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Quantum Atom Optics with Fermions from Molecular Dissociation
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We study a fermionic atom optics counterpart of parametric down-conversion with photons. This can be
realized through dissociation of a Bose-Einstein condensate of molecular dimers consisting of fermionic
atoms. We present a theoretical model describing the quantum dynamics of dissociation and find analytic
solutions for mode occupancies and atomic pair correlations, valid in the short time limit. The solutions
are used to identify upper bounds for the correlation functions, which are applicable to any fermionic
system and correspond to ideal particle number-difference squeezing.
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Advances in the experimental control of degenerate
quantum gases of neutral atoms have recently reached
the stage where atomic correlations and quantum statistics
can be directly accessed via the measurement of atom shot
noise and atom counting [1–5]. Given the similarities with
the pioneering photon correlation measurements of
Hanbury Brown and Twiss [6] and the intriguing parallels
with modern quantum optics, these experiments represent a
remarkable step forward in advancing quantum atom op-
tics. Earlier and related experiments were performed either
in a cold but not degenerate atomic beam [7] or else were
examples of indirect measurements of higher-order corre-
lations and number squeezing [8–11].

In quantum optics with photons the most successful
applications have been achieved using squeezed light and
entangled photon pairs from parametric down-conversion
[12–15]. A matter wave or atom optics counterpart of
down-conversion can be realized through dissociation of
a Bose-Einstein condensate (BEC) of molecular dimers.
The most direct analogy with quantum optics corresponds
to the case of bosonic statistics of constituent atom pairs
[16–19], as realized in dissociation experiments with
23Na2 and 87Rb2 [20,21]. In contrast to this, the recent
correlation measurements at JILA [1], using dissociation
of 40K2 molecules near a magnetic Feshbach resonance,
have an intriguing twist in that the constituent atoms obey
fermionic statistics. In this case, analogies with photonic
down-conversion and the implications for possible future
applications are not so immediate as in the case of bosons.

In this Letter we study the quantum dynamics of disso-
ciation of diatomic molecules into fermionic atoms and
analyze the resulting atom correlations in momentum
space. At low densities and small s-wave interactions the
momentum correlations are reflected in the density corre-
lations after spatial expansion of the cloud. Accordingly,
the results obtained here are related to the spatial correla-
tion measurements performed at JILA [1]. Together with
the recent studies of fermionic four-wave mixing [22] and
association of fermionic atoms into molecules [23,24], the
present work (see also [25]) expands the paradigm of
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fermionic quantum atom optics. Possible applications are
in precision measurements and fundamental tests of quan-
tum mechanics, similar to those proposed recently for
dissociation into bosonic atoms [17,19].

Because of the limitations of the undepleted molecular
field approximation employed here, the obtained results
are only applicable to short dissociation times. However,
the advantage is the analytic transparency of the results,
which provide useful insights at the conceptual level. In
particular, we show rigorously that the obtained pair cor-
relations represent their generic upper bounds and are
applicable to any fermion system. This gives a useful
reference for further (numerical) studies of this and related
systems with less restricted approximations. In addition,
we point out that the notions of maximum correlation and
squeezing of atom number-difference fluctuations have to
take into account the fact that the shot-noise level for
fermions is fundamentally different to what one usually
encounters in quantum optics with bosons.

We start the analysis by considering an effective field
theory Hamiltonian for the coupled atomic-molecular sys-
tem given by Ĥ � Ĥ0 � i@�

R
dx��̂y0 �̂"�̂# � �̂y# �̂y" �̂0�

[26]. Here, Ĥ0 stands for the usual kinetic energy term plus
the trapping potential, �̂0�x; t� is the bosonic field operator
for molecules of mass m0, while �̂"�#��x; t� are fermionic
operators for atoms (with masses m"�#� � m0=2 � m) in
two different spin states, � �"; # . The atom-molecule
coupling is described by �, and we have omitted intra-
and interspecies s-wave scattering interaction terms, which
is justified at low particle densities.

Considering a uniform system in a cubic box of side L,
we employ an undepleted molecular field approximation
valid in the short time limit. The molecular field is de-
scribed by a coherent state and we absorb its mean-field
amplitude �0 into an effective coupling g � �

�����
n0
p

, where
n0 � j�0j

2 is the density. Assuming periodic boundary
conditions and expanding the atomic fields in a plane-
wave basis, in terms of single-mode operators, we obtain
the following effective Hamiltonian, in a rotating frame:
1-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.110401


0 2 4
0

0.5

1

1.5

τ

n q
(τ

)

q
0

q
i

(a)

-5 0 5
-5

0

5

0 1 2 3 4
0

0.2

0.4

0.6

0.8

τ

N
σ/l3

(b)

FIG. 1 (color online). (a) Average occupancies of one of the
resonant modes q0 �

������
j�j

p
and two sidebands qi (solid lines) as a

function of time, for � � �16. The dashed line is the solution
for the q0 mode in the case of bosons, which grows exponen-
tially. The inset shows the slice through the origin of the
fermionic 3D momentum distribution nq��� at � � 0:6.
(b) Total number of atoms N�=l3 (solid line) as a function of
time, for � � �16. The normalization with respect to l3 makes
this quantity independent of the quantization volume. The
dashed line is the respective bosonic result, while the straight
dotted line is the total number of atoms N����=l3 ’

������
j�j

p
�=�4��

obtained using Fermi’s golden rule calculation of the molecular
spontaneous decay rate [20] in the linear regime.
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Ĥ �
X
k;�

@�kn̂k� � i@g
X
k

�ĉk"ĉ�k# � ĉ
y
�k#ĉ

y
k"�: (1)

Here, ĉyk� (ĉk�) are fermionic creation (annihilation) op-
erators, n̂k� � ĉyk�ĉk� is the particle number operator, k is
the momentum [ki � 2�ni=L, ni � 0;�1;�2; . . . , i �
x; y; z], and �k � �� @k2=�2m�. The detuning 2� corre-
sponds to the overall energy mismatch 2@� between the
free two-atom state in the dissociation threshold and the
bound molecular state.

The model system in mind corresponds to a pure mo-
lecular BEC on the stable side of a Feshbach resonance,
with no residual atoms present. This is followed by a rapid
switching on of the coupling � (e.g., via an rf transition or a
rapid crossing through the resonance to the atomic side)
and a simultaneous switching off of the trapping potential.
From this stage onward, the atomic filed evolves in free
space, with a vacuum initial state and negative detuning �.
Since the excess of energy 2@j�j is released into the kinetic
energy of dissociated atom pairs in the two spin states,
2@j�j ! @

2�jk"j2 � jk#j2�=�2m�, we expect—from mo-
mentum conservation—strong correlation between the
atoms with opposite spins and momenta, k" � �k#. In
fact, the interaction term in the Hamiltonian (1) is the
prototype interaction to produce—in the lowest order
perturbation theory—an entangled spin singlet state. It is
also a fermionic analog of the squeezing Hamiltonian in
quantum optics [15].

Introducing a dimensionless time � � t=t0, length l �
L=d0, detuning � � �t0, and momentum q � kd0, where
t0 � 1=g is the time scale and d0 �

�������������������
@t0=�2m�

p
is the

length scale, we can put the system into a dimensionless
form, with the Heisenberg equations of motion:

dĉq"=d� � �i�qĉq" � ĉ
y
�q#; (2a)

dĉy�q#=d� � i�qĉ
y
�q# � ĉq"; (2b)

where �q � q2 � � (q � jqj). Solutions to Eq. (2) are

ĉq"��� � Aq���ĉq"�0� � Bq���ĉ
y
�q#�0�; (3a)

ĉy�q#��� � Bq���ĉq"�0� � A�q���ĉ
y
�q#�0�: (3b)

Here, Aq��� � cos�gq�� � i�q sin�gq��=gq, Bq��� �
sin�gq��=gq, gq � �1� �2

q�
1=2, and jAqj

2 � B2
q � 1.

Using these solutions with vacuum initial conditions, we
find that the only nonzero second-order moments are the
mode occupancies and the pairing fields:

nq��� � hn̂q����i � B2
q��� � sin2�gq��=g

2
q; (4)

mq��� � hĉq"���ĉ�q#���i � Aq���Bq���; (5)

which, in addition, are related by

jmq���j
2 � 	1� nq���
nq���: (6)

For comparison, in the case of bosons the last terms in
Eqs. (2a) and (3a) acquire positive signs, while the sin
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( cos) terms in the coefficients Aq and Bq are replaced by
sinh ( cosh), together with gq � �1� �2

q�
1=2 and jAqj

2 �

B2
q � 1 [27]. As a result, the solutions give nq��� �

sinh2�gq��=g
2
q and jmq���j

2 � 	1� nq���
nq���.
From Eq. (4) we see that the momentum distribution of

the atoms in the two spin states, " and # , is the same. The
average mode occupancies undergo oscillations character-
istic of fermionic statistics [see Fig. 1(a)]; the maximum
occupancy of nq��� � 1 imposed by the Pauli exclusion
principle is reached at integer multiples of time � � �=2,
for resonant modes satisfying gq0

� 1. For q0 to be non-
zero, this condition requires a negative detuning �, and
therefore the absolute resonant momentum is given by
q0 � jq0j �

������
j�j

p
. During the initial stage (� & 0:6), the

occupancies grow in phase and the 3D momentum distri-
bution is peaked on the surface of a spherical shell of radius
q0 as shown in the inset of Fig. 1(a). At later times the
oscillations dephase and the distribution function becomes
more complicated in structure.

The total number of atoms in each spin state, N���� �P
qnq���, as a function of time is shown in Fig. 1(b). The

initial growth of N���� saturates at � ’ 1:2, after which we
see nontrivial oscillations. This is a combined effect of
Pauli blocking and the oscillatory behavior of the individ-
ual mode occupancies. We emphasize that the saturation in
this model is obtained within the undepleted molecular
field approximation, and thus is purely a consequence of
Fermi statistics. By comparison, the same approximation
for bosons leads to an exponentially growing output due to
bosonic stimulation and hence to unphysical results in the
long time limit. Here, once the depletion is taken into
account, the saturation is naturally reached due to a finite
initial number of molecules.
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FIG. 2 (color online). Snapshots of the average column density
in momentum space �np���=l at different times �, for � � �16.
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FIG. 3. (a) Correlation between momentum column density
fluctuations, �g"#�p;�p; ��, as a function of the absolute 2D
momentum p � jpj at different times �, for � � �16. The
correlation is larger initially, in the few-particle regime, and
decreases as the number of atoms grows. Similar relationship is
seen within the low-density tails and the higher-density central
part of the momentum distribution. (b) Correlation signal as a
function of time, for two different values of the p.
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In this respect, the present fermionic results suggest that
the undepleted molecular field approximation for fermions
is more reliable than for bosons. At the level of pairwise
mode coupling, this conjecture is in fact supported by the
results of a numerical simulation using an exact quantum
Monte Carlo method [28]. For example, at � ’ �=2 the
discrepancy between the present and the exact results is
about 5% for fermions, while it is �11% for bosons and
grows further with time. Similarly, the negligible role of
the molecular depletion in the short time limit can be
verified using the results of a related numerical study of
Ref. [25] where the molecular field dynamics is treated at
the mean-field level.

We now turn to the analysis of pair correlations of the
atoms in the opposite spin states and consider a normalized
correlation function between 3D density fluctuations
�n̂q� � n̂q� � hn̂q�i in momentum space:

g"#�q;q0; �� � h�n̂q"�n̂q0#i=
���������������������
hn̂q"ihn̂q0#i

q
: (7)

For atom pairs with nonopposite momenta the pair
correlation vanishes, g"#�q;q0; ��jq0��q � 0, implying the
absence of any correlation. In the case of equal but oppo-
site momenta, we find that

g"#�q;�q; �� � jmq���j2=nq��� � 1� nq���< 1: (8)

This corresponds to the maximum degree of correlation—
as a consequence of Eq. (6), except when nq��� � 1, in
which case g"#�q;�q; �� coincides with the uncorrelated
level. For bosons, the respective pair correlation is given by
g"#�q;�q; �� � 1� nq���, which increases with nq��� and
always stays above zero.

In order to make a better connection with the experi-
ments at JILA [1] we note that the correlation measure-
ments were made using absorption images after a time-of-
flight expansion. This corresponds to analyzing the spatial
column densities which involve integration of the 3D
density along the direction of propagation of the imaging
laser. Accordingly, we now analyze the momentum space
analog of this procedure and calculate the correlation
between momentum column density fluctuations.

The atom number operator corresponding to a
z-integrated momentum column density is given by �̂np� �P
qz n̂q�, where p � �qx; qy� is the reduced 2D momentum.

Using Eq. (4), the average column density is found via
�np��� � h �̂np����i �

P
qznq��� and is the same for the two

spin states. Snapshots of �np��� at different times � are
plotted in Fig. 2. The last two frames show a clear ring
structure around the central background, which is consis-
tent with the observed absorption images [1] of spatial
column densities after free expansion.

The correlation function between momentum column
density fluctuations in the two spin states, which we denote
via �g"#�p;p0; ��, is defined as in Eq. (7) except that the
operators n̂q� are replaced by �̂np�. In this case, the bars
above the operators signify the procedure of summation
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over the qz component, before taking the ensemble aver-
age. For equal but opposite momenta, p0 � �p, we find
(see Fig. 3) that

�g "#�p;�p; �� � 1�
X
qz

	nq���
2= �np���< 1: (9)

For any other pair of momenta (p0 � �p), the correlation
function is simply zero, implying the absence of any
correlation. In the case of dissociation into bosonic atoms,
the same correlation function is given by �g"#�p;�p; �� �
1�

P
qz	nq���
2= �np���> 1.

It is important to point out that the degree of correlation
between atom pairs with opposite spins and momenta
obtained in this model is maximal at any given density.
The notion of maximal is defined here to correspond to
perfect (100%) noise reduction of the number-difference
fluctuations below the shot-noise level.

This can be easily understood at the level of just two
modes ĉq" and ĉ�q#, which we define via ĉ1 and ĉ2. Consid-
ering the normalized variance of the particle number-
difference fluctuations, V � h	��n̂1 � n̂2�


2i=SN, where
SN is the shot-noise level, one can show that in the simplest
case of hn̂1i � hn̂2i, the variance V and the pair correla-
tion g12 � h�n̂1�n̂2i=

�����������������
hn̂1ihn̂2i

p
are related by V � 1�

2g12hn̂1i=SN. Here the shot-noise level for fermions is
given by SN �

P
ih��n̂i�

2i �
P
ihn̂ii�1� hn̂ii�, which we
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point out is always sub-Poissonian and is independent of
the state of the fermion system. For a nonzero SN, the
assumption of a perfect noise reduction below the shot-
noise level, V � 0, can be used to identify the maximum
degree of correlation, giving g�max�

12 � 1� hn̂1i. This is
exactly as obtained in the present model, Eq. (8). At times
when the average occupancies approach one, the shot-
noise itself vanishes. Therefore, the notions of sub-shot-
noise fluctuations and maximal correlation become mean-
ingless for hn̂ii � 1.

For comparison, in the bosonic case the shot-noise level
corresponds to that of a coherent state, SN � hn̂1i � hn̂2i,
and never vanishes. For equal mode occupancies, it gives
V � 1� hn̂1i � g12, and therefore V � 0 implies that
g�max�

12 � 1� hn̂1i. This is always larger than the uncorre-
lated level of 0, and again agrees with the actual solution to
the problem of molecule dissociation.

In order to apply the results of the present uniform
model to realistic trapped condensates, we remark that
the quantization length L should be matched to the char-
acteristic size of the molecular BEC. In addition, one has to
ensure that the time window for dissociation is chosen such
that the momentum kick k0 ’

�������������������
2mj�j=@

p
imparted on the

atoms is not too large, so that the atoms created mostly near
the trap center remain within the molecular BEC while
the dissociation is on. This implies that the present results
are applicable to t & tmax � Lm=�2@k0� or � & �max �

l=�4
������
j�j

p
�. Considering a typical set of parameters, with

3� 105 initial number of molecules and l ’ 46 [29], the
example presented here for � � �16 would produce
�1:5� 104 atoms in each spin state at � � 0:6 which
compares favorably with �max ’ 3. This corresponds to
5% conversion and is consistent with the use of the unde-
pleted molecular field approximation.

In practice, the main factors which may contribute to the
reduction of the correlation signal are (i) the presence of a
large thermal component in the initial molecular gas, in
which case the thermal center-of-mass momenta may no
longer be negligible compared to the momentum kick of
the atoms k0, and (ii) atom-atom s-wave scattering be-
tween the two spin components, which at high densities
may substantially redistribute the momenta over the
s-wave scattering spheres and spoil the correlations.

In summary, we have analyzed short time dynamics of
dissociation of a BEC of molecular dimers into correlated
fermionic atoms in two different spin states. The pair
correlations between atoms with opposite spins and mo-
menta calculated here correspond to the maximum possible
degree of correlation and serve as upper bounds for more
detailed calculations and comparisons with experiments.
The system may find applications in precision measure-
ments beyond the shot-noise level, as well as for funda-
mental tests of quantum mechanics with macroscopic
number of fermions, such as demonstrations of Bohm’s
version of the Einstein-Podolsky-Rosen paradox [19] and
tests of Bell’s inequalities for spin observables.
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