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We develop criteria sufficient to enable detection of macroscopic coherence where there are not just two
macroscopically distinct outcomes for a pointer measurement, but rather a spread of outcomes over a
macroscopic range. The criteria provide a means to distinguish a macroscopic quantum description from a
microscopic one based on mixtures of microscopic superpositions of pointer-measurement eigenstates.
The criteria are applied to Gaussian-squeezed and spin-entangled states.
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In his essay [1] of 1935, Schrödinger discussed the issue
of quantum superpositions of macroscopically distinct
states, and there is much interest in the possibility of
generating such superpositions [2]. While there has been
some progress [3,4], the experimental generation of these
superpositions has been hindered by a sensitivity to deco-
herence caused by a coupling of the system to its environ-
ment. Caldeira and Leggett [5] have shown that, where
losses are unavoidable, a superposition of two macroscopi-
cally different states  �,  � will rapidly decohere to a
mixture so that the off-diagonal density matrix element
h �j�j �i vanishes.

Yet there has been experimental confirmation [4,6,7] of
other quantum features such as squeezing and entangle-
ment in systems that might be described as macroscopic, in
that they contain large numbers of particles. The quantum
models [4,8,9] for these systems are more complex than
those considered by Schrödinger, involving superpositions
of the type  � �  0 �  � where only the  � and  �
provide macroscopically distinguishable outcomes for
some measurement, which we will call the pointer mea-
surement [10]. While these superpositions do not reflect
the simple case discussed by Schrödinger, they do possess
macroscopic coherence through the nonzero off-diagonal
matrix element h �j�j �i.

The extent however to which a quantum signature ob-
served on a macroscopic system is actually due to an
underlying macroscopic coherence needs careful analysis.
The macroscopic spread in the outcomes of the pointer
measurement could also be generated from mixtures of
microscopic superpositions—that is, superpositions of
pointer-measurement eigenstates that have only micro-
scopic differences in their predictions for the pointer mea-
surement. Decoherence effects are likely to degrade the
system to such mixtures, where macroscopic coherence is
lost.

In this Letter we address this issue by extending the
concept of a signature for macroscopic coherence to situ-
ations that do not give only two macroscopically distinct
outcomes. Specifically, we derive measurement criteria
sufficient to confirm an intrinsic macroscopic off-diagonal

matrix element of type h �j�j �i. Equivalently, the cri-
teria enable falsification of any quantum description in-
volving only microscopic superpositions of pointer-
measurement eigenstates.

The criteria can be applied to demonstrate such macro-
scopic coherence in realistic lossy systems based on
Gaussian-squeezed states [9] and spin-entangled states
[7,8]. These systems have a wide applicability. Continu-
ous variable squeezing and entanglement have been ex-
perimentally observed using Gaussian states [6], and spin
entanglement has been realized in multiparticle photonic
systems [7], and between atomic ensembles [4]. We also
discuss how the signatures allow for a demonstration of a
macroscopic version of a type of Einstein-Podolsky-Rosen
paradox [11].

We consider a macroscopic system A for which there is a
pointer-measurement O giving outcomes x spread over a
macroscopic range (Fig. 1). The domain for x is partitioned
into three distinct regimes I � �1, 0, and 1 corresponding
to x � �S=2, �S=2< x< S=2, and x � S=2, that have
probabilities P�, P0, P�, respectively. The binned out-
comes �1 and �1 are considered to be macroscopically
distinct when S is macroscopic. We define  �,  0, and  �
to be quantum states certain to produce results only in the
region �1, 0, and �1, respectively.
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FIG. 1 (color online). Probability distribution for a measure-
ment O which gives three distinct regions of outcome: 0, �1,
and �1.
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We define a generalized macroscopic superposition

 c� � � c0 0 � c� �; (1)

where c�, c0 are probability amplitudes but with c�, c� �

0, and where the minimum separation S between the out-
comes for  � and  � is macroscopic. These macroscopic
superpositions [4,6–9] possess a macroscopic coherence in
the sense of a nonzero matrix element h �j�j �i, where �
is the system density operator. As such, � cannot be con-
structed as a mixture of only microscopic superpositions
which superpose states with predictions for O only micro-
scopically distinct.

Most generally, the system is a mixed state

 � �
X
r

Prj rih rj; (2)

where the j ri are pure states. In this context, we define the
existence of the generalized macroscopic superposition (1)
to mean that there must exist, in any expansion of �, a
nonzero probability Pr for a state j ri of type (1).

Now in all cases where the macroscopic superposition
does not exist, so that (2) can be written without (1), the
j ri of (2) can only be superpositions of states with out-
comes x lying within two adjacent regions I, I � 1. The
density operator then assumes the following form.

 �mix � PL�L � PR�R: (3)

Here �R is a quantum density operator constrained only by
the condition that it predicts for O a result I � 1 or 0, so
that x >�S=2; similarly �L always predicts either I � �1
or 0, so that x < S=2. PL and PR are arbitrary probabilities
for these left and right sides of the outcome domain, so that
PL � PR � 1.

The mixtures (3), that can incorporate all superpositions
bar the macroscopic one (1), are constrained to satisfy
measurable minimum uncertainty relations (inequalities)
that form the key results, given as theorems, of this Letter.
Violation of any one of these uncertainty relations thus acts
as a signature of the existence of the macroscopic super-
position (1).

The origin of this signature can be understood by noting
that for �mix the Heisenberg uncertainty relation
�2x�2p � 1 for results x and p of complementary ob-
servables O and P applies to each of �R and �L, so that

 �2
Lx�2

Lp � 1; �2
Rx�2

Rp � 1 (4)

(�2
L=Rx and �2

L=Rp are the variances for �L=R). In addition,
each of these density operators, being restricted to a
smaller domain, has an upper limit to its variance for x
that does not apply to the macroscopic superposition (1)
which would describe the whole statistics. This imposes a
minimum fuzziness in p for each of �R and �L, and hence
for the mixture (3), which must satisfy [12]

 �2p � PL�2
Lp� PR�2

Rp: (5)

Superpositions (1) that have a reduced (or squeezed) vari-
ance in p, so that �2p! 0, are able to violate the con-
straint that is thus placed on �2p.

We derive a particular form for the limit of precision
specified for the mixture (3) by combining (4) and (5) and
using the Cauchy-Schwarz inequality.
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2
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To express (6) in terms of variances that are measurable,
we derive the constraints on �2

R=Lx. We partition the
probability distribution PR�x�, for a result x given �R,
according to its outcome domains I � 0, �1. Thus,

 PR�x� � PR0PR0�x� � PR�P��x�; (7)

where PR0�x� 	 PR�xjx < S=2� and P��x� 	 PR�xjx �
S=2� are the normalized distributions for a result x in
region I � 0 or I � �1, respectively. We use [12] to write
�2
Rx � PR0�2

R0x � PR��2
�x � PR0PR���� � �R0�

2,
where �� (�2

�x) and �R0 (�2
R0x) are the averages (vari-

ances) of P��x� and PR0�x�, respectively. Using PR0 �
P0=�P0 � P��, �2

R0x � S2=4, PR� � 1, and 0 �
�� ��R0 � �� � S=2, we obtain

 �2
Rx � �2

�x�
P0

P0 � P�

�S=2�2 � ��� � S=2�2� (8)

and, similarly, �2
Lx � �2

�x�
P0

P0�P�

�S=2�2 � ��� �

S=2�2�, where �� and �2
�x are the mean and variance of

P��x�, defined (Fig. 1) as the normalized + and � parts of
P�x� [P��x� � P�xjx � S=2� and P��x� � P�xjx �
�S=2�]. We substitute (8) in (6), and use P0 � P� � PR
and P0 � P� � PL to derive the following theorem which
is the main result of this Letter.

Theorem 1: The mixture (3) implies

 ��2
avex� P0���

2p � 1; (9)

where we define �2
avex � P��2

�x� P��2
�x and �	

f����S=2�2�����S=2�2�S=2g��2
�x��2

�x. Mea-
surements of the probability distributions for x and p are
all that is needed to determine all the terms in this inequal-
ity. Given those distributions, one can search for the maxi-
mum value of S for which there is a violation.

Theorem 2: Where we have a system comprised of
subsystems A and B, the mixture (3) implies

 ��2
avex� P0���

2
infp � 1: (10)

In this case the �L and �R of (3) are density operators for
the composite system. We define �2

infp � �2 ~p, where ~p �
p� gpB and g is a constant. The �infp can be interpreted
as the error in the inference of p based on a result pB of a
measurement on B, if we infer p to be gpB [13], and has
been measured in experiments concerned with realization
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of the EPR paradox [6]. To optimize violation of the
inequality, we would, given the joint measurement of p
and pB, choose g to minimize �2

infp. The ideal case of
�2

infp � 0 reflects a maximum correlation between mea-
surements p and pB. The proof of Theorem 2 follows
similarly to that of Theorem 1, except that we use the
uncertainty relation �2x�2 ~p � 1.

Theorem 3: Suppose the spin measurement Jz on a
system A gives outcome m with a probability distribution
P�m� that indicates I � �1, 0, and �1, respectively, for
m � S, S > m>�S, and m � �S. The assumption of
any mixture that excludes (1) will always imply

 �Jx�infJy �
1

2

X
I��1

P2
I jhJziIj=�PI � P0;I�: (11)

Here hJziI is the mean of PI�m�, the distribution condi-
tional onm satisfying either I � �1 or I � �1. The �infJy
is defined similarly to �infp, to be �~Jy, where ~Jy � Jy �
gJBy , and JBy is a measurement on a second system B. Jx and
Jy refer to spin measurements made on subsystem A. Here
P0;� (P0;�� is the probability that the resultm of Jz satisfies
0 � m< S (� S <m< 0), and the P� (P�) in this case is
the probability for m � S (m � �S). The proof [14] fol-
lows that of Theorem 1, but results are based on the spin
uncertainty relations.

Violation of inequalities (9) or (10) or (11) would pro-
vide confirmation of a superposition (1) with separations
between  � and  � of at least S. Such confirma-
tion (for macroscopic S) holds interest in relation to
Schrödinger’s 1935 essay, in that it is demonstrated that
microscopic superpositions alone, or mixtures of them,
cannot explain the observed statistics. An appropriate ex-
tension of Schrödinger’s description of the cat is given in
footnote [15].

The inequalities are not violated by all macroscopic
superpositions. Nevertheless we present two important
practical examples of generalized macroscopic superposi-
tions (1) that predict violations. First, we consider the
entangled spin superposition state [8,16]

 j i �
1��������������

2j� 1
p

Xj
m��j

jj; miAjj;miB; (12)

where j is large. Such states for lower values of j have been
realized in systems based on parametric amplification [7].
Here jj;miA are the J2, Jz spin eigenstates for a subsystem
A (jj;miB are spin eigenstates of subsystem B). Denoting
jj; miAjj;miB � jm;mi, the state (12) is a superposition of
states j � j;�ji; . . . ; jj; ji having a macroscopic range of
2j for outcomes of Jz. It thus possesses a nonzero coher-
ence h�j;�jj�jj; ji. The experimental criterion (11) pro-
vides a means to distinguish the macroscopic quantum
description (12) from a microscopic one based only on
superpositions, like j ri � �jj; ji � jj� 1; j� 1i�=

���
2
p

,
which have h�j;�jj�jj; ji � 0. Calculations show maxi-

mum correlation between Jy and JBy , so �infJy � 0. State
(12) predicts violations of (11) for all S up to j, to confirm a
superposition of type (1).

Second, we consider single- and two-mode momentum-
squeezed states S�r�j0i � er�a

2�ay2�j0i and er�ab�a
yby�j0i

[9]. Here a, b are boson operators for fields A, B respec-
tively; j0i is the vacuum state. We define quadrature phase
amplitude measurements X � a� ay, P � �a� ay�=i,
XB � b� by, PB � �b� by�=i; outcomes of X and P
(�X�P � 1) are denoted x and p, respectively. These
states for large r are generalized macroscopic superposi-
tions (1) of the continuous set of eigenstates jxi of the
pointer-measurement X. The wave function is

  �x� � exp
�x2=4�2x�=�2��2x�1=4; (13)

where �2x � e2r and �2x � cosh�2r�, respectively, for the
single- and two-mode states. The probability distribution
of p in the single-mode case is Gaussian with variance
�2p � 1=�2x, indicating a ‘‘squeezing’’ of noise below
the quantum limit of 1. The two-mode state has squeezing
in the momenta sum and �2

infp � 1=�2x is obtained for the
choice g � hPPBi=hPBPBi which minimizes �2

infp [13].
The Gaussian distribution P�x� � exp
�x2=2�2x�=
�
�������
2�
p

�x� for X implies a macroscopic range of values x
in the highly squeezed limit.

The squeezed state S�r�j0iwith r large is a superposition
possessing nonzero matrix elements hxj�jx0i, where x� x0

is macroscopic. But whether or not such generalized mac-
roscopic coherence is preserved in a real experiment given
the sensitivity to loss is an open question. The inequalities
(9) and (10) could be used to confirm the preservation of
such macroscopic coherence. Violation of (9) and (10) is
predicted (Fig. 2) for the ideal squeezed states to confirm
superpositions (1) with S � x0 � x up to 0.5 of the standard
deviation �x of the Gaussian probability distribution P�x�.
The observation of large squeezing (�2p � 1=�2x! 0)
for these minimum uncertainty squeezed states where
�x�p � 1 will confirm a generalized macroscopic coher-
ence (1) with S! �x=2.

However, while significant squeezing and Gaussian
probability distributions have been measured [6,17], the
states generated experimentally are not the ideal minimum
uncertainty squeezed states defined by S�r�j0i. Generally,
we have �x�p > 1 (or �x�infp > 1). For such Gaussian-
squeezed states, the maximum S giving violation of (9)
reduces from 0:5�x to 0 as �x�p (or �x�infp) increases
to �1:6 (Fig. 2). Tests of at least mesoscopic superposi-
tions could be feasible though for well-squeezed systems
that maintain a good approximation to the minimum un-
certainty state.

To summarize, we have presented criteria for experi-
mental confirmation of generalized macroscopic quantum
superpositions. This is achieved by deriving inequalities
that are experimentally satisfied if the system is describ-
able as a mixture of underlying quantum states that exclude
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these macroscopic superpositions. It is crucial to the deri-
vation that these underlying states satisfy the Heisenberg
uncertainty relations. Violations of the inequalities would
therefore not rule out all hidden variable descriptions [18]
compatible with a ‘‘macroscopic reality’’, such as those
considered by Leggett and Garg [2] which allow for mix-
tures of hidden variable states. In this sense, the criteria
cannot falsify all types of macroscopic realistic theories.

This point is nicely illustrated for the Gaussian-squeezed
states which satisfy the criteria for generalized macro-
scopic superpositions. The quantum Wigner function
W�x; p� for S�r�j0i is positive, and it has been shown
[18] that a hidden variable theory consistent with macro-
scopic reality reproduces the quantum predictions for X
and P. In this hidden variable theory the system is defined
to be in, with probability W�x; p�, a hidden variable state
where variables x and p are defined simultaneously to be
the outcomes of measurements X and P, respectively,
should they be performed. There is no conflict with the
system being in a quantum superposition because such a
hidden variable state has a predetermined position and
momentum specified more precisely than can be allowed
by the uncertainty principle.

We note an analogy with the Einstein-Podolsky-Rosen
paradox where it is shown that a consistency of the quan-
tum predictions with a type of reality (in our case ‘‘macro-
scopic reality’’) is achieved if one invokes the use of
hidden variables [11].

We thank P. Drummond, H. Bachor, N. Korolkova, C.
Marquard, G. Leuchs, C. Fabre, A. Leggett, A. Caldeira,
P. K. Lam, and the Australian Research Council Center of
Excellence program.

[1] E. Schrödinger, Naturwissenschaften 23, 807 (1935).
[2] A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985);

A. J. Leggett, Contemp. Phys. 25, 583 (1984).

[3] B. Brezger et al., Phys. Rev. Lett. 88, 100404 (2002);
M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996); J. R.
Friedman et al., Nature (London) 406, 43 (2000);
J. Raimond et al., Rev. Mod. Phys. 73, 565 (2001);
C. Munro et al., Science 272, 1131 (1996).

[4] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature
(London) 413, 400 (2001); B. Julsgaard, et al., Nature
(London) 432, 482 (2004).

[5] A. O. Caldeira and A. J. Leggett, Phys. Rev. A 31, 1059
(1985); W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).

[6] Z. Y. Ou et al., Phys. Rev. Lett. 68, 3663 (1992); Y. Zhang
et al., Phys. Rev. A 62, 023813 (2000); C. Silberhorn
et al., Phys. Rev. Lett. 86, 4267 (2001); W. Bowen et al.,
Phys. Rev. Lett. 90, 043601 (2003); E. Giacobino and
C. Fabre, Appl. Phys. B 55, 189 (1992); C. Schori et al.,
Phys. Rev. A 66, 033802 (2002).

[7] A. Lamas-Linares, J. Howell, and D. Bouwmeester,
Nature (London) 412, 887 (2001).

[8] N. D. Mermin, Phys. Rev. D 22, 356 (1980); P. D.
Drummond, Phys. Rev. Lett. 50, 1407 (1983).

[9] H. P. Yuen, Phys. Rev. A 13, 2226 (1976); C. M. Caves and
B. Schumaker, Phys. Rev. A 31, 3068 (1985).

[10] W. H. Zurek, Phys. Rev. D 24, 1516 (1981).
[11] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935). EPR argued that for EPR states a consistency of
quantum mechanics with ‘‘local realism’’ would require
hidden variables.

[12] Where P�x� �
PN
n�1 PnPn�x�, �2x �

PN
n�1 Pn�2

nx�
1
2

P
n�n0PnPn0 �hxin � hxin0 �

2.
[13] M. D. Reid, Phys. Rev. A 40, 913 (1989).
[14] The mixture � � PL�L � PC�C � PR�R, where �R pre-

dicts m> 0, �L predicts m< 0, and �c predicts �S <
m< S, will account for all superpositions of states jmi
separated less than S. For any �, �Jx�infJy � jhJzij=2.
Now for the mixture (apply [12] to both �Jx and �infJy
and use Cauchy-Schwarz) �Jx�infJy � 
PRjhJziRj �
PLjhJziLj�=2, where hJziR=L is calculated given �R=L.
We can expand PR�m� � hmj�Rjmi as PR�m� �
PR0PR0�m� � PR�P��m�, where PR0�m� � PR�mjm<
S�=PR0 and both PR0�m�, P��m� are normalized, to
give hJziR � PR0hJziR0 � PR�hJzi� � PR�hJzi�. Using
bounds PR� � P�=�P0� � P�� and PR � P�, the result
PRjhJziRj � P2

�hJzi�=�P0� � P�� follows. A similar pro-
cedure applied to PLjhJziLj gives the result.

[15] Schrödinger’s premise is that the ‘‘cat’’ is a mixture of
‘‘dead’’ and ‘‘alive’’ states (so the cat cannot be both
‘‘dead and alive’’). Where there is an outcome 0
(‘‘coma’’) between dead and alive, we might permit a
microscopic superposition (so the cat is ‘‘dead and coma’’
as allowed by �L), but we expect the cat to be either dead
and coma (�R) or ‘‘alive and coma’’ (�R). Superposition
(1) defies this interpretation.

[16] The criteria also have relevance to spin-squeezed systems.
M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).

[17] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani,
Phys. Rev. Lett. 70, 1244 (1993).

[18] J. S. Bell, Speakable and Unspeakable in Quantum
Mechanics (Cambridge University Press, Cambridge,
England, 1988).

5 10
0

5

10
S

∆x

1 1.6 2
0

0.5

1

∆x∆p

S
max

/∆x

Inequality violation

FIG. 2. Violation of (9) [and (10)] for single- (and two-mode)
squeezed minimum uncertainty states. Inset shows behavior for
general Gaussian-squeezed states. The maximum S=�x giving
violation of (9) [and (10)] is plotted versus �x�p (replace �p
with �infp for the two-mode case).
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