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PACS. 03.75.Hh – Static properties of condensates; thermodynamical, statistical, and struc-
tural properties.

PACS. 03.75.Ss – Degenerate Fermi gases.
PACS. 05.30.Fk – Fermion systems and electron gas.

Abstract. – We present a theory for a superfluid Fermi gas near the BCS-BEC crossover,
including pairing fluctuation contributions to the free energy similar to that considered by
Nozières and Schmitt-Rink for the normal phase. In the strong coupling limit, our theory
is able to recover the Bogoliubov theory of a weakly interacting Bose gas with a molecular
scattering length very close to the known exact result. We compare our results with recent
Quantum Monte Carlo simulations both for the ground state and at finite temperature. Excel-
lent agreement is found for all interaction strengths where simulation results are available.

The recent experimental realization of strongly interacting Fermi gases of 6Li and 40K
atoms near a Feshbach resonance has opened up the exciting possibility of investigating the
crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate
(BEC) [1–5]. In these systems, the inter-atomic interaction strength can be varied by tuning
the energy of a near-resonant molecular state with a magnetic field.

Below resonance where the s-wave scattering length a is positive, stable diatomic molecules
are observed to form a BEC at low temperatures. Above resonance, with a < 0, the molecules
dissociate and form a BCS superfluid of fermionic pairs. In the crossover region where the
scattering length a is large one can access a new, strongly correlated regime known as the
unitary limit [6]. Recent experiments in the crossover regime have found evidence for this
transition by measuring low-lying collective modes [2, 7, 8] and heat capacity [4, 9].

These rapid experimental developments constitute an ideal testing ground for theoretical
studies of the BCS-BEC crossover. However, theoretical results available in the literature are
limited in the strongly correlated unitary regime. The first systematic study of the crossover at
zero temperature was provided by Eagles and Leggett based on BCS mean-field equations [10,
11]. Later, the effects of pair fluctuations were considered by Nozières and Schmitt-Rink
(NSR) at temperatures above the superfluid transition [12,13]. This was recently extended to
the superfluid phase by Strinati et al. using finite-temperature Green functions [14,15].

Extensions of these approaches to take into account the bare Feshbach molecule have
also been presented [16, 17], with the conclusion that additional two-channel effects can be
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neglected for broad resonances and detunings near the crossover regime [18, 19]. All these
studies give a qualitative description of the crossover: but none of them are quantitatively
correct in the unitary limit, and in the BEC region. A major drawback of these theories is
that the predicted value of the molecular scattering length in the deep BEC regime, am = 2a,
does not agree with the exact result from the solution of the four-body problem [20–22],
i.e., am � 0.60a. This much lower value is, however, consistent with Quantum Monte Carlo
(QMC) simulations [23,24].

The purpose of the present letter is to develop a quantitatively reliable theory for superfluid
Fermi gases in the broad resonance or single-channel limit, at all interaction strengths and
low enough temperatures. To this end, we extend the NSR analysis to the superfluid phase
on top of the BCS mean-field approximation. An essential ingredient of our theory is that
the number equation, i.e., the relation n = −∂Ω/∂µ, is satisfied for the full thermodynamic
potential Ω —not just for the mean-field contribution to Ω. In the deep BEC limit, where
molecule-molecule correlations are important, this requirement renormalizes the mean-field
molecular scattering length of am = 2a to a value of am � 0.57a [25], which is very close to
the exact four-body prediction [20]. As a consequence, our results for the equation of state at
zero temperature along the full range of the BCS-BEC crossover are in excellent agreement
with the QMC data [23]. The temperature-dependent results also agree with recent path
integral Monte Carlo calculations [26].

The system we consider is a uniform gas of N Fermi atoms in two hyperfine states denoted
as pseudo-spins σ =↑, ↓, with N↑ = N↓ = N/2. To characterize the superfluid ground state,
we introduce explicitly an order parameter ∆ that will be determined at the mean-field level,
and use the Nambu spinor representation, in which the system is described by the Hamiltonian
H = H0 + V∆ + Vint, with the terms

H0 =
∑

k

ψ†
k [ξkσz −∆σx]ψk +

∑
k

ξk, (1)

V∆ =
∑

k

ψ†
k∆σxψk, (2)

Vint =
U0

2

∑
kk′q

(
ψ†

k+qσzψk

)(
ψ†

k′−qσzψk′
)
, (3)

where ψ†
k = (c†k↑, c−k↓) is the Nambu creation field operator for Fermi atoms with the kinetic

energy ξk = εk − µ = h̄2k2/2m − µ, µ is the chemical potential, and σx and σz are the
2 × 2 Pauli matrices. The contact interaction U0 for atom-atom interactions is renormalized
by introducing the s-wave scattering length a. This is defined by the low-energy limit of the
two-body scattering problem via (4πh̄2a/m)−1 = U−1

0 +
∑

k(2εk)
−1.

After taking into account anti-commutators, the “unperturbed” term H0 can be identified
as the standard BCS mean-field Hamiltonian. In variational calculations, the approximate
ground state would be an eigenstate of H0, with ∆ varied to minimize the total energy [16].
However, this approach is inappropriate on the BEC side of the transition, where molecule-
molecule scattering gives rise to strong density correlations involving four particles rather
than just two. The purpose of the present letter is to describe an approximate perturbation
expansion which takes this into account.

A diagrammatic expansion is performed in terms of the propagator of the “free” Hamilto-
nian H0, which is given by

G0 (k, iωm) =
[ G (k, iωm) F (k, iωm)

F (k, iωm) −G (k,−iωm)

]
. (4)
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Fig. 1 – Diagrammatic representations of the mean-field contributions ((a) and (b)) and the pairing
fluctuation contributions (c) to the thermodynamic potential. The full line represents G0 (k, iωm),
the line with arrows describes the anomalous Green function G12 = G21 = F (k, iωm), and the dashed
line is U0.

Here G(k, iωm) = −[iωm + ξk]/[ω2
m + E2

k] and F(k, iωm) = ∆/[ω2
m + E2

k] are, respec-
tively, the BCS normal and anomalous Green functions, while Ek = [ξ2

k + ∆2]1/2 denotes
the single-particle excitation energy and ωm = (2m + 1)π/(h̄β) is the fermionic Matsub-
ara frequency with inverse temperature β = 1/kBT . The associated “unperturbed” ther-
modynamic potential then takes the form, Ω0 = 1/β

∑
k,mTrlnG0(k, iωm) +

∑
k ξk =∑

k[(ξk − Ek) + 2/β ln f(−Ek)], where f(x) = 1/(eβx + 1) is the Fermi function.
The contributions of interactions to the thermodynamic potential consist of a static mean-

field part and a fluctuation part originating from the particle-particle Cooper channel. As
shown diagrammatically in figs. 1a and b, the mean-field corrections from V∆ and Vint

read, respectively, δΩ∆ = 1/β
∑

k,m ∆Tr[σxG0(k, iωm)] = −2∆2/U0 and δΩmf = U0 ×
[1/β

∑
k,m F(k, iωm)]2 = ∆2/U0, where we have used the mean-field gap equation

− m

4πh̄2a
=

∑
k

[
1− 2f (Ek)

2Ek
− 1

2εk

]
. (5)

Here the coupling U0 is eliminated in favor of the s-wave scattering length a. These corrections,
together with Ω0, give rise to an overall mean-field thermodynamic potential of Ωmf = Ω0 +
δΩ∆ + δΩmf ,

Ωmf =
∑

k

[ξk − Ek +
∆2

2εk
+

2
β
ln f(−Ek)]− m∆2

4πh̄2a
. (6)

Fluctuation corrections beyond mean field are illustrated in fig. 1c. A sum of the resulting
geometrical series thus leads to [12,13,17]

Ωpf = − 1
π

∑
q

∫ +∞

−∞
dω

1
eβω − 1

δ (q, ω) , (7)

where, following NSR, we have written Ωpf in terms of a phase shift defined by δ(q, ω) =
− Im ln[−χ11(q, ω+ iη)]− 1/2 Im ln{1− χ2

12(q, ω+ iη)/[χ11(q, ω+ iη)χ∗
11(q,−ω+ iη)]}. Here

the analytic continuation is performed and η is a positive infinitesimal, while χ11 = 1/U0 +
1/β

∑
k,m G(q − k, iνn − iωm)G(k, iωm) and χ12 = 1/β

∑
k,m F(q − k, iνn − iωm)F(k, iωm)

are the diagonal and off-diagonal parts of the Cooper-pair propagator, with νn = 2nπ/β being
the bosonic Matsubara frequency.

Putting together the mean field and the pairing fluctuation corrections to the thermo-
dynamic potential, we obtain the total contributions, Ω = Ωmf + Ωpf . We emphasize that
the gap (5) is chosen at the mean-field level, i.e., ∂Ωmf/∂∆ = 0. Non-trivial effects be-
yond the BCS mean-field approximation enter into the theory through the modified num-
ber equation N = − (∂Ω/∂µ)T . Explicitly, we obtain N = Nmf + Npf,µ + Npf,∆, where
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Nmf = −(∂Ωmf/∂µ)T∆, Npf,µ = −(∂Ωpf/∂µ)T∆, and Npf,∆ = −(∂Ωpf/∂∆)Tµ(∂∆/∂µ).
The coupled gap and particle number equations, together with the thermodynamic poten-
tials (6) and (7), form the basis of our NSR theory in the broken-symmetry state. Once µ
and ∆ are obtained as a function of the interaction strength and temperature, the entropy
and the energy of the gas can then be calculated straightforwardly, using S = − (∂Ω/∂T )µ
and E = Ω+ TS + µN .

There is a key difference between our method and the diagrammatic theory proposed by
Strinati et al. [14, 15]. The term Npf,∆, which ensures number conservation, is not included
in the diagrams considered by Strinati et al. This term becomes increasingly important in
the BEC regime. Physically, it generates the dominant part of the four-fermion correlations,
which are increasingly important for tightly bound Cooper pairs. This constitutes a major
advantage of our NSR theory.

To give more insight, in the strong coupling limit we re-interpret our formalism in
the framework of the functional integral method [13], in which a Cooper-pair Bose field
∆(x, τ) is introduced through the Hubbard-Stratonovich transformation. Integrating out
the fermionic degrees of freedom in the usual fashion and setting ∆(x, τ) = ∆ + δ∆(x, τ),
the resulting effective bosonic action is then expanded up to quadratic order in fluctua-
tions δ∆(x, τ): Seff ≈ S(0) + S(2). After performing a Fourier transformation we find that
S(0) = β∆2/U0−Trln[−G−1

0 ] + β
∑

k ξk, and

S(2) =
∑
q,n

[−δ∆†
qχ11(q, iνn)δ∆q + χ12(q, iνn)(δ∆†

qδ∆
†
−q + δ∆−qδ∆q)/2] , (8)

where δ∆q = δ∆(q, iνn) is the Fourier transformation of δ∆(x, τ). The saddle point so-
lution of S(0)gives the standard mean-field theory, while the next-order Gaussian expan-
sion S(2) leads to exactly the same contribution as in eq. (7). It is easy to see that in
the long-wavelength and low-frequency limits, −χ11(q, iνn) ∼ −iνn + h̄2q2/4m +∆2/ (−4µ)
and χ12(q, iνn) ∼ ∆2/ (−4µ). Hence, S(2) acquires the familiar form of Bogoliubov excita-
tions [27]. Our formalism therefore incorporates interactions between condensed and non-
condensed Cooper pairs at the level of Bogoliubov theory, which must be the dominant part
of four-fermion correlations at low temperature.

The crucial observation of the present letter is that in the deep BEC limit (∆/(−µ) → 0)
Npf,∆ ∼ ∆2/(−µ)1/2 is of the same order of Nmf , or more precisely, Npf,∆ = CNmf

with C � 2.5, as shown analytically in a forthcoming publication [28]. In contrast,
Npf,µ ∼ ∆3/(−µ)3/2 ∼ ∆/(−µ)Nmf becomes negligible. We thereby find that the molecular
condensate densityN0

B � N/2 � (1+C)Nmf/2. Mean-field number and gap equations provide
the expressions, Nmf � ∆2m2a/(4πh̄2), and µB = 2µ+ h̄2/(ma2) � ∆2ma2/(2h̄2), where µB

is the molecular chemical potential. Assembling together these three expressions and eliminat-
ing ∆, one finds that µB = 4πh̄2 [2a/(1 + C)] / (2m)×N0

B , implying am = 2a/(1+C) � 0.57a
—a value close to the exact result (am � 0.60a). The residual 5% difference occurs because
we exclude interactions between non-condensed Cooper pairs.

Our diagrammatic procedure is also different from the works in refs. [20, 22], where
molecule-molecule scattering processes are considered in isolation. These calculations per-
turb around the free-fermion state and therefore require additional terms beyond the ladder
structures in fig. 1 to obtain correct results. By comparison, we perturb around a BCS state of
correlated fermions below Tc. A dominant part of the molecule-molecule scattering is therefore
already included in the ladder diagrams due to the inclusion of Npf,∆, as we have shown using
the functional integral method. To contain the full four-body correlations, a more compli-
cated wave function has to be implemented [21]. Equivalently, within the functional integral
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Fig. 2 – (Color online) Energy per particle E/N , in the BCS-BEC crossover (with the binding energy
εb = −h̄2/ma2 subtracted). Lines plotted are: our result (solid line); fixed node QMC data from
ref. [23] (circles with error bars), Lee and Yang perturbation theory (dashed line); BCS mean-field
predictions (dot-dashed line). Inset: enlarged view of the BEC regime. The solid line corresponds
to the equation of state of a repulsive gas of molecules given by LHY [29], (E/N − εb/2)/εFG =
5/(18π)kF am[1 + 128/(15

√
6π3)(kF am)3/2 + ...], with our analytic result of am = 0.57a.

method, we may include four-fermion correlations by expanding the action to fourth order of
the gap [25]. However, this calculation is difficult to extend to the crossover regime.

Figure 2 presents our results for the energy per particle as a function of the interaction
strength 1/kF a at a low temperature T = 0.02TF . The energy scale is given by the noninteract-
ing energy, εFG = (3/5)εF = (3/10)h̄2k2

F /m, where kF = (3π2n)1/3 is the Fermi wave vector.
As a benchmark, the approximate fixed node QMC data at zero temperature is shown [23], to-

Fig. 3 – (Color online) Chemical potential in the BCS-BEC crossover, as predicted by various ap-
proaches. The QMC curve shown as a dotted line is calculated from a best fit to the QMC energies,
as outlined in ref. [23]. The diagrammatic predictions (empty squares) by Strinati et al. are taken
from ref. [15] without the inclusion of the self-energy shift.
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Fig. 4 – (Color online) Temperature dependence of the energy per particle (main plot) and the chemical
potential (inset) in the unitary limit. Lines plotted are: our results (solid lines); path integral Monte
Carlo data from ref. [26] (circles); BCS mean field (dot-dashed lines); the original NSR prediction in
refs. [12,13] (dashed lines).

gether with the perturbation results E/(NεFG) = 1+10/(9π)kF a+4/(21π2)(11−2 ln 2)(kF a)2

obtained by Lee and Yang [30]. In the BCS region, 1/kF a < −0.5, we find that our results
agree with the QMC data, apart from residual differences due to the energy dependence of the
scattering amplitude. In the BEC region, 1/kFa > 0.5, our predictions coincide perfectly with
QMC calculations, and thereby agree with the equation of state of a repulsive gas of molecules
with am � 0.60a, as shown in the inset. In the range −0.5 <∼ 1/(kF a)

<∼ 0.5 spanning the
most interesting crossover region, our results differ only slightly from that of QMC simula-
tions. In particular, in the unitary limit we predict E/N = ξεFG with ξ = 0.401, compatible
with the QMC findings ξ = 0.42(1) [23]. The overall agreement between the two alternative
calculations is therefore excellent, especially in the challenging strong coupling regime.

We have also calculated the chemical potential at the BCS-BEC crossover, predicted by
different theories (fig. 3). We find again an excellent quantitative agreement between our NSR
results and QMC calculations. To emphasize the similarity between our formalism and the
diagrammatic theory given by Strinati et al. [15], we compared the results obtained without
the inclusion of the crucial term Npf,∆ in the number equation, with Strinati’s diagrammatic
findings [15]. These asymptotically approach the mean-field predictions in the deep BEC
limit, which would (incorrectly) imply that am = 2a. This observation thereby unambiguously
verifies that Npf,∆ is responsible for obtaining the correct molecular scattering length.

Finally, in fig. 4, we compare our predictions at finite temperature with recent path integral
Monte Carlo calculations of spin-(1/2) fermions [26] in the strongly coupled unitary limit. At
low temperature up to Tc ≈ 0.22TF , these results are in good qualitative agreement with each
other. The residual discrepancy is possibly due to finite-size effects in the simulations.

To conclude, we have presented an NSR-type formalism for a Fermi gas at the BCS-
BEC crossover, in the broken-symmetry phase. A notable achievement of our formalism is
that a Bogoliubov theory of composite Cooper pairs is reproduced in the BEC limit, with a
molecular scattering length very close to the exact value. We have compared our predictions
of the equation of state of the gas with available Monte Carlo calculations, and find excellent
agreement. Our results also make quantitative contact with a previous diagrammatic theory in
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the weak and intermediate coupling regimes. We believe, therefore, that the present formalism
provides a quantitatively reliable description of superfluid Fermi gases at low temperature over
the entire range of the crossover.
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