the two hyperfine states, as in the short-time analy-
sis of Sec. III F, the integrated effect of the spin-exchange
losses across the atomic cloud is characterized by a decay
constant

" �
�N − 1��N�"12 + "22c2

2�
2

. �3.75�

We can get an idea of the importance of spin-exchange losses
by comparing " to the angular frequency �N for the inte-
grated phase shift. The ratio of interest for comparing coher-
ent and decoherent processes is thus

"

�
N =

��"12 + "22/2�
2�1

=
m

4�

"12 + "22/2
a11 − a22

�
1

19
,

�3.76�

where we specialize to the case c1
2=c2

2=1 /2 relevant to the
87Rb protocol and the final estimate applies to that protocol.
This ratio indicates that the proposed protocol can obtain an
estimate of �1 with better than 1 /N scaling before atom
losses degrade the sensitivity.

It is also to be noted that an advantage of using a mea-
surement scheme that uses product states is that loss of at-
oms from the BEC does not change the sensitivity scaling
since loss of particles from a product state does not damage
any coherence. There is a decay in the signal strength given
by a factor e−"t, which would require us to complete the
experiment before too many atoms are lost, but the ratio
�3.76� provides a window for doing this. The discussion in
Sec. III F suggests, however, that differentiation of the spa-
tial wave functions for the two modes becomes a limiting
factor on the duration of the experiment before loss of atoms
becomes an important consideration.

2. Number uncertainties

In real experiments the number of atoms in a BEC is not
known to arbitrary precision as we have assumed so far.
Thus we have to consider what happens when the number of
atoms in the BEC is not fixed from trial to trial.

To analyze this situation, let p�N0� denote the probability
that the number of atoms participating in our measurement
protocol is N0. The final step in the protocol is to count the
number of atoms in the two hyperfine levels. The difference
between the two counts is used to estimate the parameter,
here denoted as �; the sum can be used to refine the estimate
of the number of atoms that participated in the protocol.

We let N1� and N2� be the number of atoms that would be
counted by an ideal counting procedure. We generally work
in terms of the total number of atoms, N0=N1�+N2�, and the
difference, m�= �N1�−N2�� /2, normalized by a factor of two to

match the eigenvalues of Ĵz. Quantum mechanics gives the

conditional probability q�m� 	N0 ,�� for a measurement of Ĵz.
The counting is not completely precise, so we introduce

independent conditional probabilities, p�N1 	N1�� and
p�N2 	N2��, for counting N1 and N2 atoms in the two levels,
given the ideal counts. We can think of these two probabili-
ties as describing processes in which condensate atoms are
missed or noncondensate atoms are counted by mistake. In
addition, in a complete analysis of the protocol, we would
need to include the loss of atoms, discussed in the previous
subsection, in this analysis. As already noted, we are mainly
interested in the total number of atoms counted, N=N1+N2,
and the normalized difference, m= �N1−N2� /2. In the ab-
sence of a better model, we assume, to illustrate the effect of
number uncertainties, that p�N1 	N1�� and p�N2 	N2�� are inde-
pendent Gaussian random processes, with mean Nj =Nj� and
variance �2Nj =	

2. Under this assumption, N and m become
independent Gaussian random processes, described by con-
ditional probabilities p�N 	N0� and p�m 	m��, which have

N̄=N0, m̄=m�, �2N=2	2, and �2m=	2 /2.
The probability this model gives us directly is

p�N,m,m�,N0	�� = p�N	N0�p�m	m��q�m�	N0,��p�N0� .

�3.77�
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The probability we need in order to evaluate the sensitivity
of our protocol is the conditional probability for m, given the
parameter � and the measured total number of atoms, N,

p�m	N,�� =
p�N,m	��

p�N	��
=

�
m�,N0

p�N,m,m�,N0	��

�
m,m�,N0

p�N,m,m�,N0	��

= �
m�,N0

p�m	m��q�m�	N0,��p�N0	N� . �3.78�

In the final form, p�N0 	N�= p�N 	N0�p�N0� / p�N� is the con-
ditional probability for N0 atoms to have participated in the
protocol, given the measured total count N. It quantifies the
refinement in the knowledge of N0 provided by the total
count.

The quantities that go into determining the sensitivity are
the mean and second moment of m, calculated from the prob-
ability �3.78�,

m̄N,� = �
N0

�Ĵz�N0,� p�N0	N� , �3.79�

�m2�N,� =
1

2
	2 + �

N0

��Ĵz�N0,�
2 + ��2Ĵz�N0,��p�N0	N� ,

�3.80�

where �Ĵz�N0,�= �m��N0,� and ��2Ĵz�N0,�= ��2m��N0,� are the

mean and variance of Ĵz calculated from the quantum-
mechanical probabilities. If 	 is much less than the initial
uncertainty in N0, which is itself somewhat less than N0 �de-
pending on the care taken in loading the trap�, then the mea-
sured total count N gives a very good, improved estimate of
the number of atoms that participated in the protocol; under
these circumstances, the probability p�N0 	N� is peaked at the
measured value N, with half-width given very nearly by 	.
The quantum-mechanical expectation values vary over a
range from −N0 /2 to +N0 /2, so as long as 	�N, we can
evaluate the averages over p�N0 	N� at the mean value N with

little error, thus giving mean m̄N,�= �Ĵz�N,� and variance

��2m�N,�=	2 /2+ ��2Ĵz�N,�. The resulting measurement un-
certainty in determining �,

��2 =
��2m�N,�

	�m̄N,� /��	2
=
	2/2 + ��2Ĵz�N,�

	��Ĵz�N,� /��	2
, �3.81�

has the quantum-mechanical scaling and nearly the optimal
sensitivity, provided we can count atoms to better than �N,
i.e., 	��N. Ultimately, what this result expresses is that

the variance of the measurement of Ĵz in our protocol is of
order �N, so we need to know the number of atoms to this
same accuracy.

IV. CONCLUSION

This paper serves two purposes. The first is to extend the
discussion of Heisenberg-limited quantum metrology from

its traditional focus on a 1 /N scaling for measurement un-
certainty. Our discussion centers on the role of the dynamics
of an N-qubit quantum probe in determining the quantum
Cramér-Rao bound for single-parameter estimation. Looking
at quantum metrology using the language of quantum cir-
cuits makes it easy to see that abandoning the usual indepen-
dent couplings of the parameter to the qubits in favor of
nonlinear couplings can yield scalings better than 1 /N. With
k-body couplings, it is possible to achieve sensitivities scal-
ing as 1 /Nk. Although the 1 /Nk scaling requires entangled
input states, 1 /Nk−1/2 scalings can be obtained with initial
product states. Thus a sensitivity scaling as 1 /N3/2 can be
achieved if quadratic couplings to the parameter can be en-
gineered; moreover, particular quadratic couplings yield this
sensitivity even though the state remains unentangled under
the dynamics, thus showing that super-1 /N scaling can be
achieved without any entanglement.

The second purpose of this paper is to show that a two-
component BEC is a promising candidate system for a proof-
of-principle experiment that demonstrates scaling better
than 1 /N. A simplified analysis of the system, based on
strong assumptions, but followed by a more detailed analysis
of the realm of applicability of those assumptions, shows
that such an experiment might indeed be realizable. This
work motivates further, yet more detailed analyses and nu-
merical simulations of the experiment. We have undertaken
such further investigations of the proposed metrology
scheme, and this further work, to be reported elsewhere, sup-
ports the conclusions reached in this paper. Our numerical
studies include computing the ground-state solution of the
time-independent GP equation for different values of N in
order to find the exact dependence of �N on N. Numerical
integration of the time-dependent coupled two-mode GP Eqs.
�3.60� is then used to compute the expected signal �Eq.
�3.62�� in order to compare it with the theoretical prediction
in Eq. �3.71�.

The quantity that is measured in the proposed metrology
protocol is essentially a constant. Estimating a constant using
sophisticated quantum measurement schemes is interesting
only as a proof of principle because there is nothing to pre-
clude estimating the same constant using much simpler, clas-
sical measurement techniques. Since the measured quantity
is a constant, we have the time to perform whatever number
of repetitions of the simplest estimation procedure is re-
quired to achieve the desired accuracy. Metrology protocols
of the type described here are relevant in circumstances
where there are constraints on the available time or on the
available number of qubits. The available time can be con-
strained, for example, because the quantity that is being mea-
sured is changing, as in the case of gravitational-wave detec-
tion or magnetometry. There can be further time constraints
placed by decoherence of the probe qubits. In such scenarios,
picking the optimal metrology scheme with the best mea-
surement uncertainty, given the constraints, is of primary im-
portance �29�. For our proposal using a BEC, one possibility
is to work around a broad Feshbach resonance that makes the
scattering lengths sensitive to external magnetic fields. We
might then be able to use our scheme for high-precision
magnetometry.
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APPENDIX: INTEGRALS OVER THOMAS-FERMI
DISTRIBUTIONS

In the intermediate TF regime, i.e., NL�N�NT, we need
to do integrals over the TF probability density �3.47�,

Il�N,d,q� � � ddr	�N�r�	2l

= � k/2
�N − 1�g�T


l� d�d−1�
0

r̃N

rd−1dr�r̃N
q − rq�l

= � k/2
�N − 1�g�T


l

r̃N
d+qlSd−1Jl�d,q�

= � �L

�N − 1�g�T

l

r̃N
d Sd−1Jl�d,q� , �A.1�

where Sd−1=dVd is the area of a unit sphere in d−1 dimen-
sions and

Jl�d,q� � �
0

1

duud−1�1 − uq�l

= −


sin�l�"�− l�
"�d/q�

q"�d/q + l + 1�
�A.2�

for l�−1.

It is easy to see that

Jx+l�d,q�
Jx�d,q�

=
�x + 1� ¯ �x + l�

�d/q + x + 1� ¯ �d/q + x + l�
. �A.3�

Combined with J0=1 /d, this gives, when l is a nonnegative
integer,

Jl�d,q� =
l ! ql

d�d + q��d + 2q� ¯ �d + lq�
. �A.4�

Notice also that

Jl�d,2� = �
0

/2

dv sind−1 v cos2l+1v =
"�d/2�"�l + 1�
2"�d/2 + l + 1�

.

�A.5�

Now we use

k/2
�N − 1�g�T

Sd−1 =
d

r0
d+q

NL − 1

N − 1
�A.6�

to write

I1�N,d,q� = dJ1�d,q�� r̃N

r0

d+qNL − 1

N − 1
=

q

d + q
� r̃N

r0

d+qNL − 1

N − 1

�A.7�

and

Il�N,d,q� = I1�N,d,q�
Jl�d,q�
J1�d,q�� �L

�N − 1�g�T

l−1

. �A.8�

In the upper TF regime, i.e., N�NT, we need to do inte-
grals over the TF probability density �3.53�,

Kl�N,d,q� � � dD�ddr	�N��,r�	2l = � k/2
�N − 1�g


l� d�D−1�
0

�̃N

�D−1d�� d�d−1�
0

r̃N���

rd−1dr�r̃N
q ��� − rq�l

= � m�T
2/2

�N − 1�g

l�m�T

2

k

d/q

�̃N
D+2�l+d/q�SD−1Sd−1Jl+d/q�D,2�Jl�d,q�

= � �N

�N − 1�g

l�m�T

2

k

d/q

�̃N
D+2d/qSD−1Sd−1Jl+d/q�D,2�Jl�d,q� . �A.9�

Now we use m�T
2 /k=r0

q+2 /4�0
4 and

m�T
2/2

�N − 1�g
�m�T

2

k

d/q

=
1

32�d22d/q
1

�0
5−d+2d/q

NT − 1

N − 1
�A.10�

to write
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K1�N,d,q� = dJ1+d/q�D,2�J1�d,q�
SD−1

4�4�D/222d/q� �̃N

�0

5−d+2d/qNT − 1

N − 1
�A.11�

and

Kl�N,d,q� = K1�N,d,q�
Jl+d/q�d,q�Jl�d,q�
J1+d/q�d,q�J1�d,q�� �

�N − 1�g

l−1

. �A.12�
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