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We investigate the quantum properties of the well-known process of sum frequency generation, showing that
it is potentially a very useful source of nonclassical states of the electromagnetic field, some of which are not
possible with the more common techniques. We show that it can produce quadrature squeezed light, bright
bichromatic entangled states, and symmetric and asymmetric demonstrations of the Einstein-Podolsky-Rosen
paradox. We also show that the semiclassical equations totally fail to describe the mean-field dynamics when
the cavity is strongly pumped.
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I. INTRODUCTION

The nonlinear optical process of sum frequency genera-
tion �SFG�, also known as nondegenerate up conversion or
frequency summation �1�, has been known and investigated
for a number of years, going back at least to theoretical in-
vestigations in the seminal paper of Armstrong et al. �2� and
experimental realization by Bass et al. �3�. The process has
many uses outside the quantum optics community, such as,
to name only a few, surface vibrational spectroscopy of mol-
ecules �4�, two-dimensional vibrational spectroscopy �5�,
studies of liquid interfaces �6,7�, low noise optical tomogra-
phy �8�, and the investigation of powder supported catalysts
�9�.

However, despite the wide number of what we may term
classical uses for this process, very little attention seems to
have been paid to its quantum properties, especially in terms
of entanglement and quadrature squeezing. For the intracav-
ity process, a notable exception is the theoretical work of
Eschmann and Reid �10�, who predicted sub-Poissonian pho-
ton statistics in the high-frequency mode and in the sum of
the two low-frequency modes. More attention has been paid
to type II second harmonic generation, where the nondegen-
eracy is in polarization rather than in frequency, for example,
work by Jack, Collett, and Walls �11�, and by Andersen and
Buchhave �12�. Four-wave mixing is also a process which
can lead to sub-Poissonian fluctuations in intensity sums
�13�, as well as a source of entangled beams of either pho-
tons �14� or atoms �15�. This leads us to expect that sum
frequency generation may also be a source of entangled out-
put beams.

In this work we will first introduce the full Hamiltonian of
the intracavity process before examining the properties of the
interaction Hamiltonian considered in isolation. We will then
analyze the outputs of the full intracavity system in terms of
squeezing and entanglement. We will show that SFG is, in
fact, a versatile source of entanglement resources which can
be easily tuned to entangle beams that have large frequency
differences and produce entanglement between output beams
at different intensities. The tunability of the process also al-
lows us to predict that the same device could be used to
demonstrate both symmetric and asymmetric steering �16�,
which may have applications in the field of quantum cryp-
tography. We will show that this process is potentially very
useful for the field of continuous variable quantum informa-
tion.

II. SYSTEM AND HAMILTONIAN

The basic interaction is that of a photon at �1 combining
with a photon at �2 to produce a photon at �3�=�1+�2�,
mediated by a second order, ��2�, nonlinearity. �For an acces-
sible description of advances in the use of ��2� materials, see
Hanna �17�.� The full Hamiltonian describing this interaction
inside a triply resonant optical cavity, as shown schemati-
cally in Fig. 1, and the interaction of the cavity fields with
the external fields may be written as

H = Hint + Hpump + Hres, �1�

where the interaction Hamiltonian in the appropriate rotating
frame is

Hint = i���â1
†â2

†â3 − â1â2â3
†� , �2�

the pumping Hamiltonian is

Hpump = i��
i=1

2

��iâi
† − �i

�âi� , �3�

and the reservoir damping Hamiltonian is

Hres = ��
i=1

3

��̂iâi
† + �̂i

†âi� . �4�

In the above, âi is the bosonic annihilation operator for the
mode at frequency �i, � represents the effective second order
nonlinearity, the �i are the classical pumping laser amplitudes

at the respective frequencies, and the �̂i are the annihilation
operators for bath quanta, representing losses through the
cavity mirror.
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FIG. 1. Schematic of the intracavity scheme, showing the ��2�

crystal with nonlinear interaction strength �, the two mirrors, the
two pump fields, and the three optical modes at frequencies � j,
where �3=�1+�2.
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III. EQUATIONS OF MOTION AND HAMILTONIAN
DYNAMICS

We will begin by giving the equations of motion which
result from considering the interaction Hamiltonian in isola-
tion and then add cavity loss and pump terms below, in Sec.
IV, as the addition of these is a trivial matter. We note here
that the approach we use is not expected to give completely
accurate predictions for the system operating in the traveling
wave configuration as it does not account for such physical
features as dispersion in the nonlinear medium. However, it
does give an approximate idea and is useful for understand-
ing the quantum dynamics which the Hamiltonian makes
possible. Following the usual procedures �18,19�, we may
map the interaction Hamiltonian onto a Fokker-Planck equa-
tion for the P representation pseudoprobability distribution
of the system �20,21�. Making the operator correspondences
âi↔�i and âi

†↔�i
�, we obtain

dP

dt
= �− �� �

��1
�2

��3 +
�

��1
��2�3

� +
�

��2
�1

��3 +
�

��2
��1�3

�

−
�

��3
�1�2 −

�

��3
��1

��2
��

+
�

2
�	 �2

��1 � �2
+

�2

��2 � �1

�3

+ 	 �2

��1
� � �2

� +
�2

��2
� � �1

�
�3
���P��� i,�� i

�,t� . �5�

We immediately see that the diffusion term of the above
Fokker-Planck equation is not positive-definite, so we will
use the positive-P representation, which at the cost of dou-
bling the dimensionality of the phase space, allows us to map
the resulting Fokker-Planck equation onto a set of stochastic
differential equations �22�. Making the changes �i

�→�i
+ and

noting that �i
+=�i

� in a distributional sense, we find the set of
Itô calculus �23� equations,

d�1

dt
= ��2

+�3 +���3

2
��1 + i�3� ,

d�1
+

dt
= ��2�3

+ +���3
+

2
��2 + i�4� ,

d�2

dt
= ��1

+�3 +���3

2
��1 − i�3� ,

d�2
+

dt
= ��1�3

+ +���3
+

2
��2 − i�4� ,

d�3

dt
= − ��1�2,

d�3
+

dt
= − ��1

+�2
+, �6�

where the Gaussian noise terms have the correlations

� j�t� = 0, � j�t��k�t�� = 	 jk	�t − t�� . �7�

We note here that the stochastic positive-P representation
equations are an exact mapping from the Hamiltonian and
allow the calculation of any normally ordered operator mo-
ments through an averaging process over trajectories, such
that

�� j
+�m�k

n → �âj
†�mâk

n� , �8�

in the limit of a large number of stochastic trajectories, with
the bar representing a classical averaging. We also note that
this relationship is only valid where there are no divergence
problems with the stochastic integration, and that there were
none in any of the results presented here.

It is worthwhile examining the dynamics predicted by the
stochastic integration of Eq. �6� as this will provide some
insight into the full system where we will consider a doubly
pumped triply resonant cavity. We note here that we will not
attempt to analytically solve the mean-field equations found
by dropping the noise terms in Eq. �6�, as this procedure is of
limited use in second harmonic generation �24–26�, which
differs in having the two lower frequency modes as identical.
Hence we consider that linearization of these equations is
unlikely to be accurate after a somewhat short interaction
time for either the mean fields or the quantum correlations.
We will use a linearization procedure in Sec. IV, where this is
much more useful as long as we are careful with the regime
of viability.

The first quantities we calculate are the mean intensities
as a function of interaction time, as shown in Fig. 2 for �
=0.01 and the initial conditions �1�0�=�2�0�=1000 /�2 and
�3�0�=0. Both the pumping fields are treated as coherent
states, which is reasonable for stabilized lasers operating
above threshold. We see that the dynamics are reminiscent of
those obtained from a similar treatment of second harmonic
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FIG. 2. �Color online� Mean intensities from an average over
2.67
106 stochastic trajectories of the positive-P equations �6�.
The horizontal axis is a scaled dimensionless time, �=���1�0��t. All
quantities plotted in this and subsequent graphs are dimensionless.
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generation, showing an almost complete conversion to the
higher frequency, followed by partial reconversion to the two
lower frequencies �25�. We note here that a previous semi-
classical analysis for equal intensities in the two low-
frequency inputs showed complete conversion and no subse-
quent reconversion �27�, processes which can be explained
as due to quantum fluctuations and the discrete nature of the
electromagnetic field �25,28�. Stochastic integration using
the phase-space representations automatically includes these
effects and allows for different quantum states of the input
fields to be simulated, such as thermal �29� and number
states �30�.

As our motivation for investigating this system is its util-
ity for producing entangled and other quantum states of elec-
tromagnetic fields, we will now look at these quantum prop-
erties. The first of these is single-mode squeezing, for which
we first need to define quadrature operators. We will define a
general quadrature of the field at a given quadrature angle as
�18�

X̂j��� = âje
−i� + âj

†ei�, �9�

and use the shorthand X̂j�0�= X̂j and X̂j� 
2

�= Ŷ j. With these

definitions, a squeezed state is one for which V(X̂���)�1. In
Fig. 3 we show the results of stochastic calculations for the
variances of both the high-frequency X3 quadrature and the
sum of the low-frequency intensities. For the latter, which
has been predicted to give sub-Poissonian statistics in the
intracavity case �10�, we have plotted the Fano factor, de-
fined for this case as

F�N1 + N2� =
V�N1 + N2�

N1 + N2
, �10�

so that any value below one means that the combined mode
has less intensity fluctuations than a coherent state. Compar-

ing the two curves in Fig. 3, we see that the squeezing in X̂3
essentially continues until the up conversion turns into down
conversion, whereas the noise suppression in the intensity
sum disappears as the low-frequency intensities approach
their minima. The other quadratures, the single-mode inten-
sities and the intensity differences all exhibit excess noise as
the interaction proceeds. This ability to produce quadrature
squeezed light at the sum frequency could be useful in, for
example, super-resolution optical measurements �31�.

The correlation between the intensities of the two low-
frequency fields suggests that they may exhibit bipartite en-
tanglement. We examine this using the criteria for continuous
variables developed by Duan et al. �32� and Simon �33�. In
the present case where the two pump modes have equal in-
tensities, it is sufficient to violate one of the inequalities,

V�X̂1 � X̂2� + V�Ŷ1 � Ŷ2� � 4, �11�

to establish that the two low-frequency modes are entangled.
It is known that entangled states are a superset of states
which can be used for steering �16� and that this can be
demonstrated in the continuous variable case by violation of
the Reid Einstein-Podolsky-Rosen �EPR� inequalities
�34,35�. In this case the inequality can be written as

Vinf�X̂j�Vinf�Ŷ j� � 1, �12�

where

Vinf�X̂j� = V�X̂j� −
�V�X̂j,X̂k��2

V�X̂k�
,

Vinf�Ŷ j� = V�Ŷ j� −
�V�Ŷ j,Ŷk��2

V�Ŷk�
, �13�

with violation of the inequality showing that modes j and k
are entangled in the EPR sense. As can be seen in Fig. 4,

where we have divided the correlation for the sum of the X̂

quadratures and the difference of the Ŷ quadratures by 4,
these two measures give an unambiguous demonstration that
the two modes become entangled by the interaction and are
in fact entangled in the strong sense required by the concept
of steering. Having now established the properties of the
Hamiltonian dynamics, we will turn our attention to a more
quantitative analysis of the intracavity case.

IV. INTRACAVITY DYNAMICS

In the intracavity case we are interested in correlations of
the steady-state fields, as these are what are normally mea-
sured using homodyne techniques. To analyze these theoreti-
cally, we must add pumping and loss terms to the equations
given above Eq. �6�. Making the usual zero temperature Born
and Markov approximations �18� for the interactions with the
reservoirs, we find

d�1

dt
= �1 − �1�1 + ��2

+�3 +���3

2
��1 + i�3� ,
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FIG. 3. �Color online� The X quadrature variance for the field at
�3 and the Fano factor for the intensity sum of the two low-
frequency fields. A value of less than one signifies squeezing or
sub-Poissonian statistics, respectively. The two low-frequency fields
show excessive noise in both X and Y quadratures and exhibit
super-Poissonian intensity fluctuations.
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d�1
+

dt
= �1

� − �1�1
+ + ��2�3

+ +���3
+

2
��2 + i�4� ,

d�2

dt
= �2 − �2�2 + ��1

+�3 +���3

2
��1 − i�3� ,

d�2
+

dt
= �2

� − �2�2
+ + ��1�3

+ +���3
+

2
��2 − i�4� ,

d�3

dt
= − �3�3 − ��1�2,

d�3
+

dt
= − �3�3

+ − ��1
+�2

+, �14�

where the � j are the cavity loss rates at the respective fre-
quencies, the � j are coherent pumping terms, and the noise
terms have the same correlations as in Eq. �6�.

In the intracavity case it is often possible to find the ap-
propriate fluctuation spectra via a process of linearizing the
fluctuations in the variables about their steady-state, classical
solutions �18�. This enables us to write equations for the
fluctuations as a multivariate Ornstein-Uhlenbeck process,
from which it is particularly simple to extract the appropriate
spectral correlations. There are however, two caveats which
must be considered here. The first is that the steady-state
solutions of the classical equations �Eq. �14� with the noise
terms dropped� must be the actual mean-field solutions, and
the second is that the drift matrix in the resulting equation for
the Ornstein-Uhlenbeck process must not have any negative
real parts to its eigenvalues. These conditions are known to
occur with intracavity parametric processes, with the first
being violated in the self-pulsing regime of second harmonic

generation �36–38� and the second being a problem at the
critical operating point of the optical parametric oscillator
�39�. In order to check the stability we first turn to solving
the steady-state equations for the mean fields.

Although in general not possible, we can find analytical
solutions for the steady states in the case where we set the
pumping strengths equal, with �1=�2=�, and the two low-
frequency loss rates also equal, with �1=�2=�. Although
achieving equal loss rates may not be so simple in the labo-
ratory, it is useful here in order to gain some insight. With
these values set equal, the two low-frequency modes will
have equal amplitudes with �1

ss=�2
ss=�ss, which leads to a

cubic equation for �3
ss �note that we will now drop the super-

scripts for notational convenience�,

�3�2�3
2 − 2��3��3

2 + �3�2�3 + ��2 = 0, �15�

along with a simple expression for �,

� =
�

� − ��3
. �16�

We note that there is no divergence here in the value of �
since the high-frequency field amplitude is negative in the
steady state. Without setting these loss and pumping rates
equal, it is much more difficult to find analytical solutions,
although we can proceed via numerics, which we will do
later in order to examine the effects of asymmetry. In the
present case where the cavity is triply resonant, �3 will be
the real solution of Eq. �15�. This is found as

�3 =
1

6
�4�

�
+

161/3�2�3

�
+

22/3�

�3�2� , �17�

where

� = �− 2�3�3
3�3 − 27�3

2�5�2 + �27�3
4�8�2�27�2�2 + 4�3�3��1/3.

�18�

We now decompose the variables into their steady-state clas-
sical values and fluctuations around these,

� j = � j
ss + 	� j , �19�

and find the equations of motion for the fluctuation vector,

	X = �	�1,	�1
+,	�1,	�2

+,	�3,	�3
+�T, �20�

as

	X = − Adt + BdW , �21�

where A is the drift matrix �remembering that the � j are now
to be read as the steady-state values�,
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FIG. 4. �Color online� The Duan-Simon correlation V�X1+X2�
+V�Y1−Y2� and the Reid EPR correlation Vinf�Xj�Vinf�Y j� for the
two low-frequency fields. With symmetric inputs, the EPR correla-
tion is equal for j=1 and 2. Note that the Duan-Simon value has
been divided by four so that both entanglement and the EPR para-
dox are demonstrated for values less than 1.
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A = �
�1 0 0 − ��3 − ��2

� 0

0 �1 − ��3
� 0 0 − ��2

0 − ��3 �2 0 − ��1
� 0

− ��3
� 0 0 �2 0 − ��1

��2 0 ��1 0 �3 0

0 ��2
� 0 ��1

� 0 �3

� ,

�22�

dW is a vector of real Wiener increments and B is the diffu-
sion matrix,

B = �
���3

2
0 i���3

2
0 0 0

0 ���3
�

2
0 i���3

�

2
0 0

���3

2
0 − i���3

2
0 0 0

0 ���3
�

2
0 − i���3

�

2
0 0

0 0 0 0 0 0

0 0 0 0 0 0

� .

�23�

In parameter regimes where the matrix A has no negative
real part to any of its eigenvalues, we may simply find the
intracavity spectra via the relation

S��� = �A + i�1�−1BBT�AT − i�1�−1, �24�

after which we use the standard input-output relations �40� to
relate these to the experimentally measurable quantities out-
side the cavity.

Again setting �1=�2=�, and the two low-frequency loss
rates also equal, with �1=�2=�, so that �1=�2=� and all
the intracavity fields are real, we find analytical solutions for
the eigenvalues as

�1,2 = � � ��3,

�3,4 =
1

2
�� + �3 + ��3

� ��� − �3�2 + 2��3�� − �3� + �2��3
2 − 8�2�� ,

�5,6 =
1

2
�� + �3 − ��3

� ��� − �3�2 − 2��3�� − �3� + �2��3
2 − 8�2�� .

�25�

Since �3 is negative in the steady state, there is an obvious
instability when �3�−� /�, found from the first pair of ei-
genvalues. Unlike the case of the optical parametric oscilla-
tor, where a simple expression can be found for the critical
pumping value, we find that it is easiest here to express this

in terms of the low-frequency field amplitudes, defining a
critical field,

�c =
�

2�
. �26�

We note here that this simple expression will not hold unless
we set the pumping and loss rates symmetrically, as we did
for our analytic eigenvalue analysis. Figure 5 shows how the
parameter space is divided into stable and unstable regions in
this symmetric case, as we vary the pumping and the ratio
between the high- and low-frequency loss rates. All the spec-
tral results we give will be from the stable region. We will
return to the region above �c below, using stochastic integra-
tion to solve the full equations of motion. In the meantime
we will examine the quantum correlations in the stable re-
gion of the parameter space.

V. ENTANGLEMENT PROPERTIES

In order to examine the entanglement and squeezing prop-
erties of this system, we must go beyond the intensity fluc-
tuations calculated previously �10� and calculate the phase
dependent quadrature correlations given above in Eqs. �11�
and �12�. The first of these, which we show in Fig. 6, is the
output spectral variance of the high-frequency amplitude

quadrature X̂3. We see that, as in the traveling wave case, this
is squeezed and that the degree of squeezing increases as we
approach �c. As shown in Fig. 7, this system is also a good
source of bichromatic bipartite entanglement between the
two low-frequency fields. We see that the degree of violation
of the Duan-Simon inequality also increases as we approach
�c, although not as markedly as does the high-frequency
squeezing. Consistent with the fact that SFG suppresses the
noise in the sum of the two low-frequency intensities, unlike
parametric down conversion, which suppresses the noise in
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FIG. 5. �Color online� The regions of stability and instability as
a function of � and �3 /� for �=10−2 and �=�1=�2=1. In the
region to the right of the line there is always at least one eigenvalue
with a negative real part and the linearization process for calculat-
ing spectra is not valid.
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the difference, we find that the entanglement is signaled by

the correlation V�X̂1+ X̂2�+V�Ŷ1− Ŷ2�. We did not find any
evidence of tripartite entanglement in this system, at least for
the parameter ranges we have investigated.

A. Symmetric and asymmetric bipartite steering

In a recent paper �16�, Wiseman et al. discussed the con-
cept of steering, which had originally been introduced by

Schrödinger �41,42� in the context of the EPR paradox �43�.
Wiseman et al. explain this concept in terms of a bipartite
state prepared by Alice, who then sends one part to Bob, with
this process being repeatable. After measuring their own
parts, they communicate classically, with Alice trying to con-
vince Bob that the prepared state is entangled. If Bob cannot
explain the correlations using any local hidden state �LHS�
model, the state must be entangled. Schrödinger used the
concept of LHS to say that Bob’s system could have a defi-
nite state before measurement, even though this actual state
would be unknown to Bob. He introduced the concept of
steering to describe how Alice could affect Bob’s state via
her choice of measurement basis, but expected that this
would never be seen experimentally.

For the purposes of this paper, it is interesting to note that
a demonstration of the EPR paradox using the Reid criteria
�34�, as was first done by Ou et al. �44� using parametric
down conversion, is equivalent to a demonstration of steer-
ing. In Fig. 8 we show that this system does allow for dem-
onstrations of steering, with a degree of violation of the Reid
inequality �12� that increases as the pumping is increased so
that �c is approached. For the symmetric inputs and param-
eters we have chosen here, the steering is totally symmetric,
with either Alice ��1� being able to steer Bob ��2� or Bob
being able to steer Alice. However, in the work of Wiseman
et al., the reader is left with an open question as to whether
there exist asymmetric states that are steerable by Alice but
not by Bob �16�. It seems intuitively obvious that these type
of states would not be produced in any normal down-
conversion processes, which are inherently symmetric in
their production of correlated pairs of photons. The freedom
we have with the present system, where the pumping rates
and mirror losses can be different at the two low frequencies,
leads us to expect that it should be a good candidate for the
exhibition of asymmetric steering. Indeed, as shown in Fig.
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FIG. 6. �Color online� The spectral variance of the high-

frequency quadrature X̂3 for �=10−2, �1=�2=�=1, and �3=10. The
solid line is for �1=�2=200, giving �1=�2=0.25�c, the dash-dotted
line is for �1=�2=400, giving �1=�2=0.61�c, and the dashed line
is for �1=�2=600, giving �1=�2=0.95�c.
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FIG. 7. �Color online� The Duan-Simon entanglement correla-
tions for the low-frequency modes 1 and 2 and the same parameters
as Fig. 6. The two quadratures which violate the inequality �less
than 4� and hence signify entanglement are X1+X2 and Y1−Y2. The
solid line is for �1=�2=200, giving �1=�2=0.25�c, the dash-dotted
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FIG. 8. �Color online� The spectral EPR product of the inferred
variances for modes 1 and 2, and the same parameters as Fig. 6. The
solid line is for �1=�2=200, giving �1=�2=0.25�c, the dash-dotted
line is for �1=�2=400, giving �1=�2=0.61�c, and the dashed line
is for �1=�2=600, giving �1=�2=0.95�c.
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9, it is in principle possible to arrange the cavity loss rates
and pumpings so that this is seen. In the figure, we have used

the labels EPRij to represent the product Vinf�X̂i�Vinf�Ŷi� and
have chosen a regime where the linearization process is
valid. We also note here that previous coupled systems,
which have been predicted to produce entangled outputs via
evanescently coupled intracavity ��2� and ��3� processes
could also be arranged asymmetrically and thus may also be
good candidates for the production of asymmetric steering
�35,45–48�. Having shown that asymmetric steering is pos-
sible, we may pose another open question as to what it may
prove useful for, with one way quantum cryptography being
one suggestion, although further development of this theme
is outside the scope of this paper.

B. Quantum dynamics

In the unstable parameter regime as shown in Fig. 5 we
must resort to stochastic integration of the full Eqs. �14�,
without linearizing about the semiclassical solutions. What
we find is qualitatively different from the behavior in the
stable regime, as can be seen in Fig. 10. For pumping
strengths for which the semiclassical solution has ���c, the
full quantum solutions converge to the semiclassical predic-
tions, as they do in the transient regime of Fig. 10. However,
when the cavity is pumped more strongly, the fields change
radically after a short time, with the low-frequency fields
increasing and the high-frequency intensity decreasing as the
process of down conversion back into the two low frequen-
cies becomes dominant. While interesting from the point of
view of being a system where the semiclassical solutions do

not capture the dynamics of the mean fields, we found no
evidence of steady-state entanglement or quadrature squeez-
ing in our investigations of this regime.

VI. CONCLUSION

In conclusion we have shown that the system of intracav-
ity sum frequency generation is potentially a versatile and
tunable source of squeezed light, bright bichromatic continu-
ous variable bipartite entanglement, and two mode Einstein-
Podolsky-Rosen states. With recent advances in the fabrica-
tion of nonlinear crystals and with the techniques necessary
for what we may term its classical uses very well established,
this process may become a powerful tool in the optical arse-
nal of quantum information. The potential ability to run the
system in a highly asymmetric manner means that it could be
used as an instrument for research into the fundamentals of
quantum mechanics in ways that are not possible with the
familiar optical parametric oscillator. The ability to choose
and combine a range of frequencies, with the combination
frequency being quadrature squeezed, may prove useful in
super-resolution measurements.
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