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The unequivocal detection of entanglement between two distinct matter-wave pulses is a significant chal-
lenge that has yet to be experimentally demonstrated. We describe a realistic scheme to generate and detect
continuous-variable entanglement between two atomic matter-wave pulses produced via degenerate four-wave
mixing from an initially trapped Bose-Einstein condensate loaded into a one-dimensional optical lattice. We
perform a comprehensive numerical investigation for fixed condensate parameters to determine the maximum
violation of separability and Einstein-Podolsky-Rosen inequalities for field quadrature entanglement, and de-
scribe and simulate an experimental scheme for measuring the necessary quadratures.
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I. INTRODUCTION

Recently there has been much interest in the quantum
properties of matter waves and the study of quantum atom
optics �1,2�. The field has grown out of atom optics and
encompasses concepts and ideas from quantum optics,
condensed-matter theory, atomic and molecular physics, and
quantum information theory. Experimentally, ultracold atoms
provide a clean and controllable environment in which to
investigate a wide range of new and existing models. No-
table examples include the observation of the BCS–Bose-
Einstein condensate �BEC� crossover regime �3� and the
Mott insulator–superfluid quantum phase transition �4�.

In addition to answering fundamental questions of sci-
ence, this developing area of physics has the potential for
new and exciting applications. It is predicted that quantum
entanglement will enable a novel set of technologies based
on fundamental quantum principles, such as precision mea-
surement devices �5� and quantum computers �6�. The pre-
cise coherent quantum manipulation of ultracold atomic sys-
tems has been demonstrated in many experiments and holds
promise for these systems to be candidates for quantum in-
formation applications in the future.

There have been a number of demonstrations of quantum
atom optical phenomena in recent years. These include the
observation of nonclassical effects in atomic fields such as
the Hanbury Brown–Twiss effect for bosons �7,8�, anti-
bunching for fermions �9�, reduced local pair correlations
�10,11�, sub-Poissonian number fluctuations �12,13�, and
density correlations from molecular disassociation �14�,
atomic collisions �15�, and in the Mott-insulator regime in an
optical lattice �16�. The majority of these investigations have
concentrated on correlations in the atom number or density.
Future applications of quantum atom optics utilizing en-
tanglement and squeezing will require manipulation and de-
tection of the phase of the quantum state of matter waves.
This presents a challenge as creating stable phase references
and performing mode-matched interference is likely to be
difficult for ultracold atoms.

Entanglement can be generated and utilized in a variety of
forms. In this paper we address the generation and detection

of continuous-variable entanglement between orthogonal
spatial modes of an atomic field in a second-quantized for-
malism. This is distinct from entanglement between single
particles, as seen in a first-quantized picture. Such
continuous-variable entanglement has been extensively used
in the field of quantum optics �17�.

Entangled and squeezed states of the electromagnetic field
have been generated in quantum optics experiments, and
proof-of-principle demonstrations for potential applications
such as quantum cryptography have been successful �17�.
Photons may not be ideal for all quantum operations. Light
travels fast but is difficult to contain, and the lack of mass
makes it relatively insensitive to rotation and acceleration in
interferometric sensors �18�. In principle, the achievements
of quantum optics can be replicated with bosonic atoms. In-
deed, there have been impressive achievements in entangling
the spins of two distinct atomic clouds in the continuous-
variable limit �19�. Recently, entanglement in the reduced
two-body density matrix was demonstrated by number and
phase correlations in double- and few-well systems �13�.
However, no experiment has yet demonstrated entanglement
between the spatial modes of an atomic field.

Several suggestions have emerged for creating entangle-
ment in a BEC. One possibility is to transfer entanglement
from a pre-existing entangled source to the atoms. For in-
stance, the state of entangled light can be mapped onto
atomic modes by using lasers to induce a Raman transition
�20,21�. A related suggestion for entanglement detection in-
volves mapping the atom statistics onto photons in the re-
verse process, in order to access well-developed single-
photon and quadrature measurement techniques �21,22�.

A second approach is to generate the entanglement di-
rectly in the atomic system. Atomic systems exhibit three-
and four-wave-mixing processes that can generate entangle-
ment in light. The dissociation of a diatomic molecular Bose-
Einstein condensate into entangled pairs is analogous to the
process of three-wave mixing in an optical parametric ampli-
fier �23,24�. In the second-quantized picture the spatial
modes of the products become entangled. Unfortunately, the
entanglement that results is difficult to use or detect because
of the necessity of using a phase reference that is correlated
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with the phase of both the atomic and molecular modes.
Atom-light scattering is an example of a four-wave-mixing
process which can entangle atomic and photonic modes �25�.
Super-radiant Rayleigh scattering occurs in an elongated
condensate, where the scattering process is self-stimulating,
generating only one or a few macroscopically occupied en-
tangled modes �26–28�.

The entanglement we consider in this paper occurs be-
tween modes of the atomic field. The inherent s-wave scat-
tering between ultracold atoms can result in the four-wave
mixing of matter waves. Stimulated four-wave mixing be-
tween colliding condensates was first reported in 1999 �29�,
followed by observations of spontaneous four-wave mixing
and the demonstration of the potential reversibility of the
process �30�. In principle, this four-wave-mixing scheme
produces many pairs of spatially entangled modes �31,32�, in
analogy to a recent optical experiment �33�. However, the
sheer number of resonant modes limits the gain and en-
tanglement generated between any given pair of modes, as
the condensate is rapidly depleted. In this paper we extend a
suggestion to use degenerate four-wave mixing �where the
two input waves are the same mode� of a quasi-one-
dimensional �quasi-1D� BEC in an optical lattice �34,35� to
create and detect continuous-variable entanglement. The
quasi-1D geometry limits the number of modes for resonant
collisions, and leads to the generation of two separate yet
entangled matter waves.

Hilligsøe and Mølmer �34� first suggested loading a sta-
tionary Bose-Einstein condensate into a moving optical lat-
tice in order to make a degenerate four-wave-mixing process
resonant. There is a large body of work on the inherent dy-
namical instabilities in moving optical lattices which cause
heating of BECs �see �36–38� and references therein�. Inter-
estingly, the same dynamical instability can be interpreted as
a collisional process that generates entangled modes of spe-
cific momenta. An experiment was subsequently performed
by Campbell et al. �35� that shows pairs of modes are popu-
lated with the momenta predicted by mean-field theory.
However there has been no experimental proof of entangle-
ment in this system. The goal of this work is to propose a
method to demonstrate entanglement between modes popu-
lated by degenerate four-wave mixing.

To utilize or detect the presence of entanglement requires
a suitable phase reference �17,39,40� which is provided by
the near-classical coherent output of a laser in optics. In atom
optics the equivalent of laser light is a Bose-Einstein conden-
sate. However, in experiments the size of BECs is typically
limited to be between 103 and 108 atoms, and interactions
between atoms result in atom losses, number-dependent
phase evolution, and phase diffusion, meaning that they are
less than ideal as a phase reference. Also, setting aside a
separate condensate of atoms to use as a phase reference may
not be practical experimentally.

In Ref. �41� we extended the separability criterion of
Duan et al. �42� and Simon �43�, and the criterion for dem-
onstration of the Einstein-Podolsky-Rosen �EPR� paradox of
Reid �44� to situations where no assumptions could be made
about the quantum state of the available phase reference.
This allows the possibility of using a nonclassical local os-
cillator in balanced homodyne measurement schemes for

quadrature measurements that are common in quantum op-
tics. We then applied these criteria to a toy four-mode model
of degenerate four-wave mixing in a Bose-Einstein conden-
sate with up to 1000 atoms, and showed that appropriate
beam-splitting operations combined with atom counting
could be used to demonstrate both inseparability and the
EPR paradox.

In this paper we extend this approach to perform one-
dimensional simulations of a more realistic experimental sys-
tem. We simulate the adiabatic loading of a trapped Bose-
Einstein condensate into a moving optical lattice to initiate
degenerate four-wave mixing, before turning off the lattice
potential and performing beam-splitting operations with ap-
propriate Bragg pulses to generate four distinct atomic
clouds. Performing number difference measurements be-
tween these clouds provides access to the atomic quadratures
and the subsequent violation of the entanglement inequali-
ties. We determine how the measure of entanglement de-
pends on the time held in the optical lattice, the relative
phase of the Bragg pulses, and the number of seed atoms in
the outgoing modes. We conclude that these experimental
complications will not necessarily prevent the demonstration
of entanglement of matter waves in such a system.

The paper is organized as follows. In Sec. II we review
the degenerate four-wave mixing of a BEC in an optical
lattice that was the subject of previous theoretical and experi-
mental investigations �34,35,45�. Section III details the pro-
posed measurement scheme, including the basics of Bragg
pulses, homodyne measurements, and the entanglement cri-
teria we employ. The results of numerically implementing
our scheme are presented in Sec. IV before we conclude in
Sec. V.

II. DEGENERATE FOUR-WAVE
MIXING OF MATTER WAVES

The dominant interaction between ultracold atoms in a
Bose-Einstein condensate is s-wave scattering. In free space
the conservation of energy and momentum in the collision of
two particles requires that the outgoing particles have mo-
menta falling on two opposing points of a sphere in k space
in the center-of-mass frame. Such s-wave scattering spheres
have been observed by colliding two BECs �15,30�. Alterna-
tively, this can be viewed as a four-wave mixing process
which is resonant and phase matched on the s-wave scatter-
ing sphere.

The presence of a periodic potential alters the dispersion
relation for the particles and thus the resonance conditions
for collisions. Hilligsøe and Mølmer �34� showed that adia-
batically loading a BEC into a moving optical lattice can
allow degenerate four-wave mixing, where the two incident
particles are in the same initial state. The optical lattice is
created by shining two lasers with wave vectors k1 and k2 of
similar frequencies �1 and �2 onto the atomic cloud. The
light creates an effective potential for the atoms,

V�r� =
VL

2
sin�2kL · r − �t + �� , �1�

where 2kL=k1−k2, �=�1−�2, � is the relative phase be-
tween the beams, and VL is proportional to the intensity of
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the lasers and depends on the details of the atom-light inter-
action. It is convenient to write VL=sER, where s character-
izes the strength of the optical lattice, and ER=�2kL

2 /2m is
the recoil energy.

The degenerate four-wave-mixing process is illustrated in
Fig. 1, where two particles in mode 0 with quasimomentum
q0 in the lowest Bloch band can collide, transferring an atom
to each of modes 1 and 2 with quasimomenta q1 and q2.
During this process they conserve their total energy 2�0
=�1+�2 and quasimomentum 2q0=q1+q2 modulo 2kL. By
subsequently adiabatically turning off the optical lattice, the
generated quasimomentum states are converted to momen-
tum states in free space between �kL. If we write resulting
momentum of mode 1 as k1=k0−�k, then the momentum of
mode 2 is k2=k0+�k−2kL.

Defining the annihilation operator of mode j to be âj, the
model Hamiltonian describing this process can be written as

Ĥ = i���â0
2â1

†â2
† − â0

†2â1â2� . �2�

This pairwise scattering process is predicted to produce sub-
Poissonian number correlations and quadrature entanglement
between the atoms with quasimomenta q1 and q2 �34,45�.
However, the measurement of number correlations or dem-
onstration of entanglement was not accomplished in the sole
experimental realization of degenerate four-wave mixing in a
BEC to date �35�.

We can perform a simplified analysis of the Hamiltonian
in Eq. �2� using the undepleted pump approximation where
we assume that mode 0 begins in a large coherent state �	�,
where 	 is real and the number of particles N0=	2. At small
enough times one can assume that the population of mode 0
is undepleted and therefore the Hamiltonian can be approxi-
mated as

Ĥ � i�N0��â1
†â2

† − â1â2� . �3�

In the Heisenberg picture the solution for this system is
�17,45�

â1�t� = cosh�N0�t�â1�0� + sinh�N0�t�â2
†�0� ,

â2�t� = cosh�N0�t�â2�0� + sinh�N0�t�â1
†�0� . �4�

If modes 1 and 2 are initially vacuum then they make up a
two-mode squeezed state that is well known from quantum

optics �46�. The two modes are exactly correlated in number,
and anticorrelated in phase. Measuring the correlation be-
tween the numbers of atoms in modes 1 and 2 is, however,
insufficient to prove entanglement, as it is possible to con-
struct a separable density matrix that is consistent with any
set of local number measurement outcomes �40�.

To unequivocally demonstrate that entanglement exists
between the two modes, it is necessary to perform phase-
sensitive measurements. The phase difference between the
modes is insensitive to anticorrelations, and thus measure-
ment of the relative phase will not help demonstrate en-
tanglement between these states. We therefore need to mea-
sure the phase quadratures of both modes.

Quadrature measurements have been used to prove en-
tanglement between photonic modes in quantum optics ex-
periments �17�. A third phase reference, or local oscillator, is
interfered with the entangled modes on a beam splitter to
reveal the quantum correlations. A large and coherent local
oscillator �produced by a laser� allows one to make accurate
measurements of the field quadratures, defined as

X̂j = âj + âj
†, Ŷ j = i�âj − âj

†� . �5�

Duan et al. �42� and Simon �43� derived a simple criterion
for the separability of the two modes. All separable states
obey

Var�X̂1 − X̂2� + Var�Ŷ1 + Ŷ2� 
 4, �6�

where we write the variance Var�Â�= �Â2�− �Â�2. We note

that our definition of the quadratures X̂ and Ŷ are 	2 larger
than that employed in Refs. �42,43�, and so our variances are
twice as large. Violation of the above inequality indicates
that the system must be entangled. For all times t�0 solu-
tion �4� of Hamiltonian �3� in the undepleted pump approxi-
mation violates this bound,

Var�X̂1 − X̂2� + Var�Ŷ1 + Ŷ2� = 4e−2N0�t. �7�

This inequality is useful for detecting the entanglement gen-
erated by the four-wave-mixing process, and has been suc-
cessfully employed in optical experiments �17�. The
Einstein-Podolsky-Rosen paradox has been demonstrated in
optical fields using similar inequalities �17,44�.

III. ENTANGLEMENT DETECTION

In optics the quadrature measurements required to dem-
onstrate entanglement can be made by balanced homodyning
that mixes the signal beams with a phase reference beam on
a 50-50 beam splitter. We employ balanced homodyning for
atoms as this method typically has a superior signal-to-noise
ratio compared to unbalanced homodyne schemes. In the

Heisenberg picture we define â
 âin and b̂
 b̂in as the anni-
hilation operators for the signal and local oscillator before

the beam splitting. The output modes âout and b̂out are given
by
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FIG. 1. �Color online� Band structure of an optical lattice with
s=1. Two atoms in the �moving� condensate mode 0 can collide
into modes 1 and 2, conserving energy and quasimomentum.
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âout = �âin + b̂in�/	2 and b̂out = �âin − b̂in�/	2. �8�

The final step is to measure the difference in the number of

particles exiting the beam-splitter ports âout and b̂out. The
measured quadrature is rescaled by the size of the local os-
cillator, according to

X̂ =
âout

† âout − b̂out
† b̂out

�b̂in
† b̂in�1/2

=
â†b̂ + âb̂†

�b̂†b̂�1/2
� â† + â , �9�

where the final approximation is good for phase references
that are large coherent states.

Thus three ingredients are required to perform homodyne
measurements with Bose-Einstein condensates: a suitable
phase reference, the atomic equivalent of a beam splitter, and
detectors able to accurately count the number or density of
atoms in the various modes. Bragg scattering can be used to
interfere �beam split� atoms of different momenta, and rea-
sonably efficient atom detection has been demonstrated with
multichannel plate detectors for metastable helium �7,9,15�,
ionized 87Rb detection �47�, high numerical aperture optical
techniques �48�, and utilizing optical cavities �8�. Combined
with time-of-flight expansion, the population distribution in
momentum space can be directly measured.

A. Bragg pulses

Bragg scattering is the process of applying a moving op-
tical lattice to coherently transfer atomic populations from
one momentum state to another. The potential in Eq. �1� will
resonantly transfer an atomic population with momentum k1
to k2 �and vice versa� if and only if k1−k2= �2kL and �
=�kL · �k1+k2� /m. This is equivalent to assuming that the
atom scatters a photon from one beam to the other, conserv-
ing both energy and momentum. Higher-order scattering is
possible, but will not occur if the lattice is relatively weak
�s�1�.

A weak lattice held for a duration =�� /sER provides a
� /2 Bragg pulse, and is equivalent to a 50-50 beam-splitter
operation. This can be most easily seen in the Heisenberg
picture

â1�t + � = exp�−
i�k1

2

kL
2s
� â1�t� + â2�t�ei�

	2
, �10�

â2�t + � = exp�−
i�k2

2

kL
2s
� â2�t� − â1�t�e−i�

	2
, �11�

where the pulse begins at time t. Note that the relative phase
of the two laser beams � contributes to the evolution, and
this is important when considering quadrature measurements.

In this paper we will make use of mode 0 as a local
oscillator in order to detect entanglement between modes 1
and 2. As simultaneous quadrature measurements of modes 1
and 2 are necessary, we require two local oscillators for bal-
anced homodyning. This is achieved by first using a � /2
Bragg pulse to transfer half of the atoms from mode 0 to
mode 3 which is initially unpopulated. A weak Bragg pulse
will not affect mode 1 or 2 due to the Doppler shift of light.

B. Homodyne measurements

The final step of the experiment is make a homodyne
measurement on mode 1 using mode 0 as the local oscillator,
and similarly on mode 2 using mode 3 as the local oscillator.
One can simultaneously apply two sets of Bragg pulses tuned
to mix momenta k1 with k0, and k2 with k3.

To complete the homodyne measurements the population
in each of the modes must be measured. The quadrature for
mode 1 just before the Bragg pulse is proportional to the
difference in population found in modes 1 and 0 after the
pulse,

X̂1
�1 


â1�t2�â0
†�t2�e−i�1 + â1

†�t2�â0�t2�ei�1

�â0
†�t2�â0�t2��1/2

=
â1

†�t3�â1�t3� − â0
†�t3�â0�t3�

�â0
†�t2�â0�t2��1/2 , �12�

where we have rescaled by the size of the local oscillator.
Similarly for modes 2 and 3,

X̂2
−�2 


â2�t2�â3
†�t2�ei�2 + â2

†�t2�â3�t2�e−i�2

�â3
†�t2�â3�t2��1/2

=
â3

†�t3�â3�t3� − â2
†�t3�â2�t3�

�â3
†�t2�â3�t2��1/2 . �13�

As can be seen from the above equation, the ith quadrature
angle depends on �i, the relative phase between the relevant
Bragg lasers. The phase is reversed in Eq. �13� because k2
−k3 is negative. The dependence on the relative phase has
two important consequences. First, this parameter must be
fixed from shot to shot in an experiment in order to measure

the correct statistics of X̂i
�. Second, controlling �1 and �2

allows one to access quadratures of any angle in order to
produce a set of measurements that demonstrate entangle-
ment or the EPR paradox.

C. Entanglement criteria

Measurements of the quadrature statistics can confirm that
the system is entangled by employing the appropriate sepa-
rability or EPR criteria. In previous work �41�, we derived
three entanglement criteria that take into account the quan-
tum nature of the local oscillator. Earlier studies �42–44�
were based on the simplified quadrature operators in Eq. �5�,
which in a quantum optics setting closely correspond to the
measured quadratures described by Eqs. �12� and �13�. How-
ever, for the limited numbers of atoms employed in Bose-
Einstein condensate experiments and the nonclassical state of
the local oscillators generated by our proposed scheme, the
difference between the simplified and measured quadrature
operators is potentially important. The difference between
earlier works and the criteria employed below is a direct
consequence of the commutation relations of the measured
quadrature operators,

��X̂1
�,Ŷ1

��� = 2i�1 −
�â1

†â1�
�â0

†â0�
� ,
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��X̂2
�,Ŷ2

��� = 2i�1 −
�â2

†â2�
�â3

†â3�
� , �14�

where Ŷi
�= X̂i

�+�/2.
From this commutator, it follows that all separable states

obey �41�

Var�X̂1
�1 − X̂2

�2� + Var�Ŷ1
�1 + Ŷ2

�2� 
 21 −
�â1

†â1�

�b̂1
†b̂1�


+ 21 −

�â2
†â2�

�b̂2
†b̂2�

 . �15�

Violating this inequality proves that the system is entangled.
No state can violate the above inequality for all values of �1
and �2; generally these are experimentally adjusted to find
the minimum value �i.e., maximal violation�. We can express
the left-hand side �LHS� of Eq. �15� in the form

LHS = cos2��̄��Var�X̂1 − X̂2� + Var�Ŷ1 + Ŷ2��

+ 4 cos��̄�sin��̄��Var�X̂1,Ŷ2� + Var�Ŷ1,X̂2��

+ sin2��̄��Var�X̂1 + X̂2� + Var�Ŷ1 − Ŷ2�� , �16�

where the omitted superscript implies a quadrature angle of

0, �̄= ��1+�2� /2, and Var�Â , B̂�= 1
2 �ÂB̂�+ 1

2 �B̂Â�− �Â��B̂� is

the covariance of Â and B̂. Note that only the sum of the
quadrature angles enters the expression; the value is indepen-
dent of the difference �1−�2. This simplifies the minimiza-
tion problem to just one variable with a simple sinusoidal
form.

For brevity, we define the separability parameter S,

S = 2
Var�X̂1

�1 − X̂2
�2� + Var�Ŷ1

�1 + Ŷ2
�2�

�1 − �â1
†â1�/�b̂1

†b̂1�� + �1 − �â2
†â2�/�b̂2

†b̂2��
. �17�

The separability criteria is then simply S
4.
The Einstein-Podolsky-Rosen paradox is a stronger form

of entanglement in the sense that it cannot be demonstrated
by all mixed entangled states �49�. For our system, we pre-
viously showed �41� that violating

Var�X̂1
�1 − X̂2

�2� + Var�Ŷ1
�1 + Ŷ2

�2� 
 21 −
�âj

†âj�

�b̂j
†b̂j�
 ,

�18�

for j=1 or 2, demonstrates the EPR paradox. This is violated
for at least one value of j if S�2.

A similar, yet stronger EPR criterion is

�inf
2 �X̂2

�2� = Var�X̂2
�2� −

Var�X̂1
�1,X̂2

�2�2

Var�X̂1
�1�

,

�inf
2 �Ŷ2

�2� = Var�Ŷ2
�2� −

Var�Ŷ1
�1,Ŷ2

�2�2

Var�Ŷ1
�2�

,

E =
�inf

2 �X̂2
�2��inf

2 �Ŷ2
�2�

�1 − �âj
†âj�/�b̂j

†b̂j��2

 1, �19�

where in the last line we defined the EPR parameter E. Mini-
mizing E with respect to �1 and �2 is less straightforward
than for S, but the two will usually be minimized for similar
phase angles.1

IV. SIMULATIONS

A. Outline of experiment

We begin with a pure condensate of N0=105 87Rb atoms
in a quasi-1D harmonic trap with trapping frequencies
��z ,���=2�� �1,44� Hz. Due to the high trapping aspect
ratio, we assume that we can ignore the dynamics in the
tightly trapped direction, and take a variational Gaussian an-
satz for the transverse wave function. We have chosen sys-
tem parameters that closely match the previous work of Hil-
ligsøe and Mølmer �34� to allow for a clear comparison of
our results with their calculations. Such a quasi-1D conden-
sate is described by the Lieb-Liniger Hamiltonian with an
additional external potential,

Ĥ =� dz�̂†�z��− �2

2m

�2

�z2 + V�z,t� +
g

2
�̂†�z��̂�z���̂�z� ,

�20�

where m is the mass of an atom, g=4��2as /mA� is an ef-
fective 1D interaction constant, and V�z , t�=m�z

2z2 /2
+VL�z , t�, where VL is the optical lattice potential �Eq. �1��.
We use a scattering length as=100a0 and obtain the effective
cross-sectional area A�=42 �m2 by minimizing the energy
of a Gaussian ansatz, resulting in �34�

A� =
2��

m��

	1 + 2asn̄1D, �21�

where n̄1D is the average linear density. The condensate
ground-state wave function is quasi-one-dimensional if n̄1D
�as

−1. For these parameters the Thomas-Fermi length of the
condensate is approximately 295 �m.

The experimental sequence to generate and detect en-
tanglement between two matter-wave pulses is illustrated in
Fig. 2 To initiate the degenerate four-wave mixing, an optical
lattice with wavelength of 790 nm and peak strength s=1 is
adiabatically ramped on and off over a time t1 as depicted in
Fig. 2�a�. In the simulations we ramp the lattice on and off
using piecewise parabolic curves with continuous first de-
rivatives over a time period ramp=2 ms. Gross-Pitaevskii
simulations were performed to ensure that the shape and du-
ration of the ramping curve efficiently transfers momentum
states to quasimomentum states and vice versa. The optical
lattice is detuned by

1Generally E��1 ,�2� is minimal at the extreme points of
S��1 ,�2�, where the �anti�correlation is strongest.
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�0 = −
2�kL�k

m
, �22�

where �k= �43 /64�kL. In the frame of the lattice, the conden-
sate begins with mean momentum k0=�k, as depicted in Fig.
1, and degenerate four-wave mixing generates new wave
packets with mean momenta k1 and k2.

At this point in the simulation collisions between atoms in
the system become a hindrance. We therefore assume that the
harmonic trap is removed after the optical lattice is switched
off. During the subsequent expansion of the atom cloud the
collision rate and hence the effective nonlinearity will de-
crease. Collisions have a negative impact on the measure-
ment scheme and reduce the strength of correlation between
the quadratures. If the radial trapping is very strong, releas-
ing the trap suddenly could potentially result in complex
three-dimensional collision dynamics that could disturb the
fragile entangled state. To avoid most of these collisions, the
trapping potential may be ramped down adiabatically over a
time scale short compared to the rest of the experiment �but
fast compared to �r�, removing most of the interaction en-
ergy from the system while preserving the quasi-one-
dimensional state. This leaves the atoms to slowly expand
radially in a Gaussian wave packet. To model this procedure,
in the simulations the nonlinear constant g is set to zero at
time t1.

The measurement scheme is implemented by applying a
series of Bragg pulses. The first pulse is also with wave-
length of 790 nm, but is tuned to transfer half of the initial
condensate at rest �in the laboratory frame� to mode 3 with
momentum −2kL and occurs between t1 and t2. Immediately
following this between t2 and t3 are two simultaneous Bragg
pulses of wave number �k0−k1� /2= �k2−k3� /2, each detuned
to beam split mode 1 with mode 0, and mode 2 with mode 3,
respectively, as illustrated in Fig. 2�b�.

B. Simulation method

We implement the truncated Wigner approximation
�38,50,51� to model the quantum dynamics of the proposed
experiment. Despite being approximate, the method is nu-
merically stable and has been shown to accurately treat quan-
tum field dynamics on short to medium time scales. In par-
ticular, the validity condition of simulating a large number of
particles compared to the number of modes is well satisfied
in our numerical calculations �52�.

The truncated Wigner method is implemented by stochas-
tically sampling the initial Wigner functional W(��z�) and
then evolving this according to the Gross-Pitaevskii equation
�GPE�

i�
���z�

�t
= �− �2

2m

�2

�z2 + V�z,t� + g���z��2���z� . �23�

The initial state we use is a coherent state condensate found
by solving the GPE in imaginary time with the addition of
vacuum noise in the remaining empty modes �52�. The en-
semble of trajectories then represents the evolution of the
Wigner functional. Expectation values of symmetrically or-
dered quantities are obtained by sampling moments of the
field. For instance,

���z���z� = ��̂†�z��̂�z� + �̂�z��̂†�z��/2. �24�

We discretize the atomic field into 4096 points with a range
of 404 �m, and the evolution is computed using a split-
operator adaptive ninth-order Runge-Kutta algorithm gener-
ated by the open-source software XMDS �53�. We typically
run 100–1000 trajectories for each set of parameters.

C. Results

1. Maximal entanglement

We begin with an analysis of simulations of the degener-
ate four-wave-mixing process only �up to time t1 in Fig. 2�a��
in order to identify the maximum violations of the entangle-
ment inequalities without the complication of the measure-
ment scheme. We employ both the trapped model described
above and a simplified periodic model that does not include
the axial harmonic trap. This allows us to illustrate important
differences between the situations with well-defined quasi-
momenta, and the more realistic trapped condensate. For the
periodic model, we begin with 105 atoms spread over 512
periods of the optical lattice, or 202 �m, which roughly cor-
responds to the high-density region of the trapped conden-
sate.
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FIG. 2. �Color online� �a� The intensity of the various optical
lattices as a function of time. The solid �red� line indicates the
intensity of the optical lattice generating the entanglement, which is
ramped on and off with a continuous first derivative using parabolic
curves. This process adiabatically transfers momentum to quasimo-
mentum states and vice versa. The dashed �green� line indicates the
Bragg pulse used to split the phase reference into two. The dotted
�blue� line indicates the simultaneous Bragg pulses used to beam
split each of modes 1 and 2 with local oscillators in modes 0 and 3.
�b� A momentum space schematic of each stage of the process.
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In Figs. 3�a� and 3�b� we plot the population of atoms in
each momentum mode as a function of time held in the lat-
tice, t1. This allows us to determine which momentum modes
the degenerate four-wave-mixing process populates most
strongly. The results show that the population grows fastest
in the modes with momenta k0� �105 /256�kL modulo 2kL
for the periodic model, and k0� �104 /256�kL modulo 2kL for
the trapped model. These values are close to the predictions
of the simple band-structure model, depicted in Fig. 1, and
differ because of the slight average density differences
between the two models. For the remainder of this
paper we use values of �k0 ,k1 ,k2 ,k3�= �0.672,0.262,
−0.918,−1.381�kL for the periodic model, and
�k0 ,k1 ,k2 ,k3�= �0.672,0.266,−0.922,−1.381�kL for the
trapped model.

The modes surrounding these peak growth modes also
undergo significant growth. The time-energy uncertainty re-
lation allows momenta close to the resonance condition to
experience population growth for a time scale inversely re-
lated to their detuning. Below, we see that these additional
populated modes do not prevent the detection of entangle-
ment. After a longer period of time, secondary collisions
populate a range of modes and the condensate is significantly
depleted. Previous experimental and theoretical works have
shown that this behavior is a result of the well-known dy-
namical instability present in moving optical lattices
�36–38�. Instabilities in optical lattices have traditionally

been studied due to their thermalizing effects. However the
degenerate four-wave-mixing process we employ to create
entanglement is a dynamical instability in mean-field termi-
nology.

In Ref. �34�, Hilligsøe and Mølmer implemented a mean-
field model and predicted up to 95% transfer of the popula-
tion to modes 1 and 2 �when an initial population seed is
placed in mode 1�. Our simulations account for spontaneous
collisions into many modes and show that the transfer effi-
ciency is actually limited to much less than this value with-
out seeding. In this situation for the trapped case we reach a
maximum of 16% population transferred to the windows
about k1 and k2, and with a 10% seed we get a total of 45%
conversion, showing that spontaneous scattering into mul-
tiple modes limits the transfer efficiency.

We have calculated the relative number squeezing be-
tween the two signal modes centered about momentum k1
and k2. In Figs. 3�c� and 3�d� we see that the population in
each mode grows approximately exponentially as one would
expect for this system �45�. It is important to note that a
trapped condensate has a nonzero momentum spread. Detect-
ing only a narrow momentum range of the trapped conden-
sate would result in a poor overlap with the true spatial
mode, degrading both the number correlation and the perfor-
mance of the entanglement criteria. One must make measure-
ments over a range of momenta of width 2�k. The number
measured in signal mode j is then

N̂j = �
−�k

+�k

�̂†�kj + k���̂�kj + k��dk�. �25�

In the Appendix it is shown that the entanglement criteria
described in Eqs. �17�–�19� hold true provided �k is small

enough, replacing �âj
†âj� with �N̂j�.

In Figs. 4�c� and 4�d� we sum over five modes in the
computational basis to determine the number of atoms in
each pulse. We also see the number difference variance be-
tween the two signal modes is significantly below the shot-

noise level �N̂1+ N̂2� for smaller values of t1. The number
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FIG. 3. �Color online� Momentum density and relative number
fluctuations versus the time held in the optical lattice, t1. Popula-
tions of each discrete momentum mode for �a� the periodic model
and �b� the trapped model. The initial condensate is barely visible in
the periodic model as it occupies just a single momentum mode. We
see strong population growth around momenta k1 and k2, as well as
low-energy scattering about k0. In �c� and �d�, the solid line is the

number in the entangled modes, �N̂1+ N̂2�, and the dashed line is the

variance of the number difference, Var�N̂1− N̂2�. Relative number
squeezing is observed when this variance is less than the total num-
ber, and a strong correlation is exhibited at early times in �c�, the
data from the homogenous model, and �d�, the data from the
trapped model. At later times the nonclassical correlation is lost.
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FIG. 4. �Color online� Entanglement demonstration as a func-
tion of the hold time in the optical lattice, t1. The solid line repre-
sents the result for the homogenous calculation, while the dashed
line is the result for the trapped calculation. �a� The separability
criterion �Eq. �15�� is maximally violated when the entangled popu-
lations N1+N2�9. The presence of the trap reduces the level of
violation, but the system still demonstrates the EPR paradox as
given by Eq. �18�. �b� The two systems display similar behavior as
that in �a� with respect to the EPR criterion, Eq. �19�. Ensembles of
1000 stochastic trajectories were used to generate these results.
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squeezing degrades at later times due to secondary collisions
transferring atoms out of the two signal pulses �in agreement
with �32��.

We now analyze the entanglement of modes 1 and 2 by
implementing an idealized measurement scheme. In Fig. 4
we plot the results of direct measurement of the quadrature
operators described by Eqs. �12� and �13�. The separability
parameter S and EPR parameter E have been minimized with
respect to the quadrature angles �1 and �2. To do this we
directly extract from the simulations the expectation values
in expression �16�, and from these determine the phase angle
�1+�2 which minimizes S. We find that the optimal phase
angle varies significantly with time. For simplicity, we as-
sume that this phase angle also minimizes E, which we find
to be true in practice. Entanglement and the EPR paradox are
indeed demonstrated for some time in both models. After a
few milliseconds the quantum state of the field becomes
complicated, and the entanglement detectable by these sepa-
rability and EPR criteria disappears, in agreement with pre-
vious work �41,45�.

We include the magnitudes of the maximal entanglement
criteria violations �with respect to t1� in Table I along with
the numbers of entangled atoms. In both models the peak
violation occurs when the total population in modes 1 and 2,
N1+N2, is approximately 10. The turning points of S and E
correspond to when the number difference variance begins to
grow. We note that the simplified periodic system produces
as much as 10 dB stronger inequality violations compared to
the trapped case.

2. Seeding signal modes

In optical experiments bright entangled sources can be
created by “seeding” the four-wave-mixing process with a
coherent input into one of the signal modes �54�. We have
investigated populating mode 1 with a seed in order to boost
the number of atoms in the entangled modes. This could be
achieved experimentally with a short Bragg pulse before the
optical lattice is applied.

Figure 5 and Table I indicate the results of our analysis. In
common with the optical case, we find that the entanglement
violation is decreased for larger seeds. A seed of even 1% of
the initial population, or 1000 atoms, results in noticeable
degradation, and a 10% seed leads to no entanglement crite-
ria violation at any time. We believe increased secondary
scattering is the cause of this degradation. Despite the fact
that larger signals can be obtained by using a seed, the usable
entanglement, such as measured by the entropy of entangle-
ment �17�, does not increase with a larger seed.2

3. Implementation of measurement scheme

Finally, we have performed simulations implementing the
sequence of Bragg pulses that are required to demonstrate
entanglement in our scheme. To reiterate, first the optical
lattice is applied to generate the entanglement until time t1.
Immediately following this we set g and �z to zero �repre-
senting rapidly removing the trap on a time scale quick com-
pared to 1 /�z but short compared to 1 /�r� and begin the
Bragg pulse splitting the condensate into modes 0 and 3.
This pulse ends at time t2, when we apply two superimposed
� /2 Bragg pulses which mix modes 0 and 1, and modes 2
and 3. At time t3 the quadratures are measured by the appro-
priate number differences between the modes in k space.
During the time the pulse sequence is applied the four sepa-
rate condensates are overlapping in real space. To perform
the homodyne measurements it would be necessary to allow
these to expand and separate in real space, and then accu-
rately count the number of atoms in each separate cloud.
Note that a heterodyne scheme may be possible by investi-
gating the real-space spectral components of the density at
time t3, but may be difficult with limited detector resolution.

We have carried out independent simulations of 360 dif-
ferent Bragg pulse phase settings with �1=−�2. We find the
optimal angle for violating the entanglement criteria in the
same manner as would be necessary in an experiment. The

2This can be seen from Eq. �4�. If one adds a coherent seed in
mode 1 by a displacement operation, â1→ â1+	 in the Heisenberg
picture, then the resulting solutions are also simply displaced, and
the entropy of entanglement is unchanged.

TABLE I. The maximal amounts of separability and EPR vio-
lation predicted for periodic and trapped systems beginning with
different initial seed populations.

Trap
Seed
size

Number in
entangled modes

Number
difference
variance

Separability
violation

�dB�

EPR
violation

�dB�

No 0 13 0.5 11.1 16.2

No 10 149 16 10.9 15.8

No 102 936 124 9.6 13.4

No 103 3920 1053 5.6 5.9

No 104 10465 10243 −0.1 −2.2

Yes 0 9.3 0.7 4.5 3.5

Yes 10 38 11 4.5 3.5

Yes 102 296 103 4.4 3.3

Yes 103 2270 986 3.7 2.1

Yes 104 9963 9836 −0.1 −2.1
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FIG. 5. �Color online� Minimal values of �a� the separability
parameter S and �b� the EPR parameter E with different initial seed
populations in mode 1. Crosses �blue� represent results for periodic
systems and circles �red� represent those for trapped systems.
Larger seeds appear to degrade the amount of entanglement viola-
tion. Each point corresponds to a different time t1 that minimizes
the separability parameter for each system and seed size.
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results are plotted in Fig. 6, where each data point is the
result of an ensemble of 100 stochastic trajectories. The sta-
tistical variations of these points give some indication of
what may be expected from a similar number of experimen-
tal runs.3 Previous statistical experiments of BECs have in-
volved tens �16� to thousands �7,9� of shots.

We have performed a sinusoidal fit to the data to deter-
mine the maximal separability and EPR violation values. The
separability criterion follows a simple sinusoidal form �Eq.
�16�� with a minimum of 1.52, or a 4.2 dB violation. The
analytic form for the EPR parameter as a function of quadra-
ture angle is more complicated. We fit the sum of two sinu-
soids �with periods of � and � /2�, resulting in the fitted
minimum value of 0.43, or a violation of 3.8 dB. We see that
these values fit closely to those of the idealized measurement
scheme �cf. Table I�, and that the measurement scheme as
simulated is highly efficient. Of course technical issues such
as detector efficiencies in a real experiment will potentially
have a significant impact on the results.

V. CONCLUSIONS

We have combined the entanglement-generating method
of degenerate four-wave mixing for a trapped Bose-Einstein
condensate loaded into a moving optical lattice proposed by
Hilligsøe and Mølmer �34� with a quadrature measurement
scheme and entanglement criteria previously derived in Ref.
�41�. Once the entanglement is generated, a series of Bragg
pulses are applied in analogy to beam splitting used by ho-
modyne schemes in quantum optics. Finally, the number of
atoms in each mode is measured via time-of-flight expan-
sion, and the quadrature values are determined from these.

We have simulated a numerical model of a realistic quasi-
one-dimensional condensate that incorporates the effects of
imperfect beam splitting by Bragg pulses, nonadiabaticity of
the optical lattice, and the effects of the trapping potential.
Our results indicate that neither multimode effects nor the

presence of a trap will necessarily prevent the demonstration
of entanglement with ultracold atoms. A theoretical analysis
of different atom types, geometry, and other experimental
parameters may lead to significant optimizations and im-
provements to the predicted entanglement criteria violations.

These results are promising, but it is important to note
potential experimental difficulties that we have neglected in
our model. Most significantly, detector efficiency plays a cru-
cial role in entanglement demonstration. Atom-detection
techniques are currently undergoing rapid development and
we expect that modern detectors with efficiencies of
30–50 % should be sufficient to demonstrate inseparability
with this scheme �55�. It is critical that the phase of the
Bragg pulse and optical lattice lasers be carefully controlled,
in order to measure the quadrature statistics of a specific
quadrature angle. The effects of three-body loss and finite-
temperature effects should also be taken into consideration.
We have assumed that the problem is purely one dimen-
sional. One may expect collisions into higher-energy radial
spatial modes during the four-wave mixing and the expan-
sion process. These collisions can be reduced with tighter
radial trapping frequencies, but truly 1D systems suffer from
phase fragmentation which may have other detrimental ef-
fects.

Despite these potential complications we believe that we
have outlined a feasible scheme for demonstrating entangle-
ment between modes of ultracold bosonic atoms. We would
like to point out that a similar detection scheme could be
applied to entanglement generated in a different manner,
such as by colliding two BECs in free space �15,29–32�.
However, we remind the reader that the advantage of the
quasi-1D geometry of the scheme we describe is it that limits
the number of resonant modes and results in only two en-
tangled matter-wave packets. It is possible to imagine other
schemes that similarly populate few entangled modes. For
instance, a recent experiment observed well-separated and
potentially entangled modes generated by four-wave mixing
between different hyperfine states of metastable helium �56�.
Not only is entanglement between massive particles interest-
ing in its own right, but producing entangled atomic sources
may lead to further novel experiments and quantum informa-
tion applications in the future.
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APPENDIX: MULTIPLE MODES

It is straightforward to extend the entanglement criteria of
Ref. �41� to the situation where the signal modes have a
finite momentum width. Realistic experiments will involve
condensates with uncertain momentum, undergoing finite
time-of-flight before measurement on detectors with nonzero
resolution.

We consider a range of momentum values small enough
that the Bragg pulses act similarly for each momentum. We

3Although single and ensembles of truncated Wigner trajectories
are not formally equivalent to the expected results of experimental
realizations, there is some degree of correspondence �52�.
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FIG. 6. �Color online� The measured dependences of the �a�
separability and �b� EPR parameters on the phase of the Bragg
lasers, �1−�2=�1+�2. Dots �black� indicate data from stochastic
simulations for each phase angle. Solid �red� lines represent fits to
the data of �a� sinusoidal form with minimum value S=1.52 and �b�
two-frequency sinusoidal form with minima of E=0.43. These re-
sults are directly calculated from number correlations at time t3.
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write the number measured about each relevant momenta kj
as

N̂j�t� = �
−�k

+�k

�̂†�̂�kj + k�,t�dk�, �A1�

and then measure each quadrature similarly as in the single-
mode case. The numbers after the final Bragg pulse relate to
the quadrature before; for example,

N̂1�t3� − N̂0�t3� = �
−�k

+�k

�̂†�k0 + k�,t2��̂†�k1 + k�,t2�e−i�1

+ �̂†�k1 + k�,t2��̂�k0 + k�,t2�ei�1dk�


 �N̂0�t2��1/2X̂1
�1�t2� . �A2�

The above assumes that �k is within the range of values that
the Bragg pulse affects, given by the time-energy uncertainty
principle, ��k2 /2m�1 /H.

We can see that commutation relations are very similar to
those in Eq. �14�,

��X̂1
�,Ŷ1

��� = 2i�1 −
�N̂1�t2��

�N̂0�t2��
� . �A3�

It follows that the entanglement criteria in Eqs. �15�, �18�,
and �19� hold true, replacing �âj

†âj� with the total number in

the momentum range, �N̂j�.
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