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We demonstrate sub-Poissonian number differences in four-wave mixing of Bose-Einstein condensates

of metastable helium. The collision between two Bose-Einstein condensates produces a scattering halo

populated by pairs of atoms of opposing velocities, which we divide into several symmetric zones. We

show that the atom number difference for opposing zones has sub-Poissonian noise fluctuations, whereas

that of nonopposing zones is well described by shot noise. The atom pairs produced in a dual number state

are well adapted to sub–shot-noise interferometry and studies of Einstein-Podolsky-Rosen–type non-

locality tests.

DOI: 10.1103/PhysRevLett.105.190402 PACS numbers: 03.75.Nt, 34.50.Cx, 42.50.Dv

The creation of squeezed states of the electromagnetic
field has been a major preoccupation of quantum optics for
several decades [1]. Such states are not only inherently
fascinating, but they also have the potential to improve
sensitivity in interferometers [1], going beyond the ‘‘shot
noise’’ or standard quantum limit. In the field of atom
optics, workers are beginning to use the intrinsic nonline-
arities present in a matter wave field to produce nonclass-
ical states, especially squeezed states [2–7]. Indeed, an
atom interferometer using squeezed inputs was recently
demonstrated [8]. In our case, we produce dual number
states in four-wave mixing of Bose-Einstein condensates
(BECs). These states form the basis of a very different
proposal for atom interferometry beyond the standard
quantum limit [9–11]. Squeezing of atom samples may
prove even more important than squeezing of light because
the number of available atoms is often limited; therefore,
surpassing the standard quantum limit can be the only way
to increase the signal-to-noise ratio and improve perform-
ance. In interferometry proposals relying on dual number
states, the observable corresponding to the relative phase is
completely undetermined. Paradoxically, after passing
through a beam splitter, the phase difference is no longer
undetermined, but is peaked with a dispersion below the
shot noise [10,11]. It has been argued that such states can
be more robust to loss processes than maximally entangled
states [10]. The pairs we produce should also be entangled
in a sense analogous to [12]. A potentially interesting
feature of our situation is that the pairs have large spatial
separations (several cm here) and are thus well suited to
investigations of (nonlocal) EPR entanglement [13] and
Bell’s inequalities using atoms.

Correlated photon pairs can be generated using optical
processes such as four-wave mixing [14] or parametric
down-conversion [15]. The matter wave analogs of these

processes have recently been demonstrated [16,17]. The
spontaneous four-wave mixing process [17], which we use
here, simply corresponds to the collision of two Bose-
Einstein condensates during which binary collisions pro-
duce scattered pairs of atoms with correlated momenta.
Correlations, however, do not guarantee relative number
squeezing (see Ref. [18] for an example) nor entanglement.
The success of proposals such as those of Refs. [9–11] will
likely be determined by the degree of squeezing. Thus,
with a view towards using such correlated states in inter-
ferometry, it is important to verify that these processes do
indeed produce squeezing. In this Letter, we demonstrate
and quantify sub-Poissonian number differences produced
in this process. Although the observation is not strictly
sufficient to demonstrate squeezing in the sense of mea-
suring fluctuations in two conjugate variables, we will
often use the term squeezing below because the situation
is a close atomic analog to experiments such as Ref. [19] in
which relative intensity squeezing was observed in the
generation of twin light beams created by parametric
down-conversion.
We use metastable helium atoms which are detected by a

micro-channel plate detector with a delay line anode [20].
The detector allows three-dimensional reconstruction of
the momentum of each atom. Atoms in the 23S1, mx ¼ 1
state are evaporatively cooled in a vertically elongated
optical trap to produce a BEC with about 105 atoms and
no discernible thermal component [21]. The use of an
optical trap has resulted in substantially better shot to
shot reproducibility than its magnetic antecedent [17].
The atomic angular momentum, which is due entirely to
the electron spin, is defined relative to a 4 G magnetic
holding field in the x direction (orthogonal to the optical
trap axis). After cooling, the atomic spin is rotated away
from the axis of the holding field by �=2 using a 2 ms rf
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sweep [21]. The laser trap is then switched off and 1 �s
later the condensate is split by applying counterpropagat-
ing laser beams for 2:5 �s. These beams are blue detuned
from the 23P0 state by 600 MHz, inclined at a 7� angle to
the vertical axis and linearly polarized along the quantiza-
tion axis. About one-third of the atoms are diffracted into
each of two momentum classes traveling at �2vrec, where
vrec ¼ 9:2 cm=s is the recoil velocity. Most of the rest
remain at zero velocity. Binary collisions take place be-
tween atoms of all three velocity classes producing three
collision halos with center of mass velocities �vrec and
zero. Since the atomic spin is orthogonal to the local field,
50% of the atoms are in themx ¼ 0 state with respect to the
magnetic field axis [21], and these atoms fall to the detec-
tor, unperturbed by magnetic field gradients. The trajecto-
ries of atoms in the mx ¼ �1 states are perturbed by
residual field gradients, and we therefore apply an addi-
tional gradient that causes these atoms to miss the detector
entirely. The analysis is only focused on the collision halo
centered at þvrec [see Fig. 1(a)].

The collision halo centered at v ¼ 0 has a radius 2vrec

and is too large to be entirely captured by the detector
while the two halos centered at �vrec, with radii vrec, are
entirely detected. In addition to binary scattering events,
these two latter halos can be populated by spontaneous
photon scattering whenever an atom at v ¼ 0 scatters a
photon from one of the diffraction laser beams. The dif-
fraction efficiency depends on the product I1I2 of the two
laser intensities, while the spontaneous scattering into a
given halo depends on only one of these intensities. So to
reduce this effect we introduce an intensity imbalance in

the two laser beams such that the halo centered at þvrec is
populated by the weaker beam and contains fewer such
optically scattered atoms.
If squeezing is present, we expect a sub–shot-noise

variance in the number difference of any two diametrically
opposed volumes in the scattering halo [22]. For any other
pair of volumes, we expect a variance corresponding to
shot noise. We define the halo as a spherical shell of radius
vrec and thickness �0:15vrec. The results are only weakly
sensitive to this thickness, but as defined, it includes about
95% of the scattered atoms. We remove the areas on the
halo containing the scattered BECs. The excised regions
correspond to vertical velocities jvzj> 0:5vrec. We divide
the remainder of the halo in half at the equator and then
make p vertical cuts along the meridians, dividing the halo
intoNZ ¼ 4p equal zones, as shown in Fig. 1(b) for p ¼ 2.
We define a normalized number difference variance for
zones i and j:

Vi;j ¼
hðNi � NjÞ2i � hNi � Nji2

hNii þ hNji : (1)

The brackets h. . .i denote the average over the 3600 shots,
and Ni refers to the number of atoms detected in the ith
zone on a single shot. On average, we detect 150 atoms per
shot on the whole analyzed region. If the zones i and j are
uncorrelated, the normalized variance should be unity.
Figure 2 shows the measured variances of all possible pairs
of zones when the halo is cut into 16 zones. The eight pairs
of correlated zones indeed show sub-Poissonian number
differences (V < 1), and the 112 pairs of uncorrelated
zones do not.
Perfectly correlated pairs and perfect detection would

result in a zero variance. This, however, is almost unattain-
able in practice because of various imperfections, the most

FIG. 1 (color online). View of the halo after the collision of
two BECs and a subsequent ballistic expansion. (a) The experi-
mental data plotted in momentum space, with each dot corre-
sponding to a detected atom. Atoms on the collision halo are
black, while the colliding, pancake-shaped BECs at the top and
the bottom of the halo are orange/yellow. The collision axis vz

and the optical trap axis are both almost vertical. (b) Schematic
view of the analyzed part (jvzj< 0:5vrec) of the collision halo.
Here we use NZ ¼ 8 zones that are separated from each other for
better visualization. An example of two correlated zones is
shown (red arrows). The number difference between these two
zones shows sub–shot-noise fluctuations.

FIG. 2 (color online). Variance of all possible pairs of zones
for the halo cut into 16 zones and summing Ns ¼ 3600 shots.
The normalized variance is Vi;j and the error bars reflect its

standard deviation �Vi;j with �V2
i;j ¼ 1

Ns

hðNi�NjÞ4i�hðNi�NjÞ2i2
hNiþNji .

Circles correspond to the eight correlated zones and crosses to
the 112 uncorrelated ones. The two horizontal lines correspond
to the mean of each data set with a thickness given by twice the
standard deviation of the mean, considering each pair of zones as
independent.
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significant of which is the nonunit quantum efficiency � of
our detector. The effect of the efficiency alone leads to a
variance V ¼ 1� � of the correlated zones, and therefore
we can immediately deduce a lower limit of 10% on the
quantum efficiency, in agreement with estimates we have
made in the past [23].

A second, less severe but intrinsic imperfection comes
about because the momenta of the correlated atoms are not
exactly equal and opposite, but have a width determined by
the momentum spread within the initial condensates, as
confirmed by the finite width of the two-body correlation
function in momentum space [17]. Thus it is possible for
the two atoms of a correlated pair to end up in zones that
are not diametrically opposed. We can study this effect by
observing how the variance changes as we change the
number of zones NZ (Fig. 3). The smaller the zones, the
more likely that an atom will miss the zone diametrically
opposed to that of its partner.

Since we have measured the correlation function for
back-to-back momenta, we can model the trend seen in
Fig. 3. The back-to-back correlation function was mea-
sured to have rms widths of 0:17vrec in the radial (x and
y) directions, and 0:02vrec in the axial (z) direction.
Neglecting the much smaller axial correlation width, we
estimate the probability PðNZÞ that, given an atom hitting
one zone, its partner will hit the diametrically opposite one.
This probability decreases as NZ increases, and, taking
both quantum efficiency and the geometrical hit probabil-
ity into account, we expect V ¼ 1� �P. The function
VðNZÞ is plotted as the solid line in Fig. 3. The approximate
agreement of this simple model with the data leads us to
conclude that the above two loss mechanisms account very
well for the observed variance. We also get a slightly better
lower limit on the quantum efficiency, �> 12%.

The situation was also analyzed using a stochastic
Bogoliubov simulation as in Ref. [24]. The result for the
variance is shown as the dashed curve in Fig. 3. The curve
is plotted assuming a detector quantum efficiency of 12%
as in the simpler model. The simulation shows the ob-
served trend, but agrees less well with the data than the
simple model. The discrepancy arises because the simula-
tion predicts a narrower back-to-back correlation function
than was observed in the data, thus resulting in a slower
approach to unity for the variance. A finite temperature
effect may be at the origin of the difference since the
simulation assumes zero temperature. The simulation
also neglected mean field repulsion of different spin com-
ponents, so that such effects could also be responsible. The
calculation nevertheless confirms the idea that the lack of
perfect correlation in momentum determines most of the
variation seen in Fig. 3.
Other known imperfections include the possible con-

tamination of the sphere by atom pairs with one atom in
them ¼ 0 state and another in them ¼ 1 state. These pairs
contribute a single detected atom without a partner to the
halo. We have no independent experimental estimate of the
number of such collisions, but they could account for as
much as one-half of the observed atoms on the halo. Their
presence would mimic a loss in detector quantum effi-
ciency and thus raise our lower limit on �. Spontaneous
emission processes act in the same way, but independent
measurements indicate that such processes contribute only
about 1.5% of the detected atoms on the analyzed halo. As
discussed above, the halo centered at �vrec was more
affected by spontaneous emission, though squeezing is still
also observed, albeit to a lesser degree. While one might
hope to improve the quantum efficiency of the detector, or
suppress unwanted scattering events, the stochastic
Bogoliubov simulation with � ¼ 1 predicts a limiting
variance V � 0:1 for a small number of zones. Thus,
correcting for the quantum efficiency, the intrinsic squeez-
ing appears to be, at most, �10 dB.
Relative number squeezing is also related to the viola-

tion of a classical Cauchy-Schwarz inequality [25,26],

hNiNji �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hN2
i ihN2

j i
q

; (2)

relating the count rates in two correlated zones i and j. For
equal count rates in the two zones, relative number squeez-
ing is strictly equivalent to the violation of the inequality
(2). In our experiment the average count rates are not
exactly equal, in which case squeezing and Cauchy-
Schwarz violation are not equivalent [27]. Nevertheless,
we do observe a violation of the inequality (2). More
sophisticated inequalities can also be invoked and will be
studied in future work.
For purposes of interferometry, one would like to in-

crease count rates and the number of atoms per mode. This
could be achieved in a four-wave mixing experiment inside
an optical lattice to modify the dispersion relations of the

FIG. 3 (color online). Observed variance, as a function of the
number of zones into which we cut the halo. Red circles: average
over all correlated zones; blue squares: average over all uncorre-
lated zones. Error bars show the standard deviation of the mean
of the variances for a given NZ. The solid curve is the prediction
of the simple model discussed in the text. The dashed curve
results from the stochastic Bogoliubov simulation. Both models
assume a 12% quantum efficiency.
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atoms so as to populate a single pair of modes [28–30].
Such well-defined twin atom beams would permit the
realization of experiments such as the celebrated experi-
ment of Hong, Ou, andMandel [31], or the realization of an
interferometer in the spirit of [9–11]. Even more ambitious
would be the demonstration of entanglement of the pairs by
making Bell-type measurements of the well-separated neu-
tral atoms, in analogy with the measurement made in
Ref. [12] using photons.

This work was supported by the French ANR, the
IFRAF Institute, and the Euroquam Project CIGMA.
G. P. is supported by a European Union Marie Curie
IIF Fellowship. P. D. acknowledges the EU Contract
No. PERG06-GA-2009-256291. K. K. acknowledges sup-
port from the Australian Research Council.

*Present address: Institut Langevin, ESPCI Paris Tech,
CNRS, Paris France.

[1] H. A. Bachor and T. C. Ralph, A Guide to Experiments in
Quantum Optics (Wiley-VCH, Berlin, 2004), 2nd ed.

[2] C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N.
Price, and M.G. Raizen, Phys. Rev. Lett. 95, 260403
(2005).

[3] S. Whitlock, C. F. Ockeloen, and R. J. C. Spreeuw, Phys.
Rev. Lett. 104, 120402 (2010).

[4] A. Itah, H. Veksler, O. Lahav, A. Blumkin, C. Moreno, C.
Gordon, and J. Steinhauer, Phys. Rev. Lett. 104, 113001
(2010).
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