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Abstract
First principles simulations of the quantum dynamics of interacting Bose gases
using the stochastic gauge representation are analysed. In a companion paper,
we showed how the positive-P representation can be applied to these problems
using stochastic differential equations. That method, however, is limited by
increased sampling error as time evolves. Here, we show how the sampling
error can be greatly reduced and the simulation time significantly extended
using stochastic gauges. In particular, local stochastic gauges (a subset)
are investigated. Improvements are confirmed in numerical calculations of
single-, double- and multi-mode systems in the weak-mode coupling regime.
Convergence issues are investigated, including the recognition of two modes
by which stochastic equations produced by phase-space methods in general can
diverge: movable singularities and a noise-weight relationship. The example
calculated here displays wave-like behaviour in spatial correlation functions
propagating in a uniform 1D gas after a sudden change in the coupling constant.
This could in principle be tested experimentally using Feshbach resonance
methods.

PACS numbers: 03.75.Kk, 05.10.Gg, 03.75.Gg, 02.50.Ey

1. Introduction

Phase-space techniques [1–3] for the simulation of exact many-body quantum dynamics have
been developing rapidly [4–8]. Perhaps the major driving force behind this is their ability
to work around the exponential growth2 of the Hilbert space that occurs in direct methods
that work with an explicit quantum state [9]. This exponential scaling in the direct approach
implies that it is virtually impossible to diagonalize general initial states in order to calculate

1 www.physics.uq.edu.au/BEC.
2 Exponential in the number of modes or orbitals involved.
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dynamics, even in the exceptional case when the exact eigenstates are known. Path integral
methods were developed to deal with the Hilbert space growth, but while they are very useful
for calculating ground states [10, 11], they are not applicable to quantum dynamics due to
the oscillatory phase terms which arise and swamp any observable predictions. In contrast,
appropriate phase-space methods can scale linearly or polynomially with the system size (like
path integrals) without being as affected by the oscillatory phases, and so can provide verifiable
physical predictions.

In the companion paper [12], we analysed the performance of the nonclassical positive-P
representation [4, 5] for many-body interacting bosonic systems. Here, we extend the analysis
to treat the more flexible stochastic gauge method of weighted phase-space trajectories [7].

The aforementioned positive-P representation is a straightforward and successful method,
which is a good ‘baseline’ on which more-involved methods can build. It is useful to give
a brief overview of it and its limitations, at this point: the quantum state is written as a
probability distribution of off-diagonal coherent states separable at each spatial lattice point.
This corresponds to a nonclassical phase-space with twice the usual classical dimension. The
number of variables needed to specify a single coherent state configuration grows only linearly
with the lattice size because they are separable, while correlations between subsystems are
contained in the details of the distribution (which is stochastically sampled). This very mild
growth of the number of required variables is the reason that this method can lead to tractable
many-body simulations.

Dynamics in the positive-P representation takes on the particularly simple form of the
widely used Gross–Pitaevskii mean-field equations [13], but with appropriate Gaussian noise
terms added. Several interacting Bose gas dynamics simulations with this method have
made quantitative predictions, including: (1) the scattering dynamics during the collision of
two BECs, and the evolution of momentum correlations between the scattered atoms [16];
(2) dynamics of evaporative cooling and incipient condensation of an interacting Bose gas
[14, 15]; (3) dynamical behaviour of spatial correlations in one-dimensional interacting Bose
gases [12, 16]; (4) dynamics of quantum soliton propagation in optical fibres [17–19];
and (5) dynamics and steady-state behaviour of open boson systems coupled to reservoirs
[6]. Dynamics and thermodynamic spatial correlations of a similar but explicitly particle-
conserving model have also been simulated using the related stochastic wavefunction method
[8, 20].

While much can be simulated with the positive P, there is a limiting factor—the growth
of the scatter of trajectories with time. This statistical error can be estimated, but eventually
after some evolution time it becomes large enough to obscure the physical behaviour for any
practical number of trajectories. Estimates of the useful simulation time with the positive-P
method have been obtained [12], and indicate two major limitations.

(i) When occupation of individual lattice points is high (�1), the simulation loses precision
before phase-collapse can occur.

(ii) Useful simulation times decrease with reduced lattice spacing.

This loss of precision is often (but not always) associated with the development of power-law
tails in the distribution function, which can also lead to systematic boundary term errors. A
typical cause of power-law tails is the presence of movable singularities in the dimension-
doubled phase-space equations (discussed in section 6). These problems are intimately related,
and therefore the methods that improve precision can also solve boundary term issues.

One approach to this problem is to change the basis. For example, a different phase-
space technique that can have lower sampling error when mode occupations are high is the
truncated Wigner representation [1, 18, 21], sometimes called the classical field method [22].
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The simulation can be quite accurate, particularly when all modes are strongly occupied.
However, this method involves truncation of third-order differential terms in the evolution.
This can lead to large systematic errors which are essentially intrinsic to the method itself, and
tend to grow with time [23]. The conditions under which it is valid for interacting Bose gases
have been investigated in significant detail in [24].

Here, however, we will investigate a different avenue of improvement. For a given basis,
there is a wide range of freedom in the correspondence between quantum mechanics and
the stochastic equations [7, 8]. The available freedoms can be constructively specified in
a unified way by the stochastic gauge formalism [7, 16], which adds freely defined gauge
functions and a corresponding global weight to the set of stochastic variables. Preliminary
attempts at harnessing this freedom in single-mode systems have been successful [7, 25] with
demonstrations of time-reversible quantum simulations with up to 1023 interacting particles
[26]. In this paper we investigate these methods systematically, and also present the progress
that has been achieved in exploiting stochastic gauges for large multi-mode systems.

We restrict ourselves to the case of gauge functions defined locally (i.e., separately for
each lattice point), which is the simplest useful case. Sections 3 and 4 investigate two gauge
approaches, each with its own merits. Subsequently, in sections 5, 7, and 8, the performance
of the proposed improved methods is assessed for single-mode, double-mode and multi-mode
cases, respectively. Section 6 investigates convergence issues and identifies two ways by
which stochastic equations produced by phase-space methods in general can diverge: movable
singularities and a noise-weight relationship. The last section simulates the uniform 1D gas as
a non-trivial example. In particular, the dynamics of second-order spatial correlations g(2)(x)

after a sudden increase in the coupling constant at t = 0 are calculated as in the companion
paper [12].

2. Model

2.1. The lattice model

We wish to solve for the quantum time-evolution of a dilute interacting Bose gas. Following
the companion paper [12], we consider a lattice Hamiltonian that contains all the essential
features of a continuum model, provided the lattice spacing is sufficiently small. For a rarefied
gas of the kind occurring in contemporary BEC experiments, s-wave scattering dominates [27],
and the s-wave scattering length as is much smaller than all other relevant length scales. If the
lattice spacing is also much larger than as , then the two-body scattering is well described by
an interaction local at each lattice point. Otherwise, a more careful renormalization procedure
[28] than the one below is required.

Let us label the spatial dimensions by d = 1, . . . ,D, and label lattice points by the
vectors n = (n1, . . . , nD). For lattice spacings �xd , the spatial coordinates of the lattice
points are xn = (n1�x1, . . . , nD�xD). The volume per lattice point is �V = ∏d �xd . This
lattice implies effective momentum cutoffs [29] of kmax

d = π/�xd . We also define the lattice
annihilation operators ân (≈ √

�V �̂(xn) in the field notation of equation (1) of [12]), which
obey the usual boson commutation relations of

[̂
an, â

†
m
] = δnm. With these definitions, one

obtains

Ĥ = h̄

[∑
nm

ωnmâ†
nâm +

κ

2

∑
n

â†2â2

]
. (1)

In this Hamiltonian, the frequency terms ωnm = ω∗
mn come from the kinetic energy and external

potential. They produce a local particle-number-dependent energy, and linear coupling to
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other sites, the latter arising only from the kinetic processes. The nonlinearity due to local
particle–particle interactions is of strength

κ = g

h̄�V
, (2)

with the standard coupling value [27] being g = g3D = 4πash̄
2/m in 3D, and g = g3D/σ in

2D and 1D, where σ is the effective thickness or cross-section of the collapsed dimensions.
When the interaction with the environment is a Markovian (i.e., no feedback), the evolution

of the density matrix ρ̂ can be written as a master equation [30, 31] in the Lindblad [32] form

∂ρ̂

∂t
= 1

ih̄
[Ĥ , ρ̂] +

1

2

∑
j

[
2L̂j ρ̂L̂

†
j − L̂

†
j L̂j ρ̂ − ρ̂L̂

†
j L̂j

]
. (3)

For example, single-particle losses at rate γn (at xn) to a T = 0 heat bath are described by
L̂n = ân

√
γn.

2.2. Gauge-P representation

The gauge-P representation was introduced in [6] and is described in more detail in [7, 16].
Here we summarize the issues relevant to the dynamics of the model (1), and present the
stochastic equations to simulate.

For a lattice with M points, the density matrix is expanded as

ρ̂ =
∫

G(α,β,�)�̂(α,β,�)d2Mαd2Mβ d2�, (4)

where �̂ is an off-diagonal operator kernel, separable between the M lattice point subsystems.
We use a coherent state basis so that

�̂(α,β,�) = �‖α〉〈β∗‖ exp[−α · β], (5)

in terms of Bargmann coherent states with complex amplitudes α = (. . . , αn, . . .)

‖α〉 = ⊗n exp
[
αnâ

†
n

]|0〉. (6)

� is a complex weight.
The gauge representation is a generalization of the positive-P representation, which has

no weight term. With the choice

G(α,β,�) = P+(α,β)δ2(� − 1), (7)

we recover the positive-P distribution P+. It has been shown that all density matrices can be
represented by a positive real P+ [5], so the same is true for G. The expansion (4) then becomes
a probability distribution of the �̂, or equivalently the variables α,β,�. A constructive
expression for a distribution P+(̂ρ) is given by expression (3.7) in [5], although more compact
distributions may exist. In particular, a coherent state |αo〉 will simply have

G = δ2M(α − αo)δ
2M(β − α∗

o)δ
2(� − 1). (8)

Using the identities

ân�̂ = αn�̂, (9a)

â†
n�̂ =

[
βn +

∂

∂αn

]
�̂, (9b)

0 =
[

1 − �
∂

∂�

]
�̂, (9c)
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the master equation (3) in ρ̂ can be shown to be equivalent to a Fokker–Planck equation in G,
and then to stochastic equations in the αn,βn and �, provided that the boundary terms vanish
in carrying out the partial integration used to derive the Fokker–Planck equation. This implies
a restriction on the phase-space distribution tails, which typically must vanish faster than any
power law.

The standard method is described in [31]. The correspondence is in the sense that
appropriate stochastic averages of these variables correspond to quantum expectation values
in the limit when the number of trajectories S → ∞. In particular, one finds that [6]〈∏

jk

â†
nj

ânk

〉
= lim

S→∞

〈∏
jk βnj

αnk
� +
∏

jk α∗
nj

β∗
nk

�∗〉
s

〈� + �∗〉s
. (10)

Any observable can be written as a linear combination of terms (10). We will use the notation
〈·〉s to distinguish averages of random variables from quantum expectations 〈·〉.

Due to the fact that the basis vectors ‖α〉 are not mutually orthogonal, many different
distributions (and hence, sets of equations) correspond to the same master equation. It has
been found [7, 16] that the family of stochastic equations corresponding to a given master
equation is parameterized by stochastic gauge functions of several kinds. These are completely
arbitrary functions that appear in the equations, but do not affect (10). However, the rate at
which precision of the estimates (10) improves with more stochastic realizations can be
strongly affected. It is shown below that judicious choices of the gauges can lead to large
improvements in precision.

The 2M + 1 Ito stochastic equations to simulate are found using methods described in
[7, 31]. For the model (1), obeying the master equation (3) with coupling to a zero temperature
heat bath, they are

dαn =
[
−i
∑

m

ωnmαm − iκnnαn − γnαn/2

]
dt +
∑

k

B
(α)
nk (dWk − Gk dt), (11a)

dβn =
[

i
∑

m

ω∗
nmβm + iκnnβn − γnβn/2

]
dt +
∑

k

B
(β)

nk (dWk − Gk dt), (11b)

d� = �

[∑
k

Gk dWk

]
. (11c)

Here, nn = αnβn, and there are M ′ � 2M labels k for the independent noise terms, to
sum over. The dWk are independent Wiener increments 〈dWj(t) dWk(s)〉s = δjkδ(t − s) dt2.
In practice, these can be realized at each time step �t by mutually- and time-independent
real Gaussian noises of mean zero, and of variance �t . The elements of the M × M ′ noise
matrices B must satisfy∑

k

B
(α)
nk B

(α)
mk = −iκα2

nδnm (12a)∑
k

B
(β)

nk B
(β)

mk = iκβ2
nδnm, (12b)∑

k

B
(α)
nk B

(β)

mk = 0. (12c)

The M complex quantities Gk are arbitrary complex gauge functions, referred to as drift
stochastic gauges. There is also more gauge freedom here because (2.2) do not specify the
noise matrices B(α) and B(β) precisely. This freedom can be expressed as diffusion stochastic
gauges [6, 7, 25].
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The simulation strategy is (briefly) as follows.

(i) Sample a trajectory according to the known initial condition G(0) = G(̂ρ(0)).
(ii) Evolve according to the stochastic equations (2.2), calculating moments of interest and

recording.
(iii) Repeat for S � 1 independent trajectories and average.

2.3. Single-mode model

The single-mode model is a good test bed for gauge choices in quantum many-body theory.
It is exactly solvable, yet it already contains all the essential features that lead to the rapid
growth of fluctuations which limits simulation time with the positive-P method [12]. It has
also been experimentally realized in recent optical lattice experiments [33] with Bose–Einstein
condensates. We proceed as in the companion paper [12].

To simplify the notation, the mode labels n = (0, . . . , 0) will be omitted when referring to
the single-mode system. Furthermore, we move to an interaction picture where the harmonic
oscillator evolution due to the ωâ†̂a term in the Hamiltonian is implicitly contained within the
Heisenberg evolution of the operators. Then, this ‘anharmonic oscillator’ model simply has

Ĥ = h̄κ

2
â†2â2. (13)

When dealing with this system, it will be convenient to consider the evolution starting
with an off-diagonal coherent-state kernel

�̂0 = �̂(α0, β0, 1), (14)

with ‘particle number’ n0 = α0β0 and initial unit weight �(0) = 1. This is because for any
general initial state, each sampled trajectory will start as an �̂0 with some coherent amplitudes.

With initial condition �̂0, analytic expressions for observables can be readily obtained.
In particular, the first-order time-correlation function

G(1)(0, t) = β0〈̂a〉 = α∗
0 〈̂a†〉∗, (15)

which contains phase coherence information. Normalizing by Tr[�̂0],

G(1)(0, t) = n0 e−γ t/2 exp

{
n0

1 − iγ /κ
(e−iκt−γ t − 1)

}
. (16)

When the damping is negligible, n0 real, and the number of particles is n0 � 1, one sees
that the initial phase oscillation period is

tosc = 1

κ
sin−1

(
2π

n0

)
≈ 2π

κn0
, (17)

and the phase collapse time [21] over which |G(1)(0, t)| decays3 is

tcoh = 1

κ
cos−1

(
1 − 1

2n0

)
≈ 1

κ
√

n0
. (18)

When there is no damping, the first quantum revival occurs—as observed experimentally
[33]—at

trevival = 2π

κ
. (19)

3 We have kept the notation tcoh from the companion paper [12], where ‘coh’ indicates that coherence is maintained.
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Table 1. Some properties of simulation times tsim for various gauges when applied to the undamped
one-mode anharmonic oscillator. Initial coherent state mean occupation n0 = n′

0.

Drift gauge Diffusion gauge Useful simulation time tsim maximized Maximum n0 for
Gk g′′ over topt, when n0 = n′

0 � 1 which χtsim � 1

(67) 0 (1.06 ± 0.16) tosc 0.014 +0.016
−0.008

(59) 0 (1.7 ± 0.4) tosc 0.08 +0.07
−0.05

0 0 (2.5 ± 0.2) tcoh/n′
0

1/6 0.11 ± 0.06
0 (68) or (36) (8.2 ± 0.4) tcoh 12 ± 3
0 (42) (10.4 ± 0.7) tcoh 19 ± 4
(59) (56) (30 ± 3) tcoh 150 ± 40
(59) (58) (35 ± 4) tcoh 240 ± 70

2.4. Positive-P noise behaviour

The noise behaviour of this model and simulation times has been investigated in detail for the
positive-P case in [12]. Some useful conclusions include.

(i) If ξ is a Gaussian random variable, and v = eσξ , then finite-sample estimates of 〈v〉s

using S realizations of the random variable have relative fluctuations that scale as

∝
√(

eσ 2 − 1
)/

S. Due to the rapid rise after σ � 1, reasonable precision can only
be obtained with practical sample sizes (S � 106, say) while

σ 2 � 10. (20)

(ii) In a single-mode system, the variable n(t) is the exponential of a Gaussian random
variable, as is α(t) at short times. Since observable estimates (10) involve means of
polynomial functions f of these variables 〈f 〉s, then one needs

var[log|f |] � O(10) (21)

for reasonable precision.
(iii) The mechanism responsible for limiting simulation time is growth of fluctuations in log|α|

due to the real part of the d log α = −iκn dt term. When |n| � 1, the fluctuations in
Im[n] are sizeable, and var[log|α|] rapidly reaches large values that exceed (21).

(iv) In the multi-mode system, this nonlinear (in αn) term becomes dαn = −iκnnαn dt , which
depends only on the variables in the local mode n. For this reason, the single-mode
analysis continues to give a good qualitative description of the noise behaviour in multi-
mode systems, especially while the inter-mode coupling is weak in comparison with the
local scattering.

2.5. Aims

In what follows, an estimate tsim of the useful simulation time will be evaluated using condition
(21) for the amplitude variables α and β. For the positive-P method applied to the system (13),
tsim was found to be relatively shortest at high-mode occupation and weak damping, scaling as
∝n−2/3. This is shown in figure 3 and table 1. For n � 1, we see that the positive-P method
does not reach even the phase collapse times tcoh [21]. This is caused by the phase-diffusion
inherent in any initial state with a range of particle numbers, where the self-interactions cause
the phase to evolve at a different rate for different total particle number.

However, indications that simulation improvements can be obtained using nonzero gauge
choices were seen by Deuar and Drummond [34] and Plimak et al [25], using drift and
diffusion modifications, respectively. Carusotto et al [8] also found improvements in a
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different (number-conserving) model, using an approach that effectively uses a drift gauge (see
section 5.4 for more on this).

The aim here is to develop gauges that improve simulation times at high-mode occupation,
while being applicable to the many-mode situation where conditions for a single mode are
dynamically changing. To do this we wish to find the dependence of advantageous gauges on
mode parameters such as n(t), constants κ, γ , and time t itself. We are especially interested
in the case of low or absent damping γ 
 κ , in highly occupied modes n � 1. This is the
regime where the simulation time is most limited with the positive-P method.

3. Local diffusion gauges

In the positive-P simulation of modes with n � 1 occupations, tsim is limited by the following
process: in order to allow for an exact simulation of quantum fluctuations, the nonclassical
phase space requires the effective particle number n = n′ + in′′ to develop complex values.
This in turn gives rise to exponential growth in amplitude fluctuations in either |α| or |β|, since
the drift equations have the structure

d|α|
dt

= κn′′|α| + · · · (22a)

d|β|
dt

= −κn′′|β| + · · · . (22b)

These instabilities lead to growth in sampling error, and possibly ultimately to systematic
boundary term errors as well. In this section we consider the freedoms present in the choice of
noise matrix B, to limit the stochastic growth in the effective ‘gain’ n′′, without introducing any
drift gauges. Such techniques can extend the useful time-scale of a simulation, although they
are typically unable to remove boundary terms at long times if caused by movable singularities.

In this case Gk = 0, d� = 0, so there is no weight evolution and we can assume � = 1
for all practical purposes. Analytic expressions for an optimized diffusion gauge choice will
be found and discussed. Their performance in actual numerical simulations is reported in
sections 5–8.

3.1. Diffusion gauge mechanism

The noise matrices appearing in the stochastic equations must obey (2.2) which can be written
as a matrix equation BBT = D, where

B =
[
B(α)

B(β)

]
, (23)

and D is completely determined by the master equation. Otherwise the B are free, including the
number of noises M ′, i.e. columns in the matrix. These freedoms in B choices are investigated
in [16]. A broad class of suitable B which are square complex orthogonal matrices have been
described in [7]. These are given by

B(gjk) =
√

DO(gjk), (24)

where O are arbitrary complex 2M × 2M orthogonal matrices such that OOT = I . In the
general case, these can be constructed using (2M − 1)M complex diffusion gauge functions
gjk

O = exp

∑
j<k

gjkσ
(jk)

 , (25)
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where the antisymmetric matrix basis (j �= k = 1, . . . , 2M) has elements

σ
(jk)

lp = δjlδkp − δjpδkl . (26)

3.2. Single mode

We proceed similarly to the companion paper [12] for the positive-P case. For the model (13)
with damping to a zero temperature heat bath, the equations to simulate are

dα = −α[iκn + γ /2] dt + i
√

iκα[cos(g) dW1 + sin(g) dW2]

dβ = β[iκn − γ /2] dt +
√

iκβ[−sin(g) dW1 + cos(g) dW2].
(27)

with n = αβ. Here we include only one complex diffusion gauge g = g12 = g′ + ig′′.

3.2.1. Real gauges. Note that

B = BoO(g) = BoS(g′′)R(g′). (28)

in terms of a rotation R and a transformation S. The rotation serves only to mix the noises dWj

together

R(g′) dW =
[

cos g′ sin g′

−sin g′ cos g′

] [
dW1

dW2

]
=
[

dW̃1

dW̃2

]
, (29)

where the new noises dW̃j have the same statistical properties as the original noises dWj .
Because of this, g′ has no impact on the statistical properties of the simulation. Henceforth
we will consider only g = ig′′, where cos g = cosh g′′, and sin g = i sinh g′′.

3.2.2. Logarithmic variance. As in [12] for the standard positive-P case, we consider the
mean phase variable variance

V = 1
2 {var[log|α(t)|] + var[log|β(t)|]}, (30)

which was found to be the limiting factor for simulation time when it exceeds V � O(10) as
per (21).

Taking g = ig′′, the equations (27) can be formally solved using the rules of Ito calculus
as

log n(t) = log n(0) − γ t +
√

iκ e−g′′
[ζ2(t) + iζ1(t)], (31a)

log α(t) = log α(0) + (iκ − γ )t/2 + i
√

iκζ1(t) cosh g′′ − √
iκζ2(t) sinh g′′ − iκ

∫ t

0
n(s) ds,

(31b)

where

ζj (t) =
∫ t

s=0
dW(s) (31c)

are Gaussian-distributed random variables of mean zero, and

〈ζj (t)ζk(s)〉s = δjk min[t, s]. (32)

It is convenient to define

n0 = α0β0 = n′
0 + in′′

0. (33)
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Note that n(t) is the exponential of a Gaussian random variable, and that if a generic variable
ξ is Gaussian then

lim
S→∞

〈ξ(t)m〉s = m!

2m/2(m/2)!
(34)

for even m, and zero for odd m. From this, limS→∞〈eσξ 〉s = exp(σ 2/2) and
limS→∞〈cos(σξ)〉s = exp(−σ 2/2). Using these we obtain that the limiting variance V in
the limit of a large number of samples S → ∞ is given by

V = κt cosh(2g′′)/2 − κ2n′
0

{
1 − e−γ t (1 + γ t)

γ 2

}
+

κ2|n0|2
qγ

{
1 − q e−γ t − γ e−qt

(q − γ )
− q

2γ
(1 − e−γ t )2

}
, (35a)

where

q = 2(γ − κ e−2g′′
) (35b)

is a ‘damping strength’ parameter.
At short times the first term (direct fluctuations from noise in d log|α| etc.) certainly

dominates. For long time-scales, the indirect noise mediated by a growing spread in n′′

(remaining terms) has the most serious consequences, since it causes an exponential growth
in the sampled fluctuations.

3.2.3. Optimum gauge. The first term in (35a) (due to direct noise in log α and log β) grows
with g′′, while the later terms decrease. This indicates that there is a trade-off parameterized
by g′′. The optimum choice is given by a balance between the direct noise in the amplitudes,
and the indirect noise in the gain term n′′. The lowest fluctuations V at a given time t will
occur when ∂V(t)/∂g′′ = 0. To choose g′′, we must decide upon a ‘target time’ t = topt at
which to minimize V .

When we aim for relatively short target times topt such that |q|topt 
 1 and 2κtopt e−2g′′ 

1, the optimized gauge is approximated by

g′′
opt ≈ g′′

approx = 1

4
log

[
(2κtopt|n0|)2

3
a2(γ topt) + 1

]
, (36a)

where, on defining v = γ topt, the coefficient a2(v) is

a2(v) = 3

2

(
e−2v(3 + 2v) + 1 − 4 e−v

v3

)
. (36b)

This reduces to a2(0) = 1 in the undamped case. The discrepancy between (36) and the exact
optimization g′′

opt found using ∂V/∂g′′ = 0 is shown for real n0 = n′
0 in figure 1. It can be

seen that for n′
0 � O(10) and/or for times shorter than singly-occupied coherence time 1/κ ,

the approximate expression for the optimized gauge choice is still useful.

3.2.4. Useful simulation times. By inspection of (31), the behaviour of log|α| and log|β|
is Gaussian-like due to the ζj terms. Since G(1) ∝ 〈α〉s, condition (21) implies that useful
precision in G(1) is obtainable only while V � 10.

In the simplest case of no damping and coherent state initial conditions at large occupation
n0 = n′

0 � 1, for target times topt � 3tosc/4π one has e−2g′′
approx ≈ √

3/2κtoptn0. These are
times longer than an oscillation period, but shorter than coherence time tcoh. Taking then the
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Figure 1. Discrepancy � = g′′
opt − g′′

approx between g′′
opt (the exact optimization of g′′ for the

diffusion-gauge-only case) and the approximate expression (36) for an undamped mode with
diagonal coherent initial occupation n0 = n′

0. Discrepancy values � are shown as contours.

terms of V(t, g′′) from (36) at t = topt of highest order in n0, and imposing the precision limit
V(tsim, g′′

approx) � 10, one obtains the expected simulation time for an undamped system as

tsim ≈ O(10)tcoh. (37)

This is a large improvement at high mode occupations—compare to the positive-P (g′′ = 0)

results in table 1.
Checking back, we see that when the target time is given by topt = tsim from (37), it is

indeed much longer than an oscillation period, and also that the terms of V highest order in n0

remain so after taking κt �∝ n
−1/2
0 into account. The clearest evidence for the validity of the

above reasoning—which involves a few approximations—is that the numerical simulations of
section 5 agree with (37).

At low occupations and with n0 = n′
0, on the other hand, g′′

approx → 0, and one again
expects the same simulation time as with the standard positive-P equations.

3.2.5. Strong damping. If damping is present, then with a large enough gauge g′′ >
1
2 log(κ/γ ) such that q > 0 the regime of linear increase in sampling variance can always be
reached for times qt � 1. Here, fluctuations grow slowly as

V = κt cosh(2g′′)/2 − b. (38)

The constant b is

b = ε2

2
[2n′

0 − |n0|2ε/(e2g′′ − ε)], (39)

where ε = κ/γ < e2g′′
. The required q > 0 implies γ > κ e−2g′′

, i.e. either that damping
rates are strong compared to the nonlinear detuning at the two-particle level, or the diffusion
gauge is large.

3.3. Extension to many-modes

Expression (36) was worked under the assumption that the mean occupation of the mode is
conserved. In coupled-mode simulations, this is no longer the case, and can be adapted for by
replacing n0 in expression (36) by nn(t).
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Next, consider the situation when we aim to simulate until a target time topt. At some
intermediate time 0 < t < topt it may be advantageous to optimize g′′ only for the remaining
time to target

trem = max[topt − t, 0], (40)

rather than for a constant target time topt ahead of t. Indeed, this is demonstrated to be an
improvement in section 5.3.

There will be a separate local gauge at each lattice point, such that for an M-mode system
(with j = 1, . . . ,M labelling the modes) the only nonzero noise matrix elements are

B
(α)
nj ,j

= i
√

iκαnj
cosh g′′

nj
B

(α)

nj ,(j+M) = −√
iκαnj

sinh g′′
nj

B
(β)

nj ,j
= −i

√
iκβnj

sinh g′′
nj

B
(β)

nj ,(j+M) = √
iκβnj

cosh g′′
nj

.
(41)

The suggested diffusion gauges are

g′′
n = 1

4
log

[
(2κtrem|nn(t)|)2

3
a2(γntrem) + 1

]
. (42)

3.4. Effect of lattice spacing

Labelling α or β as z, it was found [12] that for a uniform gas of density ρ with volume �V

per lattice point in a D-dimensional lattice one has

var[|δkineticzn(t)|]
var[|δdirectzn(t)|] = R ≈ O

[
h̄2t2π4

60m2(�V )4/D

]
(43)

at short times (such that the first term in (35a) dominates) when using the standard positive-P
equations. Here δdirectzn are the fluctuations in zn directly due to the noise in the equations,
and present with zero coupling ωnm = 0, whereas δkineticzn are the remaining fluctuations
induced by coupling between modes. The short time assumption was var[log|z|] 
 1, which
is approximately κt cosh 2g′′ 
 2, from the formal single-mode solutions (31). A calculation
that takes into account nonzero g′′ is found to give the same expression (43).

The single-mode analysis is expected to be accurate only when this ratio R 
 1. For this
reason, the simulation time improvements due to the local diffusion gauge (42) are only to be
expected while R � 1, or perhaps even R 
 1. Let us see what this translates to for the case
for a uniform gas.

For a lattice derived from a continuum model, it will be convenient to write the lattice
interaction strength κ = g/h̄�V in terms of the healing length

ξ heal = h̄√
2mρg

. (44)

This is the minimum length scale over which a local density inhomogeneity in a Bose
condensate wavefunction can be in balance with the quantum pressure due to kinetic effects
[35].

In terms of ξ heal, the expected simulation time with diffusion gauges (42) is tsim ≈
O(10)m

√
n(ξ heal)2/h̄ from (37), where n is the mean-mode occupation. Expression (43)

can then be evaluated at tsim. Imposing R 
 1 for times t � tsim leads to the condition
�x � ξ healn1/4O(1) where the quantity �x = (�V )1/D is the geometric mean of the lattice
spacing. Local gauges only lead to significant simulation time improvements in the single
mode when n � 1.
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We conclude that local diffusion gauges will lead to simulation time improvements when

�x � O(ξ heal). (45)

The calculations of section 8 will be seen to be consistent with this. This is a strong limitation
on local diffusion gauges, since interesting dynamical effects can readily occur over shorter
length scales than this. It suggests that nonlocal diffusion gauges may be more useful for
general spatially-varying problems, but these are outside the scope of the present paper.

4. Local drift gauges

A complementary approach to the diffusion gauge is to remove the source of the drift instability
in equation (22b) by using drift gauges that directly alter the unstable drift equations. Since
the nonlinearity takes the local form dαn = −iκnnαn dt + · · · etc, this can be done using
drift gauges Gk dependent only on local parameters. These methods are certainly capable of
eliminating movable singularities, which are a common cause of systematic boundary term
errors. However, this is accompanied by a corresponding growth in sampling error, due to the
introduction of a weight term in the stochastic equations.

4.1. Single mode

For a single mode with imaginary diffusion gauge as in section 3, the Ito equations are

dα = α[−iκn − γ /2 − i
√

iκ(G1 cosh g′′ + iG2 sinh g′′)] dt

+ i
√

iκα[dW1 cosh g′′ + i dW2 sinh g′′]
dβ = β[iκn − γ /2 − √

iκ(−iG1 sinh g′′ + G2 cosh g′′)] dt (46)

+
√

iκβ[−i dW1 sinh g′′ + dW2 cosh g′′]

d� = �

2∑
k=1

Gk dWk.

4.1.1. Drift gauge. When Gj = 0, the rapid increase in phase variable variance is due to
the process outlined in point 3 of section 2.4. A drift gauge that interrupts this process by
removing the offending drift terms d log|α| = κn′′ dt and d log|β| = −κn′′ dt is

G1 = iG2 = −√
iκ e−g′′

n′′. (47)

4.1.2. Logarithmic variances. There is a price paid, of course, and this is fluctuations in the
global weight �, such that var[log|�|] now scales ∝e−2g′′

. With a fluctuating weight, quantum
phase correlations such as G(1) are now given by

G(1)(0, t) = β0〈�α(t)〉s = α∗
0〈�β(t)〉∗s , (48)

using (10). Note that since from (11c) by the properties of Ito calculus d〈�〉s = 0. Thus the
denominator 〈�+�∗〉s appearing in (10) can be ignored if the initial distribution is normalized
so that 〈�〉s = 1. From (48), the relevant random variables in phase-dependent calculations are
(�α) and (�β), so that the log-phase quantity analogous to V in the calculations of section 3
is now

V� = 1
2 (var[log|�(t)α(t)|] + var[log|�(t)β(t)|]) (49)
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(compare to (30)). Proceeding as before by formally solving (46), we find that for off-diagonal
coherent state initial conditions,

V� = κ

2

{
t cosh(2g′′) − e−2g′′ |n0|2

(
e−qt − 1

q

)
− e−2g′′

[(n′
0)

2 − (n′′
0)

2]

(
1 − e−2γ t

2γ

)}
.

(50)

Just as in the pure diffusion gauge case, there is a trade-off between fluctuations due to
direct phase variable noise ∝ cosh(2g′′) (first term), and fluctuations in the global weight �,
which are dependent on e−2g′′

(following terms). The optimum g′′ = g′′
opt can be calculated

by solving ∂V�/∂g′′ = 0.

4.1.3. Approximate optimum diffusion gauge. Since the aim is a gauge adaptable to changing
mode occupation like (42), it is desirable to obtain an approximate expression for g′′

opt that
can be rapidly evaluated at each time step in a calculation. To do this, we first consider some
special cases.

At short times such that |q|topt 
 1 and 2κtopt e−2g′′ 
 1 the optimum is given by the
roots of the cubic in Vg = e−2g′′

opt

4κtopt|n0|2V 3
g + a3(n0, γ topt)V

2
g − 1 = 0 (51)

where

a3(n0, v) = 1 + 4(n′′
0)

2

(
1 − e−2v

2v

)
− 2|n0|2

(
1 − 2v + 2v2 − e−2v

v

)
. (52)

For zero damping a3(n0, 0) = 1 + 4(n′′
0)

2.
In the case of simulations with sizable occupation of modes, and times up to O(tcoh) the

short time conditions are satisfied and this cubic applies. When the V 2
g term is negligible, we

have

g′′
opt ≈ 1

3 log(|n0|
√

4κtopt). (53)

This occurs when n0 is large enough and mostly real, and t is big enough: i.e. when
a3(n0, γ t) 
 (4κtopt|n0|2)2/3. For example, when undamped, κtopt must be at least �1/4|n0|2
with classical initial conditions (n′′

0 = 0). The opposite case when n0 is either too small, too
imaginary, or the time is too short has the V 3

g term negligible and leads to

g′′
opt ≈ 1

4 log a3(n0, γ topt). (54)

For strong damping q > 0, we again have linear growth V� = κt cosh(2g′′)/2 − b2,
where the constant is now

b2 = ε

4
{[(n′

0)
2 − (n′′

0)
2] e−2g′′ − |n0|2/(e2g′′ − ε)]. (55)

An approximation for the diffusion gauge that is found to work well in practice (see
section 5) is

g′′
approx = 1

6 log{4|n0|2κtopt + a3(n0, γ topt)
3/2}, (56)

which reduces to (53) and (54) in their limits of applicability. The discrepancy � between (56)
and the exact optimization obtained by solving ∂V�/∂g′′ = 0 is shown for real n0 in figure 2.
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Figure 2. Discrepancy � = g′′
opt−g′′

approx between g′′
opt (the exact optimization of g′′ from (50)) and

the approximate expression (56) for an undamped mode with diagonal coherent initial occupation
n0 = n′

0. Discrepancy values � are shown as contours. The dotted line approximates region of
greatest discrepancy κtopt ≈ 1/4|n′

0|2.

4.1.4. Useful simulation time. Consider the undamped high occupation regime with coherent
state initial conditions n0 = n′

0 � 1. Using (53), at target times topt � 1/4κn2
0, one

has e−2g′′
approx ≈ 1

/[
4n2

0κtopt
)1/3 
 1. Then the terms in (50) of highest order in n0 give

V�(t = topt) ≈ 3
2 [(κtopt)

2n0/4]2/3. (Target times of interest will almost always satisfy the
prior condition.) We can use the condition V� � 10 from (21) to estimate the useful simulation
time in this regime as

tsim ≈ O(10)tcoh. (57)

This is again a large improvement compared to the positive-P results in table 1.

4.2. Extension to many modes

We now wish to consider how the drift gauge approach can be used to treat a multi-mode
situation.

4.2.1. Adaptive gauge. Proceeding to as in section 3.3, the suggested gauges with the present
approach are

g′′
n = 1

6 log{4|nn(t)|2κtrem + a3(nn(t), γ trem)3/2}, (58)

appearing in noise matrices of the form (41), and

Gj = iGj+M = −√
iκ Im

[
nnj

(t)
]

exp
(− g′′

nj
(t)
)
. (59)

for j = 1, . . . ,M .

4.2.2. Drift gauges and weight spread. Drift gauged simulations using (59) encounter a
scaling problem in many-mode systems because the single weight variable � accumulates
fluctuations from all modes (see (11c)). There are precisely two independent noises and two
drift gauges for each mode. Consider for example, a uniform gas of density ρ, and volume
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V on M modes, so that the mean mode occupation is n = ρ�V . Writing Gk = G′
k + iG′′

k and
log � = θ ′ + iθ ′′, from (11c) one can show that

d

dt
var[θ ′] =

∑
k

〈(G′
k)

2 + covar[θ ′, (G′′
k )2] − covar[θ ′, (G′

k)
2]〉s. (60)

For the uniform gas, the contribution from each mode is identical on average, and from (59),
G′

k and G′′
k are of the form ±√

κ/2 e−g′′
Im[n]. Hence, approximately,

d

dt
var[log|�|] ∝ Mκ〈 e−2g′′

Im[n]2〉s. (61)

From the formal solution (31a) (which also applies with drift gauges (59), one
has var[Im[n]] = 〈(|n| sin Im[log n])2〉s ≈ n2〈sin2 Im[log n(t)]〉s, which (at short times
κt e−2g′′ 
 1) is ≈ n2κt e−2g′′

. Thus at these short times

d

dt
var[log|�|] ≈∝Mκ2n2t e−4g′′

, (62)

and at high lattice occupations n � 1 when using (58) e−2g′′ ≈ 1/(4nκt)1/3, so, substituting

var[log|�|] ≈ ∝M(gρt)4/3. (63)

Imposing the log variance limit (21) on |�| (because the factor |�| appears in all observable
estimates (10), one obtains the estimate that

tsim ≈ ∝ 1

gρM3/4
. (64)

For this reason we expect that simulations using the local diffusion and local drift gauges
(59) and (58) will only give significant simulation time improvements when the number
of highly occupied modes is relatively small. Indeed, the two mode cases of section 7 show
strong simulation time improvement with this gauge, while we have found that the many-mode
uniform gases of section 8 do not simulate well with the gauge form (59).

Note, however, that since single-mode tsim decreases rapidly with occupation n, it is the
most highly occupied modes that limit the simulation time. So, even a very large M system
may still experience improvements in simulation time with the present method if there are
only a few modes with the highest occupations.

As in the pure diffusion gauge case, this does not preclude that better scaling may be
obtainable with appropriately tailored nonlocal drift and diffusion gauges. In particular,
the local drift gauge employed here does not take into account the fact that neighbouring
lattice points with spacings of less than a healing length become strongly correlated due to the
kinetic energy terms. These cause particle exchange, and hence effectively average out local
fluctuations in n′′.

5. Single mode: numerical results

Simulations of an undamped single-mode anharmonic oscillator (see section 2.3) were
performed for a wide range of initial coherent states n0 = n′

0 from 10−5 to 1010. Results
for the standard positive-P method were reported in [12]. Here the gauged methods described
in sections 3 and 4 are tested.

5.1. Procedure

In what follows, the term useful precision for an observable Ô has been taken to indicate
the situation where the estimate O = 〈f 〉s of 〈Ô〉 using S = 106 trajectories has a relative
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Figure 3. Maximum useful simulation time tsim, of the one-mode undamped anharmonic oscillator
with various gauge choices. Initial coherent state mean-mode occupations n0 = n′

0. Width of
plotted lines shows range, when using ten runs of S = 104 trajectories each. The drift gauge is
(59), while the diffusion gauge is (42) when on its own, or (58) when combined with the drift
gauge.

precision of at least 0.1 at the one-sigma confidence level. This is assuming the CLT holds so
that

�O ≈
√

var[f ]

S
(65)

is used to assess uncertainty in O. For the model here, we consider useful precision in the
magnitude of phase-dependent correlations |G(1)(0, t)|, which is the low-order observable
most sensitive to the numerical instabilities in the equations.

Uncertainties in the calculated useful times tsim arise because the �|G(1)| were themselves
estimated from finite ensembles of S = 104 trajectories. The range of tsim indicated in figure 3
was obtained from ten independent runs with identical parameters.

Taking the analytic scalings (37), (57) at high n0, and from [12] at low n0 into account,
parameters in an approximate curve

test = 1

κ

{
[c1(n

′
0)

−c0 ]−c2 +

[
2 log

(
ec3

n′
0
c4

+ 1

)]−c2
}−1/c2

(66)

have been fitted to the empirical data, as was done for the standard positive-P method
in [12]. Best values of cj are given in table 2. Expression (66) reduces to c1n

′
0
−c0/κ

and (c3 − c4 log n′
0)/(κ/2), when n′

0 � 1 and n′
0 
 1, respectively. c0 determines

the high n′
0 scaling (here, assumed from analysis of V , or V�), c1 characterizes the

pre-factor for high n′
0, c3 is proportional to a constant residual tsim at near vacuum, c4

characterizes the curvature at small n′
0, while c2 is related to the stiffness of the transition

between the two regimes. Uncertainty �cj in parameters cj was worked out by requiring∑
n0

{[test(cj ±�cj , n0)− tsim(n0)]/�tsim}2 =∑n0
{1+ ([test(cj , n0)− tsim(n0)]/�tsim)2}.
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Figure 4. Modulus of the phase correlation function G(1)(0, t). Comparison of calculations
with different gauges. Subplots (b) and (e): use diffusion gauge (68) of Plimak et al [25] with
topt = 3tcoh, while subplots (c) and (f ) use the combined drift and adaptive diffusion gauges (59)
and (58) with the choice topt = 20tcoh. The initial conditions: coherent state with 〈̂n〉 = n0. The
triple solid lines indicate G(1) estimate with error bars, the dashed lines are exact values. S = 104

trajectories in all cases.

Table 2. Empirical fitting parameters for maximum useful simulation time tsim with several
different gauge choices when applied to the undamped one-mode anharmonic oscillator. The fit is
to expression (66).

Positive P Drift gauge Diffusion gauge Both gauges

Gk 0 (59) 0 (59)
g′′ 0 0 (42) (58)
c0 2/3 1 1/2 1/2

c1 2.5 ± 0.2 11 ± 3 10.4 ± 0.7 35 ± 4
c2 3.2 ± ∞

1.2 1.4 ± ∞
0.4 2.7 ± ∞

1.0 03.6 ± ∞
2.3

c3 −0.5 ± 0.3 −0.5 ± 0.3 02.4 ± 0.6 2.8 ± 0.9
c4 0.45 ± 0.07 0.49 ± 0.08 0.23 ± 0.13 0.23 ± 0.13

For calculations involving a diffusion gauge dependent on the target time topt, a wide
variety of target times were tried to investigate the dependence between tsim and topt, and
ascertain what are the longest simulation times achievable.

5.2. Simulation times

Figure 3 compares tsim, as defined via ‘useful precision’ in |G(1)(0, t)|, for several gauge
choices. Note that a logarithmic scale is used. Results at high occupation are tabulated
in table 1, which includes data for a larger set of gauge choices. Figure 4 gives examples
of calculated values |G(1)(0, t)| along with error estimates. Table 2 gives empirical fitting
parameters to expression (66).

We see that

• Combining drift and diffusion gauges gives the longest useful simulation times. Such
simulations give good precision well beyond the point at which all coherence has decayed
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Figure 5. Dependence of actual useful simulation time tsim on the a priori target time topt for a
variety of diffusion gauges in the Gk = 0 schemes. Solid line: full adaptive gauge (42); dashed line:
number-adaptive-only gauge of form (36), but with the modification n0 → n(t); dash-dotted line:
gauge (68) of Plimak et al [25]. For the gauge (36), the whole region where useful precision occurs
is shown by the dotted line. The undamped anharmonic oscillator system (13), with coherent state
initial conditions n0 = n′

0.

away for highly-occupied modes—potentially up to about 35 collapse times tcoh in the
cases treated here.

• Diffusion-gauge-only simulations also give quite good statistical behaviour (although
useful simulation times are about four times shorter at high occupation than with both
gauges).

• Despite the efficient behaviour of combined gauge simulations, using only a drift-gauge
gives even worse statistical error than no gauge at all. Such simulations are restricted in
time to about one-phase oscillation. This indicates that the drift gauge choice made here
is not an optimum choice when used in isolation.

• At low occupation, i.e. of the order of one boson or less, combined gauge methods still
give the best results, but the advantage is marginal.

• The simulation times with nonzero diffusion gauges (whether accompanied by drift gauge
(59) or not) not only have better scaling with n0 when n0 is large, but also this power-law
decay of simulation time starts much later, as seen in figure 3 and the right-hand column
of table 1.

5.3. Target time dependence

Figures 5 and 6 show the dependence of simulation times on the target time parameter topt for
a variety of gauges. Comparison is made between the full adaptive forms g′′(nn(t), trem) (solid
lines), number-adaptive-only forms g′′(nn(t), topt) that do not use the explicit time-dependence
trem (dashed lines), and the Plimaket al [25] gauge (68) (dash-dotted lines).

Some comments

• The diffusion gauge forms that optimize for the ‘remaining time to target’ trem give the
longest simulation times, and these times are well controlled. Statistical error can be
reliably expected to remain small up to the explicit target time topt, provided that this is
within the useful simulation range given in table 1.

• Diffusion gauges that instead use a constant topt parameter give.

(i) Somewhat shorter simulation times.
(ii) A complicated relationship between target and useful simulation times. Broadly

speaking topt 
 tsim for the optimum cases.
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Figure 6. Dependence of tsim on topt, as in figure 5, with drift gauge (59) as well as diffusion
gauges. Details as in figure 5.

These forms of diffusion gauges require tedious parameter searching to find the best topt

choice for given initial conditions. The probable reason why tsim �= topt here is that g′′ has
been optimized to minimize the variance of logarithmic variables. This is not the same as
the variance of the non-logarithmic variables α, or β that actually appear in the observable
calculations. Hence, different g′′ forms may extend simulation time by a further amount.

• When drift gauges (59) are used, an adaptive diffusion gauge g′′(n(t)) rather than a
constant g′′(n0) can give much longer simulation times. (Compare to the Plimak et al
gauge in figure 6(a) which effectively scans through a range of constant g′′ values).

• At low n′
0, tsim is only weakly dependent on local diffusion gauge choice.

• When there is no drift gauge, for n′
0 � 1, the time-adaptive gauge forms g′′(trem) lead

to a peculiar effect if the optimization time topt is chosen larger than the usual maximum
tsim given in table 1. The statistical error in the G(1) estimate first rises rapidly, then falls
again, and finally grows definitively. The parameter region in which this occurs is shown
in figure 5(a). In effect, one has two time intervals when the simulation gives useful
results: at short times, and later in a time interval around t ≈ O(10tcoh).

More detail on these numerical investigations can be found in [16], chapter 7.

5.4. Comparison to recent-related work

Improvements to the basic positive-P simulation method for specific cases of interacting Bose
gas systems have been tried with some success in several recent publications [7, 8, 25, 34].
Here we compare these with the stochastic gauge formalism, and make some comparison to
the results and analysis in the present chapter.

5.4.1. The work [8] of Carusotto, Castin and Dalibard. An isolated (i.e., particle-conserving)
system of exactly N interacting bosons was considered (on a 1D lattice). The ‘coherent state
simple scheme’ for stochastic wavefunctions described in section 3.2.2 therein can be identified
as using drift gauges of the form

G1 = i
√

iκ(n − |α|2) G2 = √
iκ(n − |β|2) (67)

when re-written our notation for the single-mode system (13). This gauge causes a full
decoupling of the complementary α and β equations by making the replacements n → |α|2
or n → |β|2 in the nonlinear terms. Like (59) it is also successful in removing movable
singularities, since the nonlinear terms in the radial equations for d|α| and d|β| are removed.



First-principles quantum dynamics in interacting Bose gases II 2743

The stochastic wavefunction in the form presented in [8] is only applicable to closed
systems with a definite and explicit number of particles, so e.g. evaporative cooling or coherent
out-coupling from a system cannot be treated.

5.4.2. The work [25] of Plimak, Olsen and Collett. A single-mode undamped, gainless
system (13) at high Bose occupation with coherent state initial conditions was considered.
The ‘noise optimization’ scheme applied therein to greatly improve simulation times can be
identified as an imaginary diffusion gauge of the form (rewritten in the present notation)

g′′ = g′′
A = 1

2 cosh−1[n0κtopt] (68)

defined at high occupation or long times (i.e., while n0κtopt � 1). This is dependent on a
target time topt (which was taken to be topt = 3tcoh in the calculations of [25]), and the initial
Bose occupation n0 = n′

0. The useful simulation times obtainable with this method are also
shown in figures 3 and 4, and table 1. Their dependence on topt has been calculated here, and
is shown in figure 5.

5.4.3. The work [7] of Drummond and Deuar. In section 5.3 of the above article, some
preliminary results for the dynamics of a one-mode, undamped, gainless system (with n0 = 9
particles on average) were shown. The drift gauge (59), and a constant imaginary diffusion
gauge g′′ = 1.4 were used.

6. Convergence issues

6.1. General

A subtle issue with many phase-space distributions is the possibility of so-called boundary
term errors. These can arise when the tails of a distribution (say G(α, β,�)) do not fall off
fast enough as the boundaries of phase space are approached (in the case here, as |α|, |β|, or
|�| → ∞). It is possible for this to lead to a bias in means of random variables even in the
infinite sample limit, if parts of the distribution which have a non-negligible effect are never
sampled.

Some numerical indicators have been developed [36] that allow one to search for symptoms
of these errors using the numerical data. The most useful of these indicators is sudden
appearance of spiking in observable estimates, where the onset of this spiking tends to come
earlier as more trajectories are added. Such spikes usually occur when a single trajectory
samples a long power-law tail. Results obtained after first spiking are suspect.

In our experience [16], another indicator can be obtained by performing two simulations
with sample sizes S differing by an order of magnitude. If a statistically significant difference
(e.g., 2σ) in observable predictions occurs, the simulation is suspect.

In all cases with which we are familiar, symptoms of potential convergence problems
have been apparent already in the equations of motion. They have been of two kinds [16]4.

6.2. Divergence symptoms of the first kind: movable singularities

This is a symptom apparent in the drift parts of the equations of motion.
It has been found [36] that a systematic boundary term error is often associated with

the presence of so-called movable singularities. These are trajectories (usually of measure
zero) in the deterministic parts of the equations that diverge in a finite time. The presence

4 Of course, other ways of achieving a divergence may occur.
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of a bias in this situation can be understood by considering that the effect of an infinitesimal
number of divergent trajectories may be nonzero. Some cases where this occurs with a
positive-P simulation have been investigated by Gilchrist et al [36]. The bias has been shown
to disappear when the movable singularities are removed using drift gauges [6]. See also [16],
chapter 6.

Consider a set of generic stochastic equations

dv = Av(v) dt +
∑

k

Bvk(v) dWk(t), (69)

in complex variables v = {v} free to explore the whole complex plane. If, in the limit
|v| → ∞, deterministic growth of |v| is exponential or slower, then the trajectory cannot
reach infinity in a finite time by deterministic processes, and moving singularities are ruled
out. Exponential growth in v occurs when Re[Av/v] is a positive constant, so we conclude
that a condition sufficient to rule out moving singularities is that

lim
|v|→∞

Re

[
Av

v

]
(70)

converges for all variables v.

6.3. Divergence symptoms of the second kind: noise-weight divergence

This is a symptom which arises from a combination of the noise behaviour and the form of
the quantities which are averaged to obtain observable estimates.

A classic and well-known example of this convergence problem occurs for the present
single-mode system (13) when using an un-normalized Bargmann coherent state kernel

�̂(α, β) = ‖α〉〈β∗‖. (71)

(Compare to the gauge-P kernel (5)). The (non)convergence of this model has been considered
by Carusotto and Castin [37], and also in [16], section 6.2.2.

One finds that the Ito equations of motion are

dα = iα
√

iκ dW1 (72a)

dβ = β
√

iκ dW2. (72b)

To calculate estimates for an observable Ô, we need to evaluate

Tr[Ôρ̂]

Tr[̂ρ]
= 〈Tr[�̂Ô]〉s

〈Tr[�̂]〉s
= 〈f (α, β) eαβ〉s

〈eαβ〉s
(73)

for some appropriate f (α, β) which depends on the details of Ô. The equations of motion
can be formally solved to give

n(t) = α(t)β(t) = n(0) exp[−√
κξ−(t) + i

√
κξ+(t)], (74)

with the variance t Gaussian random variables ξ± defined similarly to (31c)

ξ± = 1√
2

∫ t

s=0
[dW1(s) ± dW2(s)]. (75)

For any observable estimate, we must estimate 〈eαβ〉s using our samples of n(ξ+, ξ−). The
distribution of this can be explicitly evaluated

〈eαβ〉s =
∫ ∞

−∞
P(ξ+)P (ξ−) eαβ dξ1 dξ2

∝
∫ ∞

−∞
exp

{
n(0) e−√

kξ−
ei

√
kξ+ − (ξ−)2

2t
− (ξ+)2

2t

}
dξ−dξ+. (76)
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This distribution is divergent as ξ− → −∞ because the e−√
kξ−

factor in the exponent
always beats the (relatively) weak Gaussian tail, which can only manage a quadratic −(ξ−)2/2t

drop-off in the exponent.

6.4. The stochastic model system

A more general feeling for the effect on convergence of the noise-weight relationship can be
gained by considering the following simple equation for a complex variable v:

dv(t) = cv(t)n dW(t), (77)

with real constants n and c. Its formal solution is

v(t) =
{

[v(0)1−n + c(1 − n)ξ(t)]
1

1−n if n �= 1,

v(0) exp[cξ(t)] if n = 1,
(78)

where again ξ(t) = ∫ t

s=0 dW(s) is a Gaussian random variable of variance t, mean zero. One
finds that

〈vm〉s

{
converges ∀m and ∀ t for n � 1
does not converge for n > 1

(79)

and

〈exp(vm)〉s


converges ∀m < 2(1 − n) and ∀ t for n < 1
converges for m = 2(1 − n) and for t < 1

2c(1−n)2 for n < 1

does not converge for n � 1.

(80)

One can see from above that, barring special favourable circumstances5, the following
relationships will hold (the notation is as in (69)):

(1) If observable averages involve only expressions polynomial in the variables v, then
schemes for which noise terms grow faster than linearly as |v| → ∞ will be divergent. That
is those where

lim
|v|→∞

Re[Bv(v)/v] (81)

is unbounded for any v. For example Bv = cvn, where n > 1.
(2) If observable averages involve expressions exponential in variables v, then schemes

for which noise terms grow faster than ∝ √|v| as |v| → ∞ will be divergent. That is those
where

lim
|v|→∞

|Bv(v)/
√

v| �= 0. (82)

The special case when the limit (82) is finite is also divergent, but only after some initial time
period.

6.5. Single mode: diffusion gauge

How do the gauged methods compare to these divergence symptoms for the single-mode
system? The diffusion-gauged method of section 3 has a finite formal solution (31) at all
times. For observables of finite order in â† and â, only polynomial expressions of α and β

need to be averaged. Such expressions scale as ∝ exp[factors×ξj (t)], and thus their stochastic
averages are equivalent to integrals like

∫
P(ξ) exp[factors × ξ ] dξ which are convergent due

to the Gaussian form of P(ξ).

5 For example, a topological barrier which prevents any trajectories reaching |v| → ∞, given the right initial
conditions.
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6.6. Single mode: drift gauge

Equations (46) with the drift gauge (47) can be formally solved

log n(t) = log n(0) − γ t − e−g′′√
κ[ξ−(t) − iξ+(t)] (83)

log �(t) = −e−g′′√
κ

∫ t

s=0
Im[n(t)][dW1(s) − i dW2(s)]. (84)

(taking �(0) = 1). From (10), observables require the averaging of quantities like �f (α, β),
which include the factor |�(t)|. This takes the form

|�(t)| = exp

{
−√

κ e−g′′
∫ t

s=0
|n(0)| e−γ s e−√

κ e−g′′
ξ−(s) sin[ � n(0) +

√
κξ+(s)] dW +(s)

}
,

(85)

where dW + = (dW1 + dW2)/
√

2.
For large negative ξ−(s), the Gaussian drop-off of P(ξ−(s)) is insufficient by itself to

directly prevent the divergence of this factor. However, the situation is more subtle than in the
simple model equations, due to the presence of an oscillatory stochastic term in the integral.
Hence the convergence of the observable averages is still an open question for the drift-gauged
method, despite the absence of movable singularities.

Lack of convergence has been shown for the ‘simple coherent’ stochastic wavefunction
method [37], which has been discussed in section 5.4.1.

6.7. Many-modes

Regarding movable singularities in the many-mode equations (11), let us first compare to the
movable singularity condition (70). One sees that

(1) The drift terms dependent on ωnn and γn as well as the noise terms dependent on κ

lead to only exponential growth in the moduli of αn and βn, and so cannot cause movable
singularities.

(2) The mode-mixing terms dependent on ωnm, where n �= m, lead to drift of the form

d|αn| = |αm‖ωnm| sin( � ωnm + � αm − � αn) dt + · · ·
� |αm‖ωnm|dt + · · · . (86)

and of similar form for |βn|. These terms lead to behaviour like a linear matrix differential
equation for the radial evolution of the coherent state amplitudes. Such equations do not
diverge in finite time, their solutions being finite linear combinations of exponentials, hence
these terms by themselves cannot lead to movable singularities either.

(3) Only the nonlinear drift terms can cause movable singularities. With no drift gauge
(Gk = 0) as in the positive-P or diffusion-gauge-only equations, these lead (when dominant)
to evolution of the form

d|αn| = κ|αn|2|βn| sin( � αn + � βn) + · · ·
d|βn| = −κ|βn|2|αn| sin( � αn + � βn) + · · · .

(87)

These can cause either |αn| or |βn| to diverge at finite time, for some trajectories. For example,
if |βn| sin( � αn + � βn) = K conspire to be approximately constant and nonzero over the relevant
timescale, then

|αn(t)| ≈ |αn(t0)|
1 − κK|αn(t0)|(t − t0)

, (88)
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which diverges at time tdiv = t0 + 1/κK|αn(t0)|. Of course the precise condition ‘K is constant
over the time t0 to tdiv’ will only occur for a set of trajectories of measure zero, but this is
typical of movable singularities.

(4) The equations that use the drift gauges (59) do not contain the terms (87), and no
movable singularities occur.

As for noise-weight divergences, the situation appears to be similar to the single-mode
cases. The formal solution for the weight is

�(t) = exp

{
−i

√
iκ
∫ t

s=0
e−g′′(s)

∑
n

Im[nn(s)] × noise increments(s)

}
, (89)

and contains an exponent containing exponentials of Gaussian random variables ξ−
k (s) as part

of the nn(s). This is indicative of possible divergences.

6.8. The ‘what happened to the divergence?’ puzzle

It appears that the observable averages using the drift gauge (47) have the potential to be
non-convergent even in the single-mode case. Why then are the numerical simulations of
section 5 well behaved for such a long time, showing no sign of bias? Similarly, no systematic
error was seen in simulations using the ‘simple coherent’ stochastic wavefunction scheme [8],
despite the subsequent proof of its divergence in [37].

The detailed investigation of this is beyond the scope of this paper. The simplest
explanation is simply that the distribution tails are sufficiently convergent to eliminate boundary
terms, while still having a large (perhaps infinite) variance in some observables. It is possible
that the appearance of large statistical uncertainty masks any systematic errors that may occur
in the S → ∞ limit. This is plausible because long distribution tails certainly give rise to
large phase-space excursions and thus huge statistical uncertainty, whether or not systematic
biases in the limit S → ∞ are present. Another reason for this lack of bias may be some type
of special symmetry properties in the equations or the observables calculated.

6.9. Summary

Divergences of the moving singularity type may be present in many-mode (but not single-
mode) simulations using the diffusion-gauge-only method of section 3, while divergences of
the noise-weight type may be present in simulations with the drift-gauged method described
in section 4. However, no bias of any kind was seen in the single-mode simulations (or the
two-mode simulations, as shall be seen below).

Hence, the simulations appear to give correct results, but numerical indicators such as
spiking and ensemble-size dependence should be rigorously monitored in all calculations.

7. Two coupled modes

We now look at the behaviour of a two-mode system, to investigate how the statistical behaviour
seen for the single mode is affected once coupling between modes is present. This is a simple
enough system that investigation of several examples gives meaningful insight into the general
situation.

7.1. The model

The system consists of two orthogonal modes labelled 1 and 2 with inter-particle interactions
in each mode, and Rabi coupling between them. No damping will be considered for simplicity.
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The coupling frequency will be restricted to be real. Time units are chosen so that the nonlinear
interaction frequency is κ = 2, and a transformation is made to an interaction picture in which
the linear mode self-energies h̄ωjj n̂j are moved into the Heisenberg evolution of operators.
The interaction picture Hamiltonian is then

Ĥ = h̄ω12
[̂
a
†
1â2 + â

†
2â1
]

+ h̄

2∑
j=1

â
†
j

2â2
j . (90)

The Rabi frequency is ω12 (in scaled time units). Stochastic equations are as in (2.2). Physically
this model can represent, for example, two internal boson states coupled by an EM field, or
two trapped condensates spatially separated by a barrier. This approximation has been widely
used to investigate the quantum behaviour of BECs in two-state systems [38].

Let us consider two kinds of initial conditions which broadly represent the two kinds of
situations generically occurring in all many-mode simulations

(i) Case 1: coupling between modes of widely differing occupation.
(ii) Case 2: coupling between modes of similar occupation.

In a many-mode calculation, adjacent modes typically behave like case 2, since if a field
model is well resolved by the lattice, then physical properties (e.g., density, and hence mode
occupation) should not change much over the distance between neighbouring lattice points.
Long distance coupling will tend to behave like case 1.

7.2. Case 1: coupling to a vacuum mode

The system starts initially with a coherent state of mean particle number n0 in mode 1, and
vacuum in mode 2. In all simulations of this case, the inter-mode coupling strength was taken
to be ω12 = 5, but the mean particle number n0 (conserved in time) was varied.

At low particle number, the Rabi oscillations dominate the Hamiltonian, and particles
oscillate between the modes, without much phase collapse. At high particle number n0, on
the other hand, phase collapse dominates mode 1, suppressing also the coherent transfer of
particles to mode 2.

The particular values chosen to simulate were

n0 = {1, 17, 200, 1500, 104}. (91)

Simulation times were assessed using the calculated uncertainties in the two observables:
(1) the fraction of particles in the (initially empty) mode 2:

p2 = 〈̂n2〉
N

, (92)

where n̂j = â
†
j âj , and (2) the local normalized second-order correlation functions

g
(2)
j (t, t) = 〈: n̂j (t) :〉

〈̂nj (t)〉 =
〈̂
n2

j

〉〈̂
nj

〉2 − 1

〈̂nj 〉 . (93)

The second-order correlations quantify the amount of (instantaneous)
bunching/antibunching in the boson field. These are unity for coherent states, two for
thermal fields, and (1 − 1/n) for Fock number states of n particles. Large values g(2) > 2
occur, e.g. for quantum superpositions of vacuum and Fock number states with two or
more particles where the average particle number is small. For example in the state
|ψ〉 = sin θ |0〉 + cos θ |n〉, g(2) = (1 − 1

n

)/
cos2 θ .
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Figure 7. Useful simulation times tsim for a mode coupled to vacuum as in section 7.2. Calculated
simulation times are shown as data points, with the symbols denoting gauge used. ‘�’: positive
P; ‘©’: drift gauge (59) and diffusion gauge (94); ‘�’: drift and diffusion gauges (59) and
(58) with best target time parameters ω12topt = {2.5, 0.5, 0.5, 0.075} for n0 = {1, 17, 200, 104},
respectively. Dependence of tsim on topt can be found in [16], figure 8.6. Subplots (a) and (b)
show simulation times based on estimates of the observable p2, while (c) and (d) times based on
g

(2)
2 . Subplots (a) and (c) compare to physical time scales, including the Rabi oscillation period

tRabi = 2π/ω12, while subplots (b) and (d) compare to expected simulation times for a single mode
using the empirical fits of table 2 and (95). The expected tsim are plotted as light lines. Dotted:
positive P; solid: drift and diffusion gauges with topt = 0; dashed: with optimum topt choice.

The drift and diffusion gauge scheme using (59) and (58) was considered. Comparison
was also made to the positive-P (g′′

j = Gk = 0), and to the special case of topt = 0 in the
diffusion gauge which is then

g′′
n = 1

6 log[1 + 4n′′
n(t)

2]. (94)

This may become nonzero after spread in the n′′
j from the initial n′′

j = 0 occurs. In each run,
S = 2 × 105 trajectories were used, and useful simulation precision taken to occur at such a
time tsim when 10% or smaller relative uncertainty in an observable could be obtained using
106 trajectories.

In figure 7, simulation times are compared to physical timescales and expected values
based on single-mode expressions from table 2. An example simulation is shown in figure 8.
Note that for gauged simulations using (59) and (94), single-mode simulations led to the tsim

empirical fitting parameters

{c0, . . . , c4} = {1, 800 ± 260, 3.6+∞
−2.3, 1.2 ± 0.2, 0.42 ± 0.03

}
. (95)

One point to note is that tsim was based on the moment when the relative error in a quantity
gj or pj was first found to be too large. In calculations of g(2), uncertainties are much greater
when g(2)(0, t) peaks—see, e.g., figure 8(f ). Good accuracy can often be obtained between
peaks for much longer times than shown in figure 7(c) or (d), up to about the same simulation
time as worked out based on p2. This is especially evident for n0 = 104.
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Figure 8. Coupling to vacuum mode as in section 7.2, n0 = 104. Subfigures (a)–(c) show results
with positive-P simulations, whereas (d)–(f ) show results with combined drift gauge (59) and
diffusion gauge (58) using target time ω12topt = 0.1. The triple lines indicate mean and error bars.

7.3. Case 2: coherent mixing of two identical modes

The system starts initially with identical coherent states of mean particle number n0 in both
modes. The two-mode state is separable. This time simulations were carried out with constant
particle number n0 = 100, but the coupling frequency ω12 was varied.

At low frequency ω12 
 n0 = 100, phase collapse local in each mode dominates, and
phase oscillations in each mode occur with period tosc = π/n0, while at high frequency
ω12 � n0 = 100, the inter-mode coupling dominates and phase oscillations for each mode
occur with period tRabi = 2π/ω12. One expects that for weak coupling, the two modes should
behave largely as two independent single modes of section 5.

The particular values chosen to simulate were

ω12 = {5000, 500, 50, 5, 0.5, 0.05, 0.005, 0.0005}. (96)

The simulation time tsim was assessed here based on 10% uncertainty in |G(1)(0, t)| (for either
mode), as in the single-mode case. There were S = 104 trajectories per simulation.

In figure 9, simulation times are compared to physical timescales and expected values
based on single-mode expressions using table 2. An example simulation is shown in
figure 10.

Note that the topt = 0 gauge (94) performed better than any topt > 0 gauge for all ω12

values tried here. The dependence of tsim on topt is shown in figure 8.8 of [16].

7.4. Analysis

The above examples have not by any means been a comprehensive assessment of gauge
performance for general cases of the model (90), since only a few parameter regimes have
been explored. Still, several aspects of the situation when modes are coupled have been seen.

• Broadly speaking, when local scattering within a mode dominates over the coupling
between modes, the response of the system to local gauges is similar to what was seen
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Figure 9. Useful simulation times tsim for two identical modes undergoing coherent mixing as
in section 7.3. Calculated simulation times are shown as data points, with the symbols denoting
gauge used. ‘�’: positive P; ‘©’: drift gauge (59) and diffusion gauge (94). Subplot (b) compares
to expected simulation times for a single mode using the empirical fits of table 2 and (95). These
expected tsim are plotted as light lines: dashed: positive P; solid: drift gauged.
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Figure 10. Mixing of two identical modes as in section 7.3, ω12 = 0.0005. Subplot (a) shows
results with a positive-P simulation, whereas (b) shows results with combined drift gauge (59) and
diffusion gauge (94). The triple lines indicate mean and error bars.

for single modes. Large extensions of tsim are found relative to the positive-P method
to well beyond tcoh when n � 1. Little improvement is found when n � O(1). In
this strong scattering regime, one does not need much inter-mode coupling ω12 to reduce
the simulation time in absolute terms by a factor O(2 − 10), although tsim > tcoh is still
obtained.

• When the inter-mode coupling dominates, the local diffusion gauges do not appear to be
useful. They actually reduce simulation time as compared to the positive-P method,
although several Rabi oscillation periods can always be simulated. In the Case 2
simulations, the transition between the strong and weak coupling behaviour appears
to be at around

ω12 ≈ O(κn), (97)

which is the point at which the expectation values of the coupling and two-body scattering
energies in the Hamiltonian are approximately equal. This implies, as noted previously,
that nonlocal gauges are likely to be more useful in these cases.

• The beneficial effect of choosing topt > 0 seen for a single mode (see, e.g., figure 6) appears
to be suppressed at intermediate mode occupations n0 � O(200). However, the topt = 0
diffusion gauge (94) has a marked beneficial effect even when two-body scattering is
significant. This parameter range is for ω12 
 nκ , and O(1) � n0 � O(103). Simulation
times obtained are smaller by about a factor of O(2) than those given for a single mode with
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the same gauge. At higher occupations, the benefit gained with (94) abates but nonzero
topt values appear to become useful again, and continue to provide strong improvements
over positive-P simulations. (See, e.g. figure 7(d).) The gauge (94) is convenient also
because there is no a priori parameter topt.

At the level of the stochastic equations, the evolution of dαj can gather randomness from three
sources.

(i) Directly from the local noise term ∝αj

√
κ dWj .

(ii) Indirectly from the local nonlinear term ∝καjnj that can amplify variation in the local
noise term.

(iii) From the other mode through the coupling term ∝ω12α¬j .

The drift gauges (59) neutralize source 2. The diffusion gauges (42), (58) or (94) suppress
the direct noise source 1. No local gauge is good at suppressing the third source of randomness,
however, because these fluctuations are largely independent of any processes occurring in mode
j . What happens is that even small randomness in one mode feeds into the other, can become
amplified, and fed back again. Combating such effects would require a nonlocal gauge.

Lastly, significantly more detail on two-mode simulations, including consideration of
some other gauges, and the relationship between topt and tsim can be found in chapter 8 of [16].

8. Many-mode example: uniform gas

We revisit the uniform gas system simulated in the companion paper [12]. This consists of
a uniform one-dimensional gas of bosons with density ρ and inter-particle s-wave scattering
length as . The lattice is chosen with a spacing �x � as so that inter-particle interactions
are effectively local at each lattice point, and the lattice Hamiltonian (1) applies. Periodic
boundary conditions are assumed.

The initial state is taken to be a coherent wavefunction, which is a stationary state of the
ideal gas with no inter-particle interactions (i.e., as = 0). The subsequent evolution is with
constant as > 0, so that there is a disturbance at t = 0 when inter-particle interactions are
rapidly turned on. Physically, this can correspond to the disturbance created in a BEC by
rapidly increasing the scattering length at t ≈ 0 by, e.g. tuning the external magnetic field near
a Feshbach resonance [39, 40]. More discussion of the physics can be found in the companion
paper [12].

A brief set of exploratory simulations were made with the diffusion gauge (42) (no drift
gauge) to investigate whether simulation time can be extended. The case of ρ = 100/ξ heal

was picked, and target time topt was varied for the two cases �x = ξ heal/2 and �x = 10ξ heal.
Note that in both cases the occupation per mode n = ρ�x is �1. Simulations were with
M = 250 and M = 50 lattice points (meaning 12 500 and 5 × 104 particles on an average),
respectively, and S = 104 trajectories in both cases.

Simulation times obtained are shown in figure 11, and correspond to the time of first
spiking seen in estimates of the second-order spatial correlation function

g(2)(xn) = 1

M

∑
m

〈̂
a
†
mâ

†
m+nâmâm+n

〉〈̂
a
†
mâm
〉〈̂
a
†
m+nâm+n

〉 . (98)

The time scale used is

tξ = m(ξ heal)2

h̄
= h̄

2ρg
(99)
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Figure 11. Simulation times as a function of the target time topt when using the diffusion gauge
(42), and Gk = 0. The standard positive-P method when topt = 0. All simulations are of a
ρ = 100/ξheal gas, but with differing lattice spacing �x. S = 104 trajectories, M = 50.

(the ‘healing time’), which is approximately the time needed for the short-distance O(ξ heal)

inter-atomic correlations to equilibrate after the disturbance. See, e.g. [12].
For comparison, gauged simulations of isolated lattice points with the same occupations

n = ρ�x gave much bigger improvements in tsim. Using (66) and diffusion gauge (42) data
from table 2, we expect tsim ≈ 140tξ and tsim ≈ 660tξ for �x = 2ξ heal and 10ξ heal, respectively.
This is to be contrasted with the predictions of tsim ≈ 15tξ and tsim ≈ 49tξ , respectively, for
the standard positive-P method, which are also an accurate reflection of tsim in the present
many-mode case. This is consistent with what was seen in [12].

Clearly, the local gauges extend simulation time in these large uniform density systems,
although the improvement is relatively smaller than for the single mode. Also, the numerical
results are consistent with the analysis in section 3.4 which indicated in (45) that simulation
time improvements would occur once �x � O(ξ heal). Lastly, it is noteworthy that the
dependence of tsim on topt shows qualitative similarities to the single-mode case of figure 5.

9. Conclusions

The positive-P representation method is capable of simulating many-body quantum dynamics
of interacting Bose gases from first principles [12, 14, 15, 16]. A limiting factor is that
precision is lost after a certain time tsim due to sampling error, and this may be accompanied by
systematic boundary term errors. This time can be short when some modes of a many-mode
boson system are occupied by many particles. In that case, precision is lost before these highly
occupied modes lose coherence due to phase diffusion [12].

Using the related gauge-P representation, local diffusion and drift gauges have been
developed that greatly improve the useful simulation times at high occupation, most strongly
for single-mode cases. The resulting simulation times have been investigated in some detail,
and substantial improvement has been demonstrated in 1, 2, and many-mode (M = 50 and
M = 250) simulations. For many of the single- and double-mode cases considered, full
decoherence can be achieved while still retaining good precision.

Two gauge choices were proposed as being the most advantageous.

(i) Diffusion gauge (42) only.
(ii) Drift (59) and diffusion gauge (58).

The latter appears less broadly applicable because weight fluctuations accumulate from all
modes, leading to a decrease in simulation time with increased system size, and because of
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some doubt over its convergence properties. However, this latter method can lead to longer
simulation times when there is one, or only several, dominant modes.

Considerations of convergence in section 6 have highlighted two routes that may lead to
divergences: moving singularities and noise-weight considerations. Nevertheless, no sign of
any bias is seen, an interesting situation which warrants further investigation.

Generally speaking, the local-gauge methods considered here give much better
performance when the inter-particle scattering local to each mode is a stronger process than
inter-mode coupling due to the kinetic evolution and/or external potentials. This is the case if
sufficiently coarse lattices are used.

Finally, the investigation of local gauges carried out here may also be useful in developing
more robust nonlocal gauges. These might lengthen simulation times for lattices denser than
the healing length, beyond what is possible with either the standard positive-P method, or the
local stochastic gauges.
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