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Abstract
By calculating correlation spectra of the output fields, we show theoretically that two
evanescently coupled χ(2) second harmonic generators inside a Fabry–Perot cavity provide a
tunable source of quadrature squeezed light, Einstein–Podolsky–Rosen correlations and
quantum entanglement. Unlike systems using coupled downconverters, second harmonic
generation has no oscillation threshhold, so that the entangled fields become macroscopically
occupied as soon as the pumping fields are turned on. This system also gives two frequencies
at which the entangled fields can have macroscopic intensity. We show how the entanglement
properties can be controlled by adjusting the pumping, the coupling strengths and the cavity
detunings.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The system of two evanescently coupled χ(2) processes
operating in the second harmonic generation (SHG) regime
inside a pumped Fabry–Perot cavity has been theoretically
analysed by Bache et al [1], in terms of suppression of
number difference fluctuations between the output modes. In
this work, the name ‘quantum optical dimer’ was given to
this device. Although the calculations performed by Bache
et al were sufficient to show that strong intensity correlations
should exist between the outputs, they did not calculate any
of the phase-dependent correlations which are necessary to
demonstrate the existence of continuous-variable bipartite
quantum entanglement. In later works, Olsen and Drummond
[2] and Olivier and Olsen [3] have shown theoretically that
a related device, operating in the downconversion regime of
optical parametric oscillation, can provide a robust source of
continuous-variable entanglement and be used to demonstrate
the Einstein–Podolsky–Rosen (EPR) paradox in both the
above- and below-threshold regimes. In this work, we will
examine the quantum optical dimer proposal of Bache et al in
terms of the production of entanglement and EPR states. In
principle this system may have all the operational advantages
of the coupled downconverter proposals, along with the
property that all output modes are always macroscopically

excited in the second harmonic generation since there is no
oscillation threshold.

Generally, the device we are proposing may be considered
as either a single nonlinear crystal pumped by two spatially
separated lasers or two waveguides with a χ(2) component. We
calculate phase-dependent correlations between the outputs
of the cavity, evaluating entanglement criteria due to Duan
et al [4], Simon [5], the logarithmic negativity [6], as well
as the Reid–Drummond EPR correlations [7–9] which can
also be used to prove entanglement. Generically, our system
is related to the nonlinear coupler, the name which is given
by Per̆ina Jr and Per̆ina [10] to a system of two coupled
waveguides without an optical cavity. The device generally
consists of two parallel optical waveguides, which are coupled
by an evanescent overlap of the guided modes. The quantum
statistical properties of this device when the nonlinearity
is of the χ(3) type have been theoretically investigated,
predicting energy transfer between the waveguides [11] and the
generation of correlated squeezing [12]. When operated inside
an optical cavity, entanglement between the output modes
has been predicted [13]. Here we show that the system with
χ(2) nonlinearity, and operating in the upconversion regime,
is also potentially an easily tunable source of single-mode
squeezing and entangled states for both the low frequency
fundamental modes and the high frequency up-converted
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harmonic modes. The spatial separation of the output modes
means that they do not have to be separated by optical devices
before measurements can be made, along with the unavoidable
losses which would result from this procedure. We will show
that the correlations are tunable by controlling some of the
operational degrees of freedom of the system, including the
evanescent couplings between the two waveguides, the cavity
damping rates, the input powers and the cavity detunings.

2. Entanglement measures

Before we begin to analyse the actual physical system, we
will define and outline the measures which we will use below
to demonstrate continuous-variable bipartite entanglement.
Entanglement is a property of quantum mechanics which is
related to the inseparability of the combined density matrix of
a system into density matrices for its subsystems. In the present
situation, we will be interested in the continuous-variable
bipartite entanglement between the output modes from each
side of the dimer, which we shall label as 1 and 2. It is firstly
necessary to give the definition of the optical quadratures we
will use, as the exact form of any inequalities depends on this.
For the description of this system, we require four intracavity
bosonic annihilation operators, â1, â2, b̂1, b̂2, where âj are for
the low frequency (fundamental) modes and b̂j are for the
high frequency (harmonic) modes. We define the quadrature
operators at the phase angle θ as

X̂θ
a,j = âj e−iθ + â

†
j eiθ , (1)

so that
[
X̂θ

a,j , X̂
θ+π/2
a,k

] = 2iδjk , where δjk is the Kronecker
delta, and similarly for the high-frequency quadratures.
The Heisenberg uncertainty principle (HUP) then requires
V

(
X̂θ

a,j

)
V

(
X̂

θ+π/2
a,k

)
� 1δjk . In the interests of notational

simplicity, we will label the quadrature X̂
θ+π/2
a,k as Ŷ θ

a,k .
The EPR paradox stems from a famous paper published

in 1935 [14], which used a gedanken experiment with
particles which were entangled in position and momentum
to show that local realism was not consistent with the
completeness of quantum mechanical theory. A direct and
feasible demonstration of the EPR paradox with continuous
variables was first suggested using nondegenerate parametric
amplification [15–17]. This was possible because the optical
quadrature phase amplitudes used in these proposals have the
same mathematical properties as the position and momentum
originally used by EPR. Even though the correlations between
these are not perfect, they are still entangled sufficiently to
allow for an inferred violation of the uncertainty principle,
which is equivalent to the EPR paradox [7–9]. An
experimental demonstration of this proposal by Ou et al
soon followed, showing a clear agreement with quantum
theory [18]. A recent theoretical proposal has examined a
demonstration with the atomic field quadratures of massive
particles, using the coherent dissociation of molecular Bose–
Einstein condensates [19].

Although the concept of entanglement is required to
formulate the EPR paradox, for completeness we will outline
the details of a proof given by Reid [20] that seeming violations
of a HUP as in the experiment of Ou et al [18] are automatically

demonstrations of entanglement. We begin by assuming
that a given system is bipartite separable and divide it into
two subsystems A and B. We now consider observables x̂A

and ŷA of subsystem A, obeying the Heisenberg uncertainty
principle with V (x̂A)V (ŷA) � 1. We now introduce Vinf(x̂A)

as the measured error in the prediction for the outcome of a
measurement x̂A at A, based on a result at B, and similarly
for Vinf(ŷA). The first task is to show that separability
always demands Vinf(x̂

A)Vinf(ŷ
A) � 1, so that violation of

this inequality requires inseparability and hence entanglement
of A and B. The conditional probability of result xA for a
measurement of x̂A at A given a simultaneous measurement
of x̂B at B with result xB

i is

P
(
xA

∣∣xB
i

) = P
(
xA, xB

i

)
P

(
xB

i

) , (2)

where, assuming separability,

P
(
xA, xB

i

) =
∑

r

P (r)P
(
xB

i

∣∣r)P(xA|r), (3)

with a separable density matrix being written as

ρ =
∑

r

P (r)ρA
r ρB

r . (4)

In this case, |xA〉 and |xB〉 are eigenstates of x̂A and x̂B ,
with P(xA|r) = 〈xA|ρA

r |xA〉 and P(xB |r) = 〈xB |ρB
r |xB〉

respectively. The mean of this conditional distribution is

µi =
∑
xA

xAP
(
xA

∣∣xB
i

)

=
∑

r P (r)P
(
xB

i

∣∣r)〈xA〉r
P

(
xB

i

) , (5)

where 〈xA〉r = ∑
xA P (xA|r). The variance, Vi(x), of the

distribution P
(
xA

∣∣xB
i

)
is then

Vi(x) =
∑

r P (r)P
(
xB

i

∣∣r)∑
xA P (xA|r)(xA − µi)

2

P
(
xB

i

) . (6)

For each r, the mean square deviation,
∑

xA P (xA|r)(xA−d)2,
is minimized by the choice d = 〈xA〉r , so that for the choice
d = µi ,

Vi(x) �
∑

r P (r)P
(
xB

i

∣∣r)∑
xA P (xA|r)(xA − 〈xA〉r )2

P
(
xB

i

)
=

∑
r P (r)P

(
xB

i

∣∣r)Vr(x
A)

P
(
xB

i

) , (7)

where Vr(x
A) is the variance of P(xA|r). We may also define

a measured error, Vinf,est(x̂
A), resulting from linear inference,

which will not be better than that based on knowledge of the
conditional probabilities, so that

Vinf,est(x̂
A) � Vinf(x̂

A)

�
∑
xB

i

P
(
xB

i

)∑
r P (r)P

(
xB

i

∣∣r)Vr(x
A)

P
(
xB

i

)
=

∑
r

P (r)Vr(x
A)

∑
xB

i

P
(
xB

i

∣∣r)

=
∑

r

P (r)Vr(x
A). (8)
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We also note that Vinf(ŷ
A) �

∑
r P (r)Vr(y

A), where
P(yA|r) = 〈yA|ρA

r |yA〉 and |yA〉 is the eigenstate of ŷA. The
Cauchy–Schwartz inequality then implies that

Vinf(x̂
A)Vinf(ŷ

A) �
∑

r

P (r)Vr(x
A) ×

∑
r

P (r)Vr(y
A)

�
∣∣∣∣∣
∑

r

P (r)Vr(x
A)Vr(y

A)

∣∣∣∣∣
2

. (9)

For any physical ρr , the HUP requires that Vr(x
A)Vr(y

A) � 1.
For a separable state, it is therefore required that

Vinf(x̂
A)Vinf(ŷ

A) � 1. (10)

As the measured errors are always at least as large as
the inferred errors, this means that an observation of
Vinf,est(x̂

A)Vinf,est(ŷ
A) < 1 is sufficient to prove inseparability

and hence bipartite entanglement. We note that this violation
is a sufficient but not a necessary condition, so that continuous-
variable bipartite entanglement may be present which is not
detected by this means. An example of such a situation, which
can occur for mixed states, is given by Bowen et al [21]. We
also note here that the EPR paradox signifies a stronger form
of entanglement, as has been recently discussed by Wiseman
et al in the context of steering [22].

In practice, any EPR measurement is usually done by
defining orthogonal quadratures via a minimisation of the
errors in a linear inference process [23]. The apparent violation
of the HUP for these quadratures then signals entanglement
between the modes of the system. We note here that it has also
been shown by Tan [24] that the existence of two orthogonal
quadratures, the product of whose variances violates the limits
set by the HUP, provides evidence of entanglement. Tan
demonstrated this in the context of teleportation, with the
outputs from a nondegenerate OPA mixed on a beamsplitter.
This procedure has been extended to the case of tripartite
entanglement [25] and its extension to larger numbers of modes
is straightforward, even though the number of inequalities to be
violated increases due to the different classes of inseparability
which then exist [26].

The second of the entanglement measures is due to Duan
et al [4] and also Simon [5], who developed inseparability
criteria which are necessary and sufficient for Gaussian states,
and sufficient in general. These criteria have recently been
shown to be special cases of an infinite series of inequalities
based on the non-negativity of determinants of matrices
constructed from certain combinations of operator moments
[27]. In the general case, we may define combined quadrature
operators similar to those of Duan as

X̂θ
± = |b|X̂θ

1 ± 1

|b| X̂
θ
2 , Ŷ θ

± = |b|Ŷ θ
1 ± 1

|b| Ŷ
θ
2 , (11)

where b is an arbitrary non-zero real number. It may be shown
that, for separable states,

V
(
X̂θ

±
)

+ V
(
Ŷ θ

∓
)

� 2

(
b2 +

1

b2

)
, (12)

with any violation of this inequality therefore demonstrating
the presence of bipartite entanglement. In what follows, we
will choose b = 1 so that the lower bound of the inequality

is 4. While this is not the optimal choice for the general case, it
is the appropriate choice for this system, due to the symmetry
between modes 1 and 2.

The third measure which we will apply is the logarithmic
negativity, proposed by Vidal and Werner as a computable
measure of entanglement, as opposed to others which can be
difficult to calculate [6]. We note here that this measure is
defined for Gaussian states, to which we are also limited here
due to the linearization process which we will be using. We
first define the system covariance matrix as

C =
[
C1 C12

C21 C2

]
, (13)

where

Cj =
[

V
(
X̂θ

j

)
V

(
X̂θ

j , Ŷ
θ
j

)
V

(
Ŷ θ

j , X̂θ
j

)
V

(
Ŷ θ

j

)
]

(14)

and

Cij =
[
V

(
X̂θ

i , X̂
θ
j

)
V

(
X̂θ

i , Ŷ
θ
j

)
V

(
Ŷ θ

i , X̂θ
j

)
V

(
Ŷ θ

i , Ŷ θ
j

)
]

. (15)

Defining

ξ =
√

(det C1 − det C12) −
√

(det C2 − det C12)2 − det C, (16)

the logarithmic negativity is then defined as

F(ξ) =
{

−log2 ξ if ξ < 1

0 otherwise.

Any non-zero value of F(ξ) is then an indication that the two
modes are entangled. An interesting feature of this measure is
that it has no dependence on the quadrature angle, but becomes
a function of frequency only. This shows that the logarithmic
negativity is useful for demonstrating that continuous-variable
entanglement exists in a given system, but does not tell us at
which quadrature angles the system may exhibit the necessary
properties for uses such as teleportation.

3. The system and equations of motion

The physical device we wish to examine is the same as that
described in [1]. As this device has been described there
in detail, we will give a briefer description of the essential
features here. The system consists of two coupled nonlinear
χ(2) waveguides inside a driven optical cavity, which may
utilize integrated Bragg reflection for compactness. Each
waveguide supports two resonant or near-resonant modes at
frequencies ωa (fundamental) and ωb (harmonic) respectively,
where 2ωa � ωb. The lower frequency modes at ωa are
driven coherently with external laser fields, while the nonlinear
interaction within the waveguides produces second harmonic
photons with frequency ωb. We assume that only the cavity
modes at these two frequencies are important and that there is
perfect phase matching inside the media. The two waveguides
are evanescently coupled. We will be interested in the
phase-dependent correlations necessary for an unambiguous
demonstration of entanglement and the EPR paradox, rather
than intensity correlations considered in [1].
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The effective Hamiltonian for the system can be written
as

Heff = Hint + Hcouple + Hpump + Hres, (17)

where the nonlinear interactions with the χ(2) media are
described by

Hint = ih̄
κ

2

[
â
†2
1 b̂1 − â2

1 b̂
†
1 + â

†2
2 b̂2 − â2

2 b̂
†
2

]
. (18)

In the above κ denotes the effective nonlinearity of the
waveguides (we assume that the two are equal), and âk, b̂k are
the bosonic annihilation operators for quanta at the frequencies
ωa, ωb within the nonlinear medium k (= 1, 2). The coupling
by evanescent waves is described by

Hcouple = h̄Ja

[
â1â

†
2 + â

†
1â2

]
+ h̄Jb

[
b̂1b̂

†
2 + b̂

†
1b̂2

]
, (19)

where Jk are the coupling parameters at the two frequencies,
as described in [1], where it is stated that the lower frequency
coupling, Ja , is generally stronger than the higher frequency
coupling, Jb, and also that values of Ja as high as 50 times the
lower frequency cavity loss rate may be physically reasonable.
The cavity pumping is described by

Hpump = ih̄
[
ε1â

†
1 − ε∗

1 â1 + ε2â
†
2 − ε∗

2 â2
]
, (20)

where εk represent pump fields which we will describe
classically. Finally, the cavity damping is described by

Hres = h̄

2∑
k=1

(

k

aâ
†
k + 
k

bb̂
†
k

)
+ h.c., (21)

where 
k represent bath operators at the two frequencies,
and we have made the usual zero temperature and Markov
approximations for the reservoirs.

With the standard methods [28], and using the operator/
c-number correspondences (âj ↔ αj , b̂j ↔ βj ), the
Hamiltonian can be mapped onto a Fokker–Planck equation
for the Glauber–Sudarshan P-distribution [29, 30]. However,
as the diffusion matrix of this Fokker–Planck equation
is not positive-definite, it cannot be mapped onto a set
of stochastic differential equations. Hence we will use
the positive-P representation [31] which, by doubling the
dimensionality of the phase space, allows a Fokker–Planck
equation with a positive-definite diffusion matrix to be found
and thus a mapping onto stochastic differential equations.
Making the correspondence between the set of operators(
âj , â

†
j , b̂j , b̂

†
j

)
(j = 1, 2) and the set of c-number variables(

αj , α
+
j , βj , β

+
j

)
, we find the following set of equations:

dα1

dt
= ε1 − (γa + i�a)α1 + κα+

1 β1 + iJaα2 +
√

κβ1η1(t),

dα+
1

dt
= ε∗

1 − (γa − i�a)α
+
1 + κα1β

+
1 − iJaα

+
2 +

√
κβ+

1 η2(t),

dα2

dt
= ε2 − (γa + i�a)α2 + κα+

2 β2 + iJaα1 +
√

κβ2η3(t),

dα+
2

dt
= ε∗

2 − (γa − i�a)α
+
2 + κα2β

+
2 − iJaα

+
1 +

√
κβ+

2 η4(t),

dβ1

dt
= −(γb + i�b)β1 − κ

2
α2

1 + iJbβ2,

dβ+
1

dt
= −(γb − i�b)β

+
1 − κ

2
α+2

1 − iJbβ
+
2 ,

dβ2

dt
= −(γb + i�b)β2 − κ

2
α2

2 + iJbβ1,

dβ+
2

dt
= −(γb − i�b)β

+
2 − κ

2
α+2

2 − iJbβ
+
1 ,

(22)

where γk represent the cavity damping rates at each frequency.
We have also added cavity detunings �a,b from the two
resonances, so that for a pump laser at frequency ωL, we
have �a = ωa − ωL and �b = ωb − 2ωL. In section 6, we
will investigate detuning effects in greater detail. The real
Gaussian noise terms have the correlations ηj (t) = 0 and
ηj (t)ηk(t ′) = δjkδ(t − t ′). Note that, due to the independence
of the noise sources, αk(βk) and α+

k

(
β+

k

)
are not complex

conjugate pairs, except in the mean over a large number of
stochastic integrations of the above equations. These equations
allow us to calculate the expectation values of any desired time-
normally ordered operator moments as classical averages,
exactly as required to calculate spectral correlations.

4. Linearized analysis

In an operating region where it is valid, a linearized fluctuation
analysis provides a simple way of calculating both intracavity
and output spectra of the system [32, 33], by treating it as
an Ornstein–Uhlenbeck process [34]. To perform this analysis,
we first divide the variables of (22) into a steady-state
mean value and a fluctuation part, e.g. α1 → αss

1 + δα1

and so on for the other variables. We find steady-state
solutions by solving equations (22) without the noise terms
(note that in this section we will treat all fields as being at
resonance), and write the equations for the fluctuation vector
δx̃ = [

δα1, δα
+
1 , δα2, δα

+
2 , δβ1, δβ

+
1 , δβ2, δβ

+
2

]T
, to first order

in these fluctuations, as

d δx̃ = −Aδx̃ dt + B dW, (23)

where the drift matrix is

A =
[
Aaa −A∗

ba

Aba Abb

]
, (24)

with

Aaa =



γa + i�a −κβss

1 −iJa 0

−κβss∗
1 γa − i�a 0 iJa

−iJa 0 γa + i�a −κβss
2

0 iJa −κβss∗
2 γa − i�a


, (25)

Aba =




καss
1 0 0 0

0 καss∗
1 0 0

0 0 καss
2 0

0 0 0 καss∗
2


 (26)

and

Abb =



γb + i�b 0 −iJb 0

0 γb − i�b 0 iJb

−iJb 0 γb + i�b 0
0 iJb 0 γb − i�b


 . (27)
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Figure 1. The single-mode output variances for X̂a and X̂b, for ε1 = ε2 = 0.8εc, �a = �b = 0, γa = γb, and different values of Ja and Jb.
The solid lines are for the uncoupled case, with Ja = Jb = 0. The dash-dotted lines are for Ja = Jb = γa , with the optimal quadrature
angles being θ = 18◦ (fundamental) and 13◦ (harmonic). The dashed line is for Ja = 2γa = 2Jb and θ = 46◦ (fundamental) and 74◦

(harmonic). A value of less than 1 indicates squeezing. All values plotted here and in subsequent graphics are dimensionless.

In (23), dW is a vector of real Wiener increments and the
matrix B is zero except for the first four diagonal elements,
which are respectively

√
κβss

1 ,
√

κβss∗
1 ,

√
κβss

2 ,
√

κβss∗
2 . The

essential conditions for this expansion to be valid are that
moments of the fluctuations be smaller than the equivalent
moments of the mean values and that the fluctuations stay
small. In the case of uncoupled SHG, it is well known that
there is a critical operating point above which this condition
does not hold and the system enters a self-pulsing regime
[35–37]. This point is easily found by examination of the
eigenvalues of the equivalent fluctuation drift matrix for that
system, and this procedure is also valid in the present case.
The fluctuations will not tend to grow as long as none of
the eigenvalues of the matrix A develop a negative real part.
At the point at which this happens the linearized fluctuation
analysis is no longer valid, as the fluctuations can then grow
exponentially and the necessary conditions for linearization
are no longer fulfilled. In this work we will only be interested
in a region where linearization is valid and will restrict our
analyses to below the self-pulsing threshold, found for

ε = εc = 2γa + γb

κ

√
2γb(γa + γb) (28)

in the case of a single uncoupled cavity.
To examine the stability of the system, we first need to

find the steady-state solutions for the amplitudes, by solving
for the steady state of (22) with the noise terms dropped. For
this system in the general case, we find that it is convenient to
solve for these steady states numerically, using a Runge–Kutta
algorithm to integrate the system of deterministic equations
until the solutions are well into the steady-state regime. The
eigenvalues of the drift matrix are then also found numerically.
Using the steady-state solutions, we may then calculate any
desired time-normally ordered spectral correlations inside the
cavity using the simple formula

S(ω) = (A + iω1)−1BBT (AT − iω1)−1, (29)

after which we use the standard input–output relations [33]
to relate these to quantities which may be measured outside
the cavity. For example, the spectral output variance of the
quadrature X̂θ

1 ±X̂θ
2 will be denoted by Sout

θ (X±), according to

whether it refers to the fundamental or harmonic being made
obvious by the context. In fact, all the spectral results we will
show here are calculated for the experimentally measurable
modes outside the cavity. In what follows, we will use values
of κ = 0.01 and γa = 1 while varying other parameters.

5. Doubly resonant cavity

In this section, we will give results for the case where all four
intracavity fields are at resonance. The first correlations we
show in figure 1 are the minimum quadrature variances for
each mode for different values of the coupling strengths. We
see that the quadrature angle of minimum noise is changed by
a comparison with the resonant case, and that the harmonic
exhibits no single-mode squeezing for the coupling strengths
shown. The single-mode squeezing in the fundamental is
also noticeably degraded from the uncoupled configuration,
and both show excess noise at some frequencies. This is
common with entangled systems, where the modes considered
individually will show excess noise and the entanglement
manifests itself in the correlations of this noise between the two
modes. The fact that the minimum values of the correlations
are no longer found at either θ = 0 or π/2 is a consequence of
the evanescent coupling, and has previously been seen in the
coupled downconversion configuration [2, 3].

In the next three figures, we respectively examine the
Duan and Simon criteria, the EPR criteria and the logarithmic
negativity as the couplings are changed. In figure 2, we
show the minima of the correlations at the quadrature angles
for which these are found. We see that the angles are
quite different for the fundamental and harmonic for the
same parameters and that the degree of violation of the
inequalities varies markedly with coupling strengths. The fact
that the quadrature angles change should not be a problem
experimentally, as homodyne detection techniques generally
scan through all angles. When we examine figure 3, we see
that the EPR criteria do not provide a very sensitive measure of
the presence of entanglement for the fundamental modes but
are better for the harmonic (although not better than the Duan
and Simon criteria for either case), although the entanglement
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Figure 2. The spectral correlations Sout
θ (X̂−) + Sout

θ (Ŷ+) of the fundamental (left) and harmonic (right), for ε1 = ε2 = 0.8εc,�a = �b = 0
and different values of Ja and Jb. The solid lines are for Ja = Jb = γa , with the optimal quadrature angles being θ = 63◦ (fundamental) and
58◦ (harmonic). The dash-dotted lines are for Ja = 2γa = 2Jb, at θ = 91◦ (fundamental) and 114◦ (harmonic), while the dashed lines are
for Ja = 2γa and Jb = γa/2 at θ = 179◦ (fundamental) and 119◦ (harmonic). A value of less than 4 indicates bipartite entanglement.
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between the two harmonic modes for Ja = Jb = γa is
completely missed. This is not in contradiction with the results
shown in figure 2 because the EPR criteria are merely sufficient
but not necessary to demonstrate inseparability of the modes.
It is also apparent that they give their best results at different
quadrature angles to the Duan and Simon criteria.

The logarithmic negativity is perhaps the most sensitive
indicator of inseparability for this system, although it does not
tell us the quadrature angle at which maximum violations of
the other inequalities can be found. In figure 4, we see, for
example, that it is much more sensitive at finding entanglement
between the fundamental modes than the other two methods in
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the case where Ja = Jb = γa . We note here that the Duan and
Simon criteria showed very little violation of the inequality
in this case, but we have shown only the quadrature angle
of maximum violation. The frequency range over which the
logarithmic negativity is positive tells us that violations can be
found for other quadrature angles as the frequency changes,
although given the fact that the maximum violation of the
Duan and Simon inequality is very small here, it is unlikely
that this particular combination of parameters would be a good
operational choice.

6. Detuning the cavity

Often in optical systems the best performance is found when
the cavity is resonant for the different modes involved in
the interactions, with any detuning worsening the quantum
features such as squeezing and changing the quadrature angles
at which these are seen [38]. In the present case, we find that
detuning the cavity by an appropriate amount from the two
frequencies allows for some simplification of the theoretical
analysis and can actually improve some quantum correlations.
In the special case where �a = Ja and �b = Jb, the best
quadrature angles remain fixed as the pumping is varied. If
we also set ε1 = ε2 = ε, the equations become somewhat
simplified and we are able to progress further analytically.
In this case we define the new steady-state variables, α± =
α1 ± α2 and β± = β1 ± β2, and solve the classical equations
for these. Due to the symmetry of the system, we may assume
that α− = β− = 0 and that the variables are real. Numerical
analysis bears out these assumptions. We then find that

β+ = − κ

4γb

α2
+, (30)

with α+ being the real solution of the cubic equation

κ2

8γb

α3
+ + γaα+ − 2ε = 0. (31)

Setting

χ = (
9κ4γbε +

√
24κ6γ 3

a γ 3
b + 81κ8γ 2

b ε2
)1/3

, (32)

we find

α+ = 2χ

32/3κ2
− 4γaγb

31/3χ
. (33)

We now need to solve for the fluctuations in the new
variables. Setting α1 + α2 = α+ + δα+, etc, we write the
equations of motion for the variables δx̃± = [

δα+, δα
+
+, δα−,

δα+
−, δβ+, δβ

+
+ , δβ−, δβ+

−
]T

in a matrix form as

δx̃± = −Apmδx̃± dt + B± dW, (34)

where

Apm

=




γa − κ
2 β+ 0 0 − κ

2 α∗
+ 0 0 0

− κ
2 β∗

+ γa 0 0 0 − κ
2 α+ 0 0

0 0 γa + 2iJa 0 0 0 0 0

0 0 0 γa − 2iJa 0 0 0 0
κ
2 α+ 0 0 0 γb 0 0 0

0 κ
2 α∗

+ 0 0 0 γb 0 0

0 0 0 0 0 0 γb + 2iJb 0

0 0 0 0 0 0 0 γb − 2iJb




,

(35)

and

Bpm =
[
B4 B0

B0 B0

]
, (36)

where

B4 =




√
κ
2 β+ 0

√
κ
2 β+ 0

0
√

κ
2 β∗

+ 0
√

κ
2 β∗

+√
κ
2 β+ 0 −√

κ
2 β+ 0

0
√

κ
2 β∗

+ 0 −√
κ
2 β∗

+


 , (37)

and B0 are 4 × 4 null matrices.
In this case we can find analytical solutions for the

eigenvalues of Apm, which we write in terms of α+ and β+

as

λ1,2 = 1
8

[
4
 − 2κβ+

±
√

[4
 − 2κβ+]2 − 16
(
4γaγb − 2γbκβ+ + κ2α2

+

)]
,

λ3,4 = 1
8

[
4
 + 2κβ+

± 2
√

[2
 + κβ+]2 − 4
[
4γaγb + 2γbκβ+ + κ2α2

+

]]
,

λ5,6 = γa ± 2iJa,

λ7,8 = γb ± 2iJb, (38)

where 
 = γa + γb.
There are two types of instability which we may expect in

this system and which would invalidate a linearized fluctuation
analysis. The first is when one or more of the eigenvalues
above has a negative real part and the second is the self-pulsing
regime [35–37], which begins where there exist complex
conjugate eigenvalues with real part equal to zero. Examining
the expressions of (38), we see that the latter four can never
cause any problems, but that some of the others could develop
negative real parts. While analytical solutions for these
in terms of the pump strength rather than the cavity field
values can be found, these are extremely unwieldy. However,
numerical analysis shows that the system is stable up to the
same critical pumping as given in (28), so we will give results
in this regime.

In terms of the quadrature variances used in section 4, we
now define

Xp = Ap + A+
p = X1 + X2,

Xm = Am + A+
m = X1 − X2,

Yp = −i
(
Ap − A+

p

) = Y1 + Y2,

Ym = −i
(
Am − A+

m

) = Y1 − Y2,

(39)

and similarly for the second harmonic quadratures, so that we
can give expressions for the output spectral variances of these
new quadratures. Because of the way the variables are defined,
the easiest correlations to extract are those of (12), which
can be constructed from the variances of the four quadratures
defined above, with

V (X1 − X2) + V (Y1 + Y2) = V (Xm) + V (Yp),

V (X1 + X2) + V (Y1 − Y2) = V (Xp) + V (Ym).
(40)

We find that, at least in the parameter regimes we have
investigated numerically, it is the second of these correlations
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Figure 5. The output spectral correlation Sout(Xp) + Sout(Ym) of the
low frequency modes, for κ = 0.01, γa = 1, γb = 2, �a = Ja =
10γa and �b = Jb = 2γa .
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Figure 6. The output spectral correlation Sout(Xp) + Sout(Ym) of the
high frequency modes, for κ = 0.01, γa = 1, γb = 2, �a = Ja =
10γa and �b = Jb = 2γa .

which violates the inequalities, which is different from the
situation with, for example, coupled downconverters [2].

We show spectral results obtained numerically as the
pumping strength is varied up to its critical value, and for
different values of the cavity loss rates. In figures 5 and 6,
we present results for the loss rate at the harmonic frequency
being twice that of the fundamental, showing that the violations
increase as the pumping increases up to the critical value.
In figure 5, we see that the spectrum bifurcates and note
that this could be advantageous experimentally as the region
around zero frequency is often swamped by technical noise.
In figures 7 and 8, we give the spectra for the case where
the loss rate at the fundamental frequency is twice that
of the harmonic. The main difference is that the violations of
the inequalities happen over a narrower range of frequencies,
with both violations again increasing as the pump increases.
In comparison with coupled downconversion below threshold
[2], the entanglement produced here is with reasonably intense
fields, as shown in figure 9, which could be a real advantage in
some applications. We note here that the intensity is measured
by the number of photons in the cavity and as such does not
have units. However, what is shown are scaled numbers
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Figure 7. The output spectral correlation Sout(Xp) + Sout(Ym) of the
low frequency modes, for κ = 0.01, γa = 1, γb = γa/2, �a = Ja =
10γa and �b = Jb = 2γa .
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Figure 8. The output spectral correlation Sout(Xp) + Sout(Ym) of the
high frequency modes, for κ = 0.01, γa = 1, γb = γa/2, �a = Ja =
10γa and �b = Jb = 2γa .
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appropriate to the parameter values used. To convert these
into actual experimental intensities requires putting actual
experimental values into (33) and (30).
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The last point we wish to address is the experimental
viability of the parameters we have used and the sensitivity of
our results to the exactness with which these can be obtained
in the laboratory. What should be noted here is that all
parameters are scaled by γa , which might be typically of the
order of megahertz in a realistic cavity. The coupling strengths
we use are well within the feasible range, as mentioned in
Bache et al [1], with the other important parameters being
κ and the detunings. If κ is changed, the critical pumping
rate will be changed so that the optimal performance may
be found for different, but still macroscopic intensities. As
in all quantum optical cavity experiments, stabilization of
the cavity is important, but the detunings may still vary
over a realistic range without destroying the correlations.
These requirements should be no more stringent than in
quantum optical experiments which are routinely performed
with uncoupled cavities.

7. Conclusions

We have analysed the system of intracavity evanescently
coupled second harmonic generation in terms of phase-
sensitive correlations which give evidence of continuous-
variable entanglement between different modes of the optical
field. We have shown how matching the cavity detunings to
the evanescent coupling rates fixes the quadrature angles for
which the best violations of the inequalities occur. We see that
below the self-pulsing threshold, the system exhibits a wide
range of behaviour depending on the relative strengths of the
pumps, the cavity loss rates, the detunings and the evanescent
couplings. As all of these are experimentally tuneable, the
device may be of use for applications which require varying
degrees of entanglement to be available at different intensities,
different frequencies and different quadrature phase angles.
The entangled beams exit the cavity at different spatial
locations and do not have to be separated before measurements
can be made. As the system also produces single-mode
squeezing and can be built using integrated optics, it may
prove to be more robust and useful than devices which rely
on the relative stability and positioning of individual optical
components. Finally, the fact that the entanglement is present
with reasonably intense fields may prove to be a real advantage
over devices based on nondegenerate downconversion, which
experience phase diffusion in the region where the fields
develop macroscopic intensities.
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