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1. Introduction

The idea of a macroscopic state demonstrating quantummechan-
ical behaviour was introduced by Schrödinger in 1935 [1]. His
famous thought experiment considered how a macroscopic entity
(in this case a domestic cat) could evolve into a superposition of two
distinct physical states (alive and dead) when entangled with a
microscopic system that obeyed the laws of quantum mechanics.
This possibility of a macroscopic system being simultaneously in two
distinct physical states was initially considered to be a flaw in
quantum mechanical theory [1]. However, experiments have shown
the predictions of quantum mechanics to be correct as super-
positions of macroscopically distinct physical states have been
produced in a variety of systems. These are often referred to as
‘Schrödinger cat states’. For example, a group of six beryllium ions
has been put into a superposition of two hyperfine states [2], and
persistent currents (of a few μA) of opposing circulation in SQUIDs
have been detected [3].

Bose–Einstein condensates (BECs) are attractive candidates for
generating macroscopic superpositions due to the large number of
atoms that share a single quantum state. This may provide a useful
system in which to further test the validity or boundaries of the
assumption of macroscopic realism. A macroscopic superposition
has yet to be demonstrated in a Bose–Einstein condensate, although
there exist numerous proposals for generating either a superposition
of relative phase or number states [4–9]. In the following we
consider a particular kind of superposition state of a single
component BEC in a double well, that is, a superposition of the
two states where the entire condensate is localised in one of the
wells (sometimes referred to as a ‘NOON’ state). If realisable, this
kind of superposition promises to be useful in quantum information
applications and precision interferometry, due to the measurement
uncertainty scaling inversely with the number of particles (the so-
called Heisenberg limit).

A major difficulty in realising macroscopic quantum superposi-
tions is decoherence, which occurs when interactions with the
surrounding environment cause the pure superposition state to
decay into a statistical mixture. However, this paper is not concerned
with avoiding decoherence in the realisation of macroscopic super-
positions. Instead, we concentrate on measurements aimed at
distinguishing a coherent superposition from a statistical mixture.
We find even in a decoherence-free environment, demonstrating a
superposition presents several practical challenges. Once realised,
measurements of the purity of the state could be useful in studying,
for example, rates of decoherence.

This paper begins with an introduction of the two-mode
description of a double-well condensate in Section 2. In Section 3
we consider measurements aimed at distinguishing between a
coherent superposition and a statistical mixture. We focus on
quadrature-based measurements, analogous to those used in
quantum optics, that can be realized with a Ramsey-type interfer-
ence experiment. The coherence of the NOON state is evident in
parity measurements of the number distribution after the two
modes are interfered — a difficult measurement with standard atom
counting techniques. We analyse the effects of atomic interactions
and discuss atom loss during the interference procedure. Finally, we
show in Section 4 that a mesoscopic superposition of 20 atoms could
be generated in a reasonable time frame if a Feshbach resonance can
be used to tune the atomic interactions, before concluding in
Section 5.
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2. Theoretical models

2.1. Two-mode approximation

The Hamiltonian for a condensate in an external trapping
potential, Vext ( r

→), is

Ĥ = ∫d→r ℏ2

2m
∇ψ̂

†⋅∇ψ̂ + Vextð→rÞ +
ℏU0

2
ψ̂
†
ψ̂
†
ψ̂ψ̂

" #
; ð1Þ

where ψ̂ is the field operator for the condensate, and the non-linear
interaction parameter is U0=4πaℏ/m, (a is the s-wave scattering
length describing two-body collisions within the condensate,m is the
atomic mass). We consider the case where the external potential
provides a double well confinement for the condensate. Double well
potentials can be generated by an optical lattice with an additional
harmonic confinement to reduce the number of occupied lattice sites
to two [10]. They can also be realised on chips, where suitably
arranged current carrying wires create a magnetic confinement for
the condensate atoms [11].

When a double well potential is considered, the above Hamilto-
nian can be simplified bymaking use of the two-mode approximation.
This means we consider each atom to be in some linear superposition
of being in the left well and being in the right well.

We consider the zero temperature case, where all atoms in the
system are condensed. If the ground state energies of the condensate
in the two single (and separate) wells are sufficiently separated from
the energies of the condensate in all other excited single particle
states, transitions to or from the two modes of interest and these
higher lying states can be neglected. This is required for the two-mode
description to be valid. In the two-mode approximation, the field
operator is expanded as

ψ̂ð→r Þ≈ϕLð→r ÞâL + ϕRð→r ÞâR; ð2Þ

where âL and âR are discrete Bose annihilation operators for the left
and right well respectively, and ϕL/R are the ground state spatial wave
functions of the condensate in the left and right wells.

Substituting this into Eq. (1), we find an effective Hamiltonian

Ĥeff = ℏEL â
†
L âL + ℏER â

†
R âR +

ℏUL

2
â†L â

†
L âL âL

+
ℏUR

2
â†R â

†
R âR âR−ℏκ â†L âR + â†R âL

� �
;

ð3Þ

where we have neglected the spatial overlap of the left and right well
densities. The single well bound state energies, EL/R, are

EL =R =
1
ℏ
∫d→rϕ4

L = Rð→r Þ
−ℏ2

2m
∇2 + Vextð→r Þ

 !
ϕL=Rð→r Þ: ð4Þ

κ, the tunnel coupling, is

κ =
−1
ℏ

∫d→r ϕ4
L = Rð→r Þ

−ℏ2

2m
∇2 + Vextð→r Þ

 !
ϕR=Lð→r Þ; ð5Þ

and the effective non-linear interaction terms are

UL=R = U0∫d→r jϕL=Rð→r Þ j4: ð6Þ

For the remainder of this paper we assume a symmetric potential,
where EL=ER=0 and UL=UR≡U.
2.2. Fixed number representation

By ignoring all possibility of atom loss and decoherence, we can
efficiently represent theN-bodywave function using the basis |N−n,n〉,
representing states with N-n atoms in the left well, and n atoms in the
right well. Anywave function can bewritten as a superposition of these
number states, i.e.

jψðtÞ〉 = ∑
N

n=0
cnðtÞ jN−n;n〉; ð7Þ

where∑n|cn(t)|2=1. In this representation, the expectation value of
the number of atoms in the left well is

〈NL〉 = ∑
n

N−nð Þ jcnðtÞ j2; ð8Þ

and the variance in the number difference is

V = ∑
n

ðN−2nÞ2 jcn j2− ∑
n

ðN−2nÞ jcn j2
� �2

: ð9Þ

For any initial state, |ψ〉, these coefficients have a time-dependence
given by

cnðtÞ = 〈N−n;n jψðtÞ〉 = 〈N−n;n je−iHt =ℏ jψð0Þ〉: ð10Þ

Taking the derivative with respect to time, we find [12]

dcnðtÞ
dt

=
−i
ℏ

jN−n;n jH jψðtÞ〉: ð11Þ

Inserting the Hamiltonian, Eq. (1), into this expression gives the
equations of motion for the number state coefficients

iℏ
dcnðtÞ
dt

= ℏUL N−nð Þ2− N−nð Þ
h i

cnðtÞ + ℏUR n2−n
h i

cnðtÞ

−ℏκ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1ð Þ N−nð Þ

p
cn−1ðtÞ:

ð12Þ

The ground states and dynamics of a condensate in the double well
can then be found by solving these equations numerically.

Fig. 1 shows the ground state probability distributions for the atom
number in the left well (found using imaginary time propagation
[13]) for three different regimes - negligible, intermediate, and
strongly attractive interactions. The variance in the number difference
for these are 12, 293, and 396 respectively (a perfect NOON state
would have a variance of 400).

When non-linear interactions are weak compared to the tunnel-
ling, the ground state number distribution is essentially binomial
(Fig. 1 (a)). For large N this can be approximated as a Poissonian
distribution and the ground state would be a coherent state (which
has equal mean and variance of atom number in each well). For
intermediate attractive interactions, ground states exist consisting of
two well separated peaks in the number state distribution. These can
be considered as superpositions of distinct physical states, and we
refer to them as ‘mesoscopic’ superpositions [14].

The ground state in the limit of infinitely strong attractive
interactions is a macroscopic superposition of the entire condensate
localized in each well. This can be understood by realizing that it is
energetically preferable for the condensate to be localized in one well,
but that given the symmetry of the double well potential these two
localized states are degenerate. Thus in the ground state it is equally
likely that the condensate will be found entirely in one well as in the
other (hence the two peaks in the probability distribution). This state
is the macroscopic superposition that we are interested in. Fig. 1 (c)
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shows that with a ratio of non-linear interaction strength to
tunnelling rate U/κ=−0.5, the ground state of the double well
condensate is close to, but not quite, an ideal superposition.We return
to the problem of creating such a state in Section 4.

3. Verifying a superposition state

We now consider the problem of demonstrating that a state is a
macroscopic quantum superposition, as opposed to a statistical
mixture. Methods that have been successfully used in other systems
are generally not applicable to the specific double-well BEC
arrangement considered here. For example, state-dependent fluores-
cence has been used to verify the superposition of ions in two
different spin states [2], however as all atoms in the double-well
system are identical, such a state-selective imaging procedure is not
possible. In the SQUID system [3], the superposition of supercurrent
states with zero flux quanta, and 1 flux quanta was created. The
Fig. 1. Ground state probability distributions for weak, intermediate, and strong
attractive interactions. NL is the atom number in the left well. Interaction strengths are
(a) U/κ=0, (b) −0.1, and (c) −0.5.
superposition was then confirmed by measuring the energy levels
since these reveal an anti-crossing, where the energy level of the
superposition is lower than that of the individual states (or that of a
mixture). However, in considering superpositions of number states in
the double well, we have an N-level system rather than a 2-level
SQUID system so no easy calculation of anti-crossings is possible.
Developing a suitable measurement scheme will allow tests of
macroscopic realism, may be an important tool for studying
decoherence, and is a prerequisite to building a practical atom
interferometer using NOON states.

The obvious measurement to make on the double well system is
the atom number in each well. For the NOON state, we have equal
probability of finding N atoms in the left well and none in the right, or
vice-versa. However, such a measurement cannot distinguish the
coherent NOON state

jϕ〉 = jN;0〉 + eiϕ j0;N〉
� �

=
ffiffiffi
2

p
ð13Þ

from the statistical mixture with density operator

ρ̂ = jN;0〉〈N;0 j + j0;N〉〈0;N jð Þ= 2: ð14Þ

There exist complimentary measurements that distinguish be-
tween a coherent superposition and a statistical mixture. One method
of finding such a measurement is motivated by the expansion of the
density operator of the statistical mixture as the average of all
coherent phases ϕ,

ρ̂ =
1
4π

∫ jN;0〉 + eiϕ j0;N〉
� �

〈N;0 j + e−iϕ
〈0;N j

� �
dϕ: ð15Þ

We see that the determination of ϕ constitutes proof of coherence—
as ϕ is undefined for the mixed state.

Consider an arbitrary operator x̂; for the mixed state in Eq. (14),
the expectation value of x̂ is the average of the two pure, separable
states,

〈 x̂〉mixed =
1
2

〈N;0 j x̂ jN;0〉 + 〈0;N j x̂ j0;N〉ð Þ: ð16Þ

On the other hand, for the pure NOON state |ϕ〉, the expectation
value is

〈x̂〉pure = 〈 x̂〉mixed +
1
2

eiϕ〈N;0 j x̂ j0;N〉 + e−iϕ
〈0;N j x̂ jN;0〉

� �
: ð17Þ

The additional interference terms clearly display a dependence on
the value of ϕ. Therefore, an appropriate observable x ̂ has non-
zero 〈0 ,N |x ̂| N, 0〉. An example of an operator that achieves this is
âL
†NâR

N+âR
†NâL

N, which coherently transfers N atoms from one well
to the other or vice-versa. Unfortunately, there is no clear way of
directly measuring this observable in an experimental setting.

In [15] it was noted that it is only the Nth order correlation
function (and not lower orders) that can distinguish between a
coherent superposition and a mixture of Fock states. While this
correlation function may not be directly experimentally accessible,
any measurable quantity proportional to the Nth order correlation
function can then be used to make the distinction (e.g. the centre of
mass variable [15]). Below we introduce a quadrature-based
measurement that is suitable for this purpose.

3.1. Quadrature phase measurements

In this paper, we define the quadrature operator as

X̂θ = â†L âRe
−iθ + â†R âLe

iθ
: ð18Þ
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The measurement of this observable can be achieved using simple
linear interference and number measurements. Such a procedure is
analogous to quantum optics experiments using a 50–50 beam
splitter to interfere two photonic modes before intensity measure-
ment, and allows access to phase information. Unlike common
quantum optics experiments, both modes contain a similar number
of atoms and neithermode can be interpreted as a local oscillator. This
explains the difference between the above definition and the standard
quadrature arising from homodyne measurement, proportional to
âLe

iθ+âL
†e-iθ. Both definitions have been employed in theoretical

discussions of BECs in the past [16–18].
To realize these quadrature measurements, we propose a Ramsey-

type experiment (see Ref. [19] for a description of the Ramsey
technique). Similar experiments have also been proposed for double
well condensates (for example, to detect weak forces [20]). In Ref [21]
the procedure is outlined as a means of realizing an atomic Mach-
Zender interferometer. Our work differs from this as we discuss
measurements and expectation values that will allow the confirma-
tion of the presence of a superposition, and the possible difficulties
that may arise in making these measurements.

The first step, after creating the superposition state, is to set the
tunnelling rate between the wells κ and interaction strength U to zero
and let the system evolve for some time, δt, during which an energy
imbalance exists between the wells (i.e. EL−ER=δE is non-zero). The
quadrature angle is set by δEδt=θ. The second stage is to restore the
symmetry of thewells (i.e. set δE to zero), and switch on tunnelling for a
time of π/4κ (this is analogous to a beam splitting operation). After this
we make a measurement of the atom number in each well. The
difference in atomnumber is exactly proportional to X̂θ.We simulate the
entire procedure using the equations of motion of the number state
coefficients (Eq. (12)). It is then straightforward tonumerically calculate
the distribution of measurement outcomes, as given by |cn|2, and thus
any moment (e.g. mean, variance, etc) of the quadrature Xθ.

The next step is to extract information about the off-diagonal
terms of the densitymatrix bymeasuring the interference terms in Eq.
(17). It is straightforward to see that 〈N, 0 |Xθ̂| 0, N〉=0 forN≥2. In the
special case of N=1, interference is observed by a sinusoidal
dependence on the value of θ−ϕ, as seen in Fig. 2 (a) (where ϕ is
the phase angle used in Eq. (13)). In Fig. 2 (b) we plot the same
quantity for N=2, and it is unsurprising that interference is lacking
for this case.

However, higher moments of the quadrature measurements do
contain information that can distinguish a pure NOON state from a
classical mixture. For N atoms, the Nth moment 〈X ̂θN〉 contains exactly
one subterm equal to âL

†NâR
N+âR

†NâL
N, while all lower moments lack

such a term. In Fig. 2 (c), we see interference fringes in the quadrature
variance for the case N=2. The frequency of these fringes is doubled
compared to the case N=1.

In general the N atom NOON state will display fringes with
frequencyN times greater than the first-order coherencemeasured by
〈X̂θ〉 allows. Specifically, the Nth quadrature moment contains terms
proportional to cos(N(θ−ϕ)). It is this scaling that makes NOON
states of interest for precision interferometry — a NOON state with
known ϕ could potentially be used to measure δEδt with accuracy
proportional to N−1 (the so-called Heisenberg limit), compared with
the N−1/2 scaling typical when using ‘classical’ interferometric
techniques. Such scaling has been observed in single-photon experi-
ments [22], but to-date neither with atoms nor NOON states.

The quadrature moments are intrinsically linked with the
number distribution |cn|2 after the Ramsey interference procedure,
and so it follows that the off-diagonal terms in Eq. (17) are directly
visible in this distribution. We have plotted the output in Fig. 3 (a)
for θ=π/2, and we observe a pattern where each second |cn|2 is zero.
This interference pattern is sensitive to the accumulated relative
phase, so that for certain values of θ−ϕ the interference pattern is
absent and the number state coefficients are given by a binomial
distribution. On the other hand, if the initial state were a statistical
mixture a binomial distribution would be expected for all values of
the relative phase.

The interference can be seen most clearly in the parity, defined as

P = ∑
n

ð−1Þnjcnj2; ð19Þ

which is the difference in probability that an even or odd number of
atoms is measured in one of the modes at the end of the Ramsey
experiment. The expectation value of the parity is an oscillatory
function of the relative phase between the wells, again with a
frequency proportional to the total atom number N, as seen in Fig. 4
(a,b) . Measurements of the parity were considered in detail in Ref.
[23], where the authors discuss methods for obtaining Heisenberg-
limited phase resolution.

3.2. Measurement difficulties

There are additional complications that may make this procedure
difficult, even for moderate values of N. We now consider the effect of
finite non-linear interactions during the Ramsey interference proce-
dure. With an ideal superposition as the initial state, the non-linear
interactions degrade the visibility of the interference pattern in the cn
coefficients, as shown in Fig. 3 (b,c). The oscillations in the expectation
value of parity are also reduced by the presence of non-linear
interactions (see Fig. 4). For a given value of U, the visibility of the
parity oscillations decreases as the number of atoms in the
superposition increase. However, we note that the phase of the
interference fringes is unaffected by the non-linearity, which is
important for possible interferometric applications.

Finally, when the initial state is an ideal NOON state, we observed
that including non-linear interactions can result in small fringes in the
meanquadraturevalueeven forN≥2. Themaximumamplitudeof these
induced fringes is much less than the total atom number. These fringes
aremost noticeable for small atomnumbers, as they have amplitudes of
only one or two atoms regardless of the total atom number.

It is apparent that the loss of a single atom would completely
destroy the coherence of the NOON state. Therefore, the required
counting efficiency η is such that ηN∼1, which would be challenging
for large values of N. An imperfect superposition is more robust but
coherence will still be lost gradually (due to 3-body loss and
interactions with trapping lasers). The possible coherence times of
such states have been considered in Ref [24].

4. Generating a superposition state

There have been a number of proposals for generating super-
positions of various kinds involving Bose–Einstein condensates. Many
of these consider superpositions of two-component condensates. In this
case, methods involving adiabatic manipulation [4], and dynamical
evolution (making use of the interplay between nonlinear interactions
and tunnelling, with a specific initial relative phase) [5–7], have been
suggested to generate superpositions. Superpositions of phase states
have also been considered [8,9].

We are interested in superpositions of number states in a single
component condensate in a double well potential. One proposal for
generating superpositions of this kind involves using a Feshbach
resonance to produce a sudden change in the interaction strength,
initiating a dynamical evolution where a macroscopic superposition
emerges periodically [24].

Other techniques such asmanipulating the inter-well barrier could
also be used to generate a superposition. However, this would require
a condensate of attractively interacting atoms. Since experimental
difficulties exist with condensing attractive bosonic atoms (especially
large numbers, which suffer from collapse instability), we instead



Fig. 2. (a) Interference fringes of 〈X ̂θ〉 as a function of the accumulated phase shift for an
ideal superposition containing 1 atom. (b) The same quantity for an ideal superposition
containing 2 atoms displays no interference fringes. (c) For the two atom superposition
state, the variance (V(Xθ̂)= 〈Xθ̂

2〉− 〈Xθ̂〉
2) is sensitive to the phase θ accumulated during

the Ramsey simulation.
Fig. 3. Atom number distribution |cn|2 after the Ramsey procedure is simulated, with
accumulated phase π/2. Initial state has 20 atoms and ϕ=0. Non-linear strength U/κ is
(a) zero, (b) −0.01, and (c) −0.025.
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examine the possibility of generating a superposition from an initially
repulsive condensate by altering the s-wave scattering length.

In Ref. [24], it was claimed that an adiabatic method was not
feasible due to the infinitely long evolution time required because of
the near degeneracy of the ground and first excited states in the
strongly attractive regime. We find that with realistic parameters a
superposition of two well-separated wave packets can be generated
on a time scale of seconds using a smooth change in interaction
strength. Although this evolution is not necessarily adiabatic it can
generate a ‘mesoscopic’ superposition state.

To estimate some suitable parameters for our effective Hamiltonian
we have considered a small condensate of Rubidium atoms. Around a
magnetic field strength of 155 G there is a Feshbach resonance for 85Rb
atoms, allowing the s-wave scattering length to be tuned from at least
2000 a0 to−200a0 (a0 being the Bohr radius). Assuming a cigar-shaped
condensate confined by trapping frequencies of 1 kHz in both tight
directions and 100Hz in the longitudinal direction, andusing aGaussian
approximation for the condensate wave function, we estimate that the
interaction parameter, U, given by Eq. (6) could range from approxi-
mately 30 s−1 to −3 s−1. We look at simulations which are a few
seconds in length (note that condensate lifetimesof greater than10s are
experimentally achievable [25]).

Fig. 5 shows the wave function as the interaction strength is
changed linearly from 1 s−1 to −3 s−1 over a timespan of 0.5 and 4s.
The initial state is the ground state at U=1 s−1, and κ=10 s−1.
Clearly the slower change in interaction strength results, as per the
adiabatic theorem, in a final state that is closer to the ideal
macroscopic superposition. This can be seen in Fig. 6, which plots
the fidelity of the evolving wave function, i.e. the overlap, |〈ϕNOON|ϕ(t)〉|2,
of the ideal superposition state with the evolving wave function. The
variance in the number difference between the wells of the final states in
Fig. 5 are approximately 283 and 371, compared with 400 for an ideal
superposition state containing 20 atoms. Once the interaction strength



Fig. 4. Expectation value of parity after Ramsey simulation using ideal superposition
state containing (a) 10, and (b) 20 atoms. Non-linear interactions reduce the amplitude
of the parity oscillations. (Note that in (a) the U/κ=−0.01 line lies under the U/κ=0
line.)

Fig. 5. Evolution of wave function into a mesoscopic superposition caused by a linear
decrease in interaction strength from U=1 s−1 to −3 s−1 in (a) 0.5, and (b) 4s. Initial
wave function is the ground state at U=1 s−1 and κ=10 s−1.
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is held constant at −3 s−1 the probability distributions |cn|2 do not
change significantly with time.

The parameters could be optimized further to obtain better
superposition states. In general, better states are obtained when the
final ratio U/κ is large and negative. On the other hand, the time scale
for the evolution to be adiabatic is inversely proportional to both U
and κ. The requirement of physically separated wells implies a
relatively small value for κ, while the timespan of the experiment is
limited by atomic loss.We have not attempted to optimize the process
of generating a superposition state within these bounds, but rather
concentrate on measurements aimed at distinguishing even an
imperfect superposition from a statistical mixture.

4.1. Interference measurements of non-ideal superposition states

We now perform the Ramsey procedure followed by parity
measurements in order to detect coherence in the non-ideal
superposition states generated above. Figs. 7 and 8 show typical
fringes in the number difference and parity for an initial non-ideal
superposition state of a 20 atom condensate. In the parity, we see clear
high frequency components in the interference fringes that corre-
spond to the off-diagonal coherence between states of large atom
number difference. However, as the state is not perfect, other
frequency components are present, resulting in beating and a low
frequency envelope.

In the Appendix, we formalise the relationship between the parity
frequency components and coherence and show that

P = ∑
n;m

Bn;me
imϕ

〈N−n;n j ρ̂ jN−n−m;n + m〉 + H:c: ð20Þ
for some real numbers Bn,m. The component with angular frequencym
corresponds to coherence between elements separated bym atoms in
Fock space. In fact, the highest frequency component with angular
frequency N is proportional only to 〈N, 0 |ρ̂| 0, N〉, and is the only
component observed in the results for an ideal superposition (Fig. 4).
The presence of the same high frequency component in Fig. 8 (a) is an
unambiguous demonstration that the generated state contains
coherence and is not a statistical mixture.

With the introduction of non-linear interactions during the
Ramsey interference, the amplitude and frequency of the parity
fringes become less regular and are no longer periodic over θ−ϕ
modulo 2π. It would not be easy to use the results when U is large as
an indicator of the presence of a superposition due to their
irregularity, and the fact that high frequency components cannot be
said to indicate NOON-type coherence.

5. Conclusions

Our simulations indicate that a quantum superposition of a small
Bose–Einstein condensate may be generated in a reasonably short
time by a smooth change in the atomic interaction strength from
repulsive to attractive. However, we find that verifying that a
superposition has been generated may not be straightforward, even
in the ideal case of a perfect ‘NOON’ state superposition and no
decoherence. We have considered a Ramsey-type interference
experiment as a method to measure the quadrature operator and
parity thereof of a double well wave function.

For a NOON superposition, only the highest-order quadrature
moment (and not the mean) is sensitive to the accumulated relative
phase and is therefore useful in distinguishing between a statistical
mixture and a coherent superposition. Parity measurements after a
Ramsey-type experiment on an ideal superposition state show a
dependence on the relative phase that could in principle be used to



Fig. 6. Fidelity of final wave function compared to the ideal NOON state, for different
ramp times (dots). Dashed line is fidelity of ground state U=−3 s−1 and κ=10
compared to the ideal NOON state. A slower ramp time results in a final wave function
closer to that of an ideal superposition state.

Fig. 7. Expectation value of atom number in each well after Ramsey simulation for a 20
atom condensate, for non-linear interactions being (a) zero, (b) −0.1 s−1, and
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verify the presence of the superposition. A statistical mixture would
not be expected to show any dependence on the relative phase if
parity measurements were performed. The presence of non-linear
interactions during the Ramsey experiment degrades the amplitude of
the parity oscillations.

Measurements of a non-ideal superposition state also show a high-
frequency dependence on the relative phase — a smoking gun
indication of NOON-type coherence. However, we observed that the
imperfect state displays additional frequencies resulting in a beating
pattern. For some choices of phase angle, the visibility is close to one
while the period decreases to 2π/N, allowing it to remain useful for
Heisenberg-limited phase measurements. Similarly as for the ideal
state, non-linear interactions degrade the amplitude and regularity of
the parity oscillations, however for small non-linearity, the high
frequency component could still be used to verify that a mesoscopic
superposition has been generated.

There are many factors that may make these measurements
difficult in practice. For example, phase diffusion due to non-linear
interactions dramatically reduces the visibility of the parity oscilla-
tions. Other effects not considered here would also reduce the fringe
visibility, such as 3-body loss, and other sources of decoherence.
Highly accurate atom counting is required to observe the interference
patterns in the cn coefficients, and the associated parity oscillations as
a function of accumulated phase, unless an alternative measurement
scheme could be realised.
(c) −0.25 s−1. Initial state was generated from the ground state at U=1 s−1,
κ=10 s−1, and linearly changing the interaction strength to −1 s−1 over 4s.
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Appendix

For a state with precisely N atoms, the (discrete) quadrature
operator can take N+1 values. Therefore, it is possible to express any
linear combination of the measurement probabilities (i.e. the |cn|2

after the Ramsey interference) as a linear sum of the firstN quadrature
moments. Specifically, the parity can be expressed this way, i.e.

PðθÞ = ∑
N

n=0
An X̂

n
θ

D E
= ∑

N

n=0
An eiθ â†L âR + e−iθ âL â

†
R

� �nD E
;

ð21Þ
where {An} are real numbers. Expanding the power results in

PðθÞ = ∑
N

n=0
∑
n

m=0
Am
n Cne

ðn−2mÞθ : â†n−m
L âmL â†mR ân−m

R :sym
D E

; ð22Þ

where :x̂:sym represents the symmetric ordering of x ̂.
The operator :âL†n-mâLmâR†mâRn-m:sym transfers n−2m=M atoms

from the right well to the left, and therefore we can say

: â†n−m
L âmL â†mR ân−m

R :sym
D E

= ∑
n

Dn N−n;n j ρ̂ jN−n−m;n + mh i; ð23Þ

where Dn are appropriately chosen constants.
Putting everything together, we finally arrive at Eq. (20), where

the constants Bn,m can be obtained from the above.



Fig. 8. Expectation value of parity after Ramsey simulation of a 20 atom condensate, for
non-linear interactions being (a) zero, (b) −0.1 s−1, and (c) −0.25 s−1. Initial state
was generated from the ground state at U=1 s−1, κ=10 s−1, and linearly changing
the interaction strength to −1 s−1 over 4s.
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