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We study the growth of an elongated phase-fluctuating condensate from a nonequilibrium thermal cloud in
the axially hydrodynamic regime, obtained by shock cooling. Quantitative measurements using momentum
Bragg spectroscopy reveal the evolution of the phase coherence as the condensate grows to equilibrium. We
find no delay between the population growth and the development of the phase coherence. We also compare the
growth of the condensate with numerical simulations based on kinetic theory, revealing quantitative agreement
except for an unexplained time delay.
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The nonequilibrium path to Bose-Einstein condensation is
a complex process in which atoms accumulate in the ground
state of the system and long-range phase coherence develops,
resulting in a strong suppression of density fluctuations and a
uniform phase. The kinetics of condensate formation has
long been a subject of theoretical study, giving rise to a num-
ber of conflicting predictions �see �1� for a review�. Quanti-
tative theories have been formulated to model the condensate
formation process in a harmonic trapping potential �2,3�.
However, a limitation of these models is that the condensate
is assumed to grow adiabatically in its phase coherent ground
state. On the other hand, for a homogeneous system, Kagan
et al. �4� proposed the appearance of a quasicondensate with
strong phase fluctuations that die out on a time scale that
increases with the size of the system. This homogeneous
system description is also relevant to condensate growth in
hydrodynamic clouds, where the trapping potential can be
neglected �5�. Condensates in highly elongated traps, which
can often be treated using the local density approximation,
are expected to have properties close to the homogeneous
case �6�. In addition, the axially hydrodynamic regime is
easily attainable in such traps �7�.

Experimentally, the problem of condensate formation has
been approached by shock cooling �8–10� in harmonic traps:
starting from a thermal cloud just above the transition tem-
perature, rapid removal of the most energetic atoms from the
trap results in an over-saturated thermal cloud. Subsequent
thermalization leads to the growth of the condensate. Mea-
surements of the growth of the condensed fraction in traps
significantly less elongated than ours �8,9� have obtained
good quantitative agreement with theory �12�, but these ex-
periments did not give access to the phase coherence of the
growing condensate. The two-step growth curve reported in
Ref. �9�, and the growth of nonequilibrium, phase-fluctuating
condensates from hydrodynamic clouds in Ref. �10� support
the hypothesis of a quasicondensate during the initial stage

of condensate formation as proposed in Ref. �4�. However a
recent experiment by Ritter et al. �11� studying the formation
of long-range order in a Bose-Einstein condensate in a weak
three-dimensional �3D� trap finds no evidence of a quasicon-
densate stage.

In this paper we present an experimental study of the
evolution of both the condensate atom number and the phase
coherence during the growth of a condensate in a highly
elongated trap in the axially hydrodynamic regime. We ob-
serve that the population growth is in reasonable agreement
with the predictions of kinetic theory, except for a delay that
remain to be explained. We also use Bragg spectroscopy
�13,14� to measure the coherence length during the growth of
the condensate. Our observations are compatible with the
scenario of Refs. �5,4�, where a nonequilibrium quasiconden-
sate is created at the onset of condensation and relaxes rap-
idly to equilibrium with shape oscillations. We find no evi-
dence of supplementary phase fluctuations in the early stages
of the growth, even at the shortest growth time for which we
can perform the coherence measurements �100 ms�.

In our experiment �15�, we prepare a thermal cloud
of 87Rb atoms in the 5S1/2�F=1,mF=−1� state in a
Ioffe-Pritchard trap with final trap frequencies of
��=2��655�4� Hz radially and �z=2��6.53�1� Hz axi-
ally. Forced radio-frequency �rf� evaporation proceeds to a
frequency ��rf=140 kHz above that corresponding to the
bottom of the combined magnetic and gravitational potential,
giving an effective trap depth of �i= 6�K, and the rf knife is
held at this value for a time varying from 1 to 12 s. This
ensures thermal equilibrium, and allows us to control the
atom number Ni in the range �2.7–8.6��105. The resulting
thermal cloud has a temperature Ti of about �i /10, just above
the transition temperature Tc, which varies from
400 to 600 nK depending on the atom number.

We next shock-cool the cloud by rapidly ramping the rf
knife to ��rf=40 kHz in 25 ms, giving a final trap depth
�f=1.5 �K. The relative truncation rate �̇ /�f=120 s−1 is fast
compared to the axial trap frequency, but slow compared to
the radial trap frequency. In our elongated geometry this*Electronic address: philippe.bouyer@institutoptique.fr
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shock cooling results in a cloud transversally at equilibrium
but axially out of equilibrium. The cloud tends toward local
thermal equilibrium with a temperature T�Tc, in a time
�3	coll
10 ms �16� where 	coll is the collision rate at the
center of the trap �17�. Since the atom cloud is in the hydro-
dynamic regime axially ��z	coll�1� �18�, global equilibrium
is reached on a time scale longer than the axial oscillation
period.

In order to study the condensate growth, the cloud is held
in the trap for a further time t after the end of the shock-
cooling ramp, with the trap depth held constant at �f. We
then switch off the trap and image the cloud after a 20 ms
time of flight in order to obtain the total atom number N,
temperature T, and condensate atom number N0 �7,19�. By
repeating the measurements at different times t for the same
initial conditions, we obtain a growth curve for the conden-
sate number, as shown in Fig. 1 for various initial atom num-
bers Ni �21�. At t�20 ms �depending on initial conditions�,
the atom number has dropped by 40% and the temperature is
already below Tc, yet the condensate does not appear until
later, with a delay time of 20–200 ms after the fast ramp.

We have simulated the evaporative cooling and conden-
sate growth for our experiment based on the model described
in �12� with the additional inclusion of three-body loss for
the thermal cloud �20�. This method was in good quantitative
agreement with experimental results for a less elongated sys-
tem �9�. The results are shown in Fig. 1 and are in good
quantitative agreement with the experimental data provided a
delay time of 10–50 ms is added to better fit the experimen-
tal results. Apart from this there are no free parameters in our
calculations, which are based on our measured data �21�.

It is important to note that the simulation is not necessar-
ily valid for such an elongated system in the hydrodynamic
regime, nor does it take account of phase fluctuations.
Indeed, our experiment is performed in an elongated
trapping geometry, where temperature-dependent
phase fluctuations can be present even at equilibrium

�6,14,22–24�. For our parameters, the phase-coherence
length L�=152N0 /16mkBLT �6� at equilibrium is smaller
than the condensate half-length L by a factor in the range
4–10, varying inversely with the condensate atom number.
Given these considerations, it is perhaps surprising that the
simulations bear any resemblance to the measurements. Two
conclusions can nevertheless be drawn from the comparison.
First, the growth of the condensed fraction is apparently de-
layed compared to the kinetic theory predictions, and this is
unrelated to the efficiency of the cooling. Second, there is no
evidence for a two-stage growth curve as was suggested in
Ref. �9�. This shows that more work is still demanded to
fully understand the growth of the Bose-Einstein condensate.

We now turn to our experimental study of the formation
of phase coherence. We measure the coherence length of the
condensate during its formation via its momentum distribu-
tion, using four-photon Bragg spectroscopy as described in
Ref. �14�. At time t after the end of the shock-cooling ramp,
the magnetic trap is switched off and after 2 ms of free ex-
pansion a 2 ms Bragg pulse is applied. The atoms are imaged
after a further 16 ms time of flight, which allows separation
of the diffracted atoms. The diffracted fraction is measured
as a function of �, the detuning between the Bragg beams
which determines the velocity class diffracted, to obtain the
momentum spectrum of the condensate. We fit a Lorentzian
function to the measured spectra and extract the half width at
half maximum �HWHM� ��=2kL�p /2�m, where m is the
atomic mass, kL the laser wave vector, and �p the HWHM of
the momentum distribution. For each spectrum, further im-
ages �typically 5� are taken without the Bragg pulses, from
which the temperature T, condensate atom number N0, and
condensate half-length L are obtained.

The evolution of the momentum width �p for an initial
atom number Ni=3.8�3��105 is presented in Fig. 2 �lower
panel�. The corresponding condensed fractions are shown in
the upper panel of Fig. 2 �filled circles�. The momentum
width �p clearly decreases and thus the coherence length

FIG. 1. Condensate growth curves for initial atom numbers:
Ni /105=8.6�9� �, 7.2�7� �, 3.4�4� �, and 2.8�5� � �21�. Each
point corresponds to an average over three experimental realiza-
tions. The lines are theoretical results of the model of �12�, with a
correction for the atom number calibration compatible with our sys-
tematic errors �20%�. They have additional delay times of 10, 20,
50, and 50 ms respectively. The decrease in N0 at longer times is
due to three-body losses.
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FIG. 2. Condensed fraction N0 /N and momentum width �p as a
function of t for an initial atom number Ni=3.8�3��105. �Open
circles correspond to the data from Fig. 1 for Ni=3.4�3��105.� The
decreasing momentum width indicates the growth of the coherence
length with time. The dashed lines are guides to the eye. Some
typical error bars are shown.
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increases. We know �14� that for a quasicondensate at ther-
mal equilibrium, the coherence length increases with the
number of atoms in the condensed fraction. More precisely,
the momentum width follows �6,25�

�pequ = 	
2.04

L
�2

+ 
0.65

L�
�2

, �1�

where the first term accounts for the Heisenberg-limited mo-
mentum width due to the finite size L of the condensate and
the second term accounts for the presence of thermal phase
fluctuations. The numerical factors account for integration
over the 3D density profile. Equation �1� shows that, even if
the condensate were at equilibrium at each instant during the
growth, we would expect the momentum width to decrease
with time, since both L� and L increase with the condensate
atom number. We can therefore test whether the condensate
coherence follows the density in this way. To do this accu-
rately, we correct �pequ for the finite “instrumental width” of
the Bragg spectrometer, by introducing as in �14� a
Gaussian apparatus function of half-width wG=200 Hz.
This results in a theoretical momentum width �pth

=�pequ/2+	�2�m /2kL�2wG
2 + ��pequ/2�2. We then compare

each measured momentum width �p with the value �pth
calculated for a condensate at equilibrium, using the param-
eters N0, L, and T measured for each Bragg spectrum.

We plot the ratio �p /�pth in Fig. 3 for two different ini-
tial atom numbers. The dashed line at �p /�pth=1 indicates
the value expected for a condensate always at equilibrium.
Systematic uncertainties of 15% on this equilibrium value,
mainly due to the atom number calibration �20%� and deter-
mination of wG �10%�, are represented by the gray band.
Unambiguously, we observe that the ratio �p /�pth always
lies above one �dashed line�, and decreases in time. This
indicates an excess momentum spread with respect to a con-
densate at equilibrium during the growth. As the condensate
reaches equilibrium, the measurement dispersion decays and
the momentum width tends to the predicted equilibrium
value.

To interpret our results, we consider the scenario proposed
by Kagan et al. �4� for condensate growth in a homogeneous
system. The early stages of growth lead to a quasicondensate
in which nonequilibrium, long-range phase fluctuations exist
but density fluctuations are suppressed. The phase fluctua-
tions then decay to produce the true phase-coherent conden-
sate, with a characteristic time scale 	� which increases with
the system size L: 	��L in the collisionless regime and 	�

�L2 in the hydrodynamic regime. Although our trapped sys-
tem differs from the homogeneous system considered in Ref.
�4�, Svistunov �5� points out that this theory can be applied
to trapped hydrodynamic clouds, where the trapping poten-
tial can be neglected. In this case, the resulting quasiconden-
sate will be out of equilibrium with respect to a global co-
herent motion in the trap, thereby exciting a quadrupole
mode similar to that observed in Refs. �10,14�. Indeed, for a
higher atom number Ni=8.6�105 we directly observe quad-
rupole oscillations, with an amplitude �in the trap� of 12 �m
and a decay constant of about 250 ms. The excess momen-
tum widths in Fig. 3 can be attributed to such quadrupole
oscillations with amplitudes of 4 �m �Ni=3.8�105� and
5.5 �m �Ni=7.2�105� �26� and decay constants of about
700 and 300 ms, respectively. These values are consistent
with those obtained for Ni=8.6�105, assuming an oscilla-
tion amplitude and decay rate that increase with the atom
number. Therefore, apart from this decaying quadrupole
mode, we conclude that higher-order, nonequilibrium phase
fluctuations have decayed within a time shorter than 100 ms
after the onset of condensation, in qualitative agreement with
the predictions of Kagan et al. �27�.

In conclusion, our experimental observations of the popu-
lation growth of an elongated condensate agree with numeri-
cal simulations, except for a yet unexplained time delay.
Whether or not that delay is related to phase fluctuations in
the thermal cloud is an open question. On the other hand,
phase fluctuations in the condensed fraction do not seem to
slow the rate of the population growth.

We have also directly observed the growth of the phase
coherence with time by studying the evolution of the mo-
mentum width during condensate growth. Compared with
that expected for a condensate at equilibrium, these measure-
ments reveal a broadening of the momentum distribution
during growth, compatible with quadrupole shape oscilla-
tions. Apart from this decaying oscillation, we conclude that
the condensate has already reached the equivalent equilib-
rium coherence length within 100 ms after the onset of

FIG. 3. Ratio of measured momentum width �p to theoretical
momentum width �pth, calculated for a condensate at equilibrium
�see text� for Ni= �a� 3.8�3��105 and �b� 7.2�3��105. �Data shown
in �a� correspond to Fig. 2.� The condensate momentum width tends
to the equilibrium value �dashed line� at long times. Some typical
statistical error bars are shown; the gray band indicates systematic
uncertainties on the equilibrium value. The first vertical line marks
the onset of condensation; the second indicates the time at which
the condensed fraction reaches �1−1/e� of its final value.
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condensation. Because a complete theory for our experimen-
tal situation is lacking, the comparison between theory and
experiment can hardly be quantitative and an extension of
the model of Ref. �4� to trapped condensates, particularly in
this quasi-1D geometry �28�, is required. In order to observe
the decay of possible phase fluctuations at early times, a
measurement of the phase coherence length at shorter times
is needed. This is exceedingly difficult in our system, since at
short times the condensed fraction is too small to obtain clear
Bragg spectra. Other techniques might be used instead, such
as atom laser correlation measurements �29�, combined with
single-atom detection �11,30,31�.
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