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Spontaneous vortices in the formation of
Bose–Einstein condensates
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Phase transitions are ubiquitous in nature, and can be arranged
into universality classes such that systems having unrelated micro-
scopic physics show identical scaling behaviour near the critical
point. One prominent universal element of many continuous
phase transitions is the spontaneous formation of topological
defects during a quench through the critical point1–3. The micro-
scopic dynamics of defect formation in such transitions are gen-
erally difficult to investigate, particularly for superfluids4–7.
However, Bose–Einstein condensates (BECs) offer unique experi-
mental and theoretical opportunities for probing these details.
Here we present an experimental and theoretical study of the
BEC phase transition of a trapped atomic gas, in which we observe
and statistically characterize the spontaneous formation of vor-
tices during condensation8,9. Using microscopic theories10–17 that
incorporate atomic interactions and quantum and thermal fluc-
tuations of a finite-temperature Bose gas, we simulate condensa-
tion and observe vortex formation in close quantitative agreement
with our experimental results. Our studies provide further under-
standing of the development of coherence in superfluids, and may
allow for direct investigation of universal phase transition
dynamics.

Spontaneous vortex formation in superfluids is intimately con-
nected to superfluid growth. In one model, illustrated in Fig. 1, iso-
lated superfluid regions of characteristic size j independently form as
the system nears the critical point of the phase transition. These
regions with random relative phases merge together during the trans-
ition, leading to a continuous phase gradient in the merged fluid.
Owing to continuity requirements on the wavefunction, the merging
process may trap phase loops of 2p if the merging regions have

suitable relative phases, as illustrated in Fig. 1. The superfluid density
at the centre of these 2p phase loops is topologically constrained to be
zero, resulting in the formation of a quantized vortex; the absence of
superfluid at the vortex core may be viewed as arising from destruc-
tive interference between merging regions. Although cast here in the
context of superfluid growth, spontaneous topological defect forma-
tion is a fundamental component of the Kibble–Zurek mechanism1–3.
Based on universality classes for second-order phase transitions, this
mechanism provides a prescription for estimating a correlation
length j and hence the density of defects, proportional to 1/j2, that
may form. For a continuous phase transition that proceeds quasi-
statically, j diverges at the critical point and therefore no defects are
expected. However, in the Kibble–Zurek mechanism the phase trans-
ition occurs over a finite time, and the system falls out of equilibrium
when the thermalization (or relaxation) rate drops below a quench
rate 1/tQ. At this point j is frozen in and essentially remains constant
through the critical point. A principal result is that faster quenches
lead to an earlier freeze-in time, and hence smaller values of j and
higher defect densities.

The Kibble–Zurek mechanism is appealing because of its potential
for characterizing a wide variety of phase transitions, irrespective of
the microscopic processes involved. A model of condensation in a
homogeneous Bose gas describing the transition from a weak-tur-
bulent (kinetic) stage to strong-turbulent (coherent) state has been
proposed by Svistunov and co-workers9,18–21. In this scheme, as
energy is removed from the system the low-energy atomic field
modes become macroscopically occupied. Destructive interference
between these essentially classical modes leads to nodes in the field,
which appear as lines of zero atomic density. Subsequently, a quasi-
condensate having local coherence but no long-range coherence
grows around the lines of zero density, which simultaneously evolve
into well-structured vortex cores. Eventually the superfluid relaxes
into equilibrium and a true condensate with global phase coherence
is achieved. Berloff and Svistunov numerically demonstrated the
validity of this picture for the homogeneous Bose gas in simulations
of the Gross–Pitaevskii equation22 (see Supplementary Information).
Our work involves an experimental and theoretical exploration of
similar phenomena in the condensation of trapped gases. Our
approach also has the potential to investigate the relationship of
the Kibble–Zurek mechanism to phase transition dynamics of BECs.

In previous work we demonstrated that vortices can form during
the controlled merging of three independent BECs with uncorrelated
phases23, an analogue of the Kibble–Zurek mechanism. Here we
study vortex formation by evaporatively cooling an atomic gas
through the BEC phase transition in a single axially symmetric oblate
harmonic trap (see Methods). To probe condensate growth
dynamics under varying cooling conditions, we use two temperature
quenches: quench A uses a 6-s radiofrequency evaporative cooling
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Figure 1 | Schematic of spontaneous vortex formation. Left, as a thermal
gas (mottled grey) is cooled through the BEC transition, isolated coherent
regions of approximate size j and unpredictable phase may form8,9.
Quantum phase ranges from 0 to 2p, represented here by shades of grey as
indicated by the gradient bar at the right. Right, initial coherent regions
eventually merge to form a single BEC (continuous greyscale region),
potentially forming quantized vortices. Here, a positive (negative) vortex is
labelled with a cross (circle), with the phase winding direction corresponding
to the direction of superfluid flow and phase gradient about the vortex core.
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ramp, and quench B uses a sudden jump to a final radiofrequency
value (see Methods). Plots of temperature and condensate number
versus time for both quenches are shown in Fig. 2a. Following Anglin
and Zurek8 (see Supplementary Information), we estimate a correla-
tion length of j < 0.6 mm near the critical point for both quenches.
Because j is about a factor of 6 smaller than our radial harmonic
oscillator length ar < 3.8 mm characterizing a condensate radius for
small atom numbers, we would not expect global phase coherence at
the critical temperature, suggesting that spontaneous vortex forma-
tion could occur in our experiments.

To look for vortices, we suddenly remove the trapping potential
after the 6-s evaporative cooling ramp of quench A or 1.5 s after the
radiofrequency jump for quench B. Each BEC ballistically expands
and is then imaged along the vertical direction (the z axis), which
coincides with the symmetry axis of the trap. Vortex cores aligned
with the z axis appear as holes in the column-density distribution, as
shown in Fig. 3a. We emphasize that our procedure does not impart
net angular momentum to the atomic cloud, such as through phase
engineering24 or stirring25; our observations thus represent a new
regime for the study of quantized vortex nucleation in BECs (see
Supplementary Information for further discussion).

We simulate condensate formation using the stochastic Gross–
Pitaevskii equation (SGPE) formalism13,14 that describes the highly
occupied, low-energy modes of a Bose gas with a classical field. The
field evolves according to a generalized Gross–Pitaevskii equation
that includes dissipation and thermal noise describing collisions
between the partially condensed matter waves and the high-energy
atoms in the thermal cloud. Because evaporative cooling is difficult
to simulate realistically26, and the details are often qualitatively

unimportant, we use an idealized cooling model with a sudden jump
in chemical potential and temperature of the thermal cloud through
the condensation critical point. This leaves the SGPE classical field
out of equilibrium with the thermal cloud; the subsequent return to
equilibrium results in condensate formation. Figure 2a shows the
growth in condensate number for the simulations of both quenches.
In our simulations, the initial and final thermal cloud parameters
have been chosen to match the experimental results, and the coupling
between the thermal cloud and the classical field is then adjusted to
give good agreement with the experimentally observed BEC growth
curves. This approach allows a meaningful comparison of other
observables such as vortex statistics with the experimental data.
Further discussion can be found in the Methods and
Supplementary Information.

As shown in Fig. 3b, c, vortices spontaneously form in our simula-
tions, where each realization can be interpreted as the numerical
analogue of a single experimental run. We therefore study vortex
dynamics in each growing condensate to compare vortex formation
statistics with our experimental results. In both our laboratory and
numerical procedures, for each quench we repeat the BEC creation
procedure and analyse statistics of vortex observations. For each data
set described below, we extract the fraction of images showing at least
one vortex core within a displacement of 0.8RTF from the BEC centre,
where RTF is the BEC Thomas–Fermi radius in the z 5 0 plane27. This
fraction serves as our estimate of the probability of observing spon-
taneously formed vortices in a single run.

Because localized decreases in the density profile of an experimen-
tally obtained image may not always clearly indicate the presence of a
core (for example, owing to tilting or bending with respect to the z
axis) our experimental uncertainty ranges are defined by our ability
to determine visually whether an image shows a vortex. For quench
A, 23–28% of 90 total images contain at least one visible vortex core.
For quench B, 15–20% of 98 total images show at least one core.
Although the two quenches use quite different radiofrequency eva-
poration trajectories, they show similar cooling and BEC growth
rates. We can thus expect statistical similarities between the two data
sets. Further statistical details, including results of observing multiple
cores per image, are given in the Supplementary Information.

From our simulations, we can analyse vortex observation pro-
babilities as a function of time for each quench. To determine the
presence of a vortex we consider an instantaneous slice of the classical
field in the z 5 0 plane of the trap, and detect all phase loops of 62p
within a displacement of 0.8RTF from the BEC centre (here, RTF is
based on the time-dependent condensate number). We find that the
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Figure 2 | Condensate formation and vorticity. a, Condensate number N0

versus time. Blue squares (red circles) indicate experimental data for quench
A (B), and lines indicate corresponding numerical simulations. The green
dot-dashed line is the numerical result for the toroidal trap (quench C).
Vertical dotted lines indicate the observation times for which experimental
statistics are generated. Inset, experimentally measured temperatures for
quenches A and B (tQ < 7 s and 5 s, respectively). b, The probability of
finding at least one vortex passing through the z 5 0 plane plotted for all
three simulated quenches. Grey regions indicate the experimental
measurement range for each data set.
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Figure 3 | Vortices in the harmonic and toroidal traps. a, Images of BECs
created in a harmonic trap, showing single vortices (left, centre) and two
vortices (right). Each image is 200mm square. b, c, Sample simulation results
from quench B, showing in-trap integrated column densities along z (in
b) and associated phase profiles in the z 5 0 plane (in c), with vortices
indicated by crosses and circles at 62p phase windings. d, Left image, phase-
contrast experimental image of a BEC in the toroidal trap. Image is 70 mm
square. Remaining images, vortices in 200-mm-square expansion images of
BECs created in the toroidal trap. e, f, Simulations of BEC growth in the
toroidal trap show vortices (as in b, c) and persistent currents.
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majority of vortices are aligned with the z axis of the trap. The vortex
observation probabilities obtained from ,300 simulation runs for
each quench are plotted against time in Fig. 2b, with comparison to
the experimental statistics.

According to our simulations, the number of vortices decreases
with time, consistent with our model of a thermal bath that is inde-
pendent of time and has no angular momentum; the thermodynamic
final state should therefore be a condensate without vortices. In this
respect the simulations diverge from our experimental observations,
where there is no significant variation of vortex observation pro-
babilities over a timescale of a few seconds. This low damping rate
is consistent with the comparatively small thermal component
observed, indicating that a kinetic theory of thermal cloud dynamics
may be needed to account fully for the long-time behaviour of the
experiment. We therefore compare our simulation results at t 5 3.5 s
for quench A, and t 5 1.5 s for quench B, based on experimental
observations of negligible vortex damping once the BEC is nearly
fully formed.

By focusing a blue-detuned laser beam propagating along the z axis
into the centre of the trap (see Methods), we experimentally studied
BEC growth in a toroidal potential in which a BEC may display both
persistent superfluid current28 about the central barrier as well as free
vortices circulating around the barrier. The pinning of superfluid
flow may influence both vortex dynamics during BEC growth and
observations of vortices after the BEC is formed: a vortex pinned to
the barrier reduces the likelihood of complete self-annihilation
between pairs of spontaneously formed vortices of opposite charge,
thereby increasing the probability of finding a vortex in a BEC. We
apply a 6-s final evaporative cooling ramp identical to quench A, and
identify this data set as quench C. An in situ image of a BEC in the
toroidal trap is given in the leftmost image of Fig. 3d. Note that the
dark region in the BEC centre indicates atoms displaced by the laser
beam; vortices are not visible in this image. After creating each BEC,
we ramp down the laser power over 100 ms and immediately there-
after allow the BEC to expand from the trapping potential. For these
conditions, we find that 56–62% of 52 images contained at least one
visible core; examples are shown in Fig. 3d.

Condensate formation rates were not experimentally measured for
quench C; for the simulations we use the parameters of quench A but
with an additional repulsive Gaussian barrier. Simulated condensate
growth versus time resulted in smaller condensates than for quench A
(also observed experimentally) as shown by the green dot-dashed
curve in Fig. 2a. Examples of numerically obtained column density
and phase are shown in Fig. 3e, f. Vortex observation statistics for 300
runs are plotted as a green dot-dashed line in Fig. 2b; we find that the
vortex observation probability is about twice that of the harmonic
trap of quench A, as is also the case with the experimental data, but is
somewhat lower in overall magnitude than the experimental obser-
vations. In contrast to the harmonic case, the curve does not show
decay below 40%, which corresponds to the fraction of runs with
vortices pinned by the Gaussian potential. This potential provides a
sufficient energy barrier to prevent the condensate from reaching its
thermodynamic ground state with zero angular momentum despite
the presence of dissipation. Moreover, it is likely that vortex pinning
by the Gaussian barrier is the physical mechanism responsible for the
overall increase in the probability of observing vortices in the toroidal
case as compared with the harmonic case. Additional toroidal trap
statistics are provided in the Supplementary Information.

In the Supplementary Information, we provide movies of simu-
lated condensate formation for quenches A and C. Here we describe
one run in which a single vortex persists to the end of a quench A
simulation in the harmonic trap. After the system temperature is
initially lowered, the atomic density fluctuates temporally and spa-
tially, as illustrated in Fig. 4a. A bulk BEC then begins to grow, and a
tangle of vortices is trapped within the BEC as shown in Fig. 4b, in
qualitative agreement with the models of superfluid turbulence9,18–22

and the Kibble–Zurek mechanism1–3,8. The condensate now forms
rapidly, but with clear vortex cores as shown in Fig. 4c. This state
eventually damps to a single core as seen in Fig. 4d.

In examining the relationship between the BEC transition and the
Kibble–Zurek mechanism, one would ideally study vortex formation
with widely varying BEC growth rates in order to test the predictions
of the scaling of the vortex density1–3. However, in our harmonic
traps, we have only succeeded in increasing BEC growth rates by a
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Figure 4 | BEC growth dynamics. a–d, Four snapshots during the simulated
growth of a BEC showing isodensity surfaces (in light red) in a three-
dimensional rendering. Vortex cores of opposite charges about the z axis are
indicated as magenta and cyan lines. The corresponding times are 0.13 s (a),

0.45 s (b), 0.67 s (c), 1.57 s (d), where t 5 0 s is the time when the quench is
initiated in the simulation. The full movie from which these images were
taken is provided as Supplementary Video 3.
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factor of two to three, resulting in a factor of ,2 increase in vortex
formation compared with quenches A and B. In simulations, faster
growth rates can potentially result in more vortices, as discussed in
the Supplementary Information.

In addition to providing new experimental observations, our work
places spontaneous topological defect formation on a theoretical
foundation that has not been available in analogous studies in other
systems. Related experimental investigations of spontaneous sym-
metry breaking of quenched ferromagnetic spinor BECs29 may also
yield insight into phase transition dynamics. The quantitative agree-
ment between our experimental and theoretical results is of primary
importance for their mutual interpretation: even in the ultra-cold
BEC phase transition, thermal fluctuations can have an important
role, and spontaneous topological defect formation may be virtually
unavoidable in some situations. Our continuing work will explore in
greater detail exactly how a condensate forms in this regime; the
superfluid turbulence model describes vortex formation during con-
densation, but to what extent does the Kibble–Zurek mechanism’s
universality relate to the BEC transition? With further simulations
and experiments, new details of the development of coherence in the
birth of a superfluid may be uncovered, a tantalizing prospect addres-
sing the interface between the classical and quantum worlds.

METHODS SUMMARY
In our experiments, 87Rb atoms in the jF 5 1, mF 5 21æ hyperfine state are

confined in a time-averaged orbiting potential magnetic trap30. Evaporative

cooling increases the phase space density to near the condensation critical point.

The trap frequencies are then relaxed, and a final stage of cooling (quench A, B or
C) induces the phase transition. In our numerical approach we describe the

evolution of the condensate and its highly occupied excitations using a stochastic

Gross–Pitaevski equation coupled to a thermal reservoir parameterized by a

chemical potential m and temperature T initially above the critical point.

Evaporative cooling is simulated by a sudden change in m and T. Further details

regarding our approaches are provided in the full Methods.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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6. Baüerle, C., Bunkov, Y. M., Fisher, S. N., Godfrin, H. & Pickett, G. R. Laboratory
simulation of cosmic string formation in the early Universe using superfluid 3He.
Nature 382, 332–334 (1996).

7. Dodd, M., Hendry, P., Lawson, N., McClintock, P. & Williams, C. Nonappearance
of vortices in the fast mechanical expansions of liquid 4He through the Lambda
transition. Phys. Rev. Lett. 81, 3703–3706 (1998).

8. Anglin, J. R. & Zurek, W. H. Vortices in the wake of rapid Bose–Einstein
condensation. Phys. Rev. Lett. 83, 1707–1710 (1999).

9. Svistunov, B. V. Strongly non-equilibrium Bose–Einstein condensation in a
trapped gas. Phys. Lett. A 287, 169–174 (2001).

10. Stoof, H. T. C. Coherent versus incoherent dynamics during Bose–Einstein
condensation in atomic gases. J. Low Temp. Phys. 114, 11–108 (1999).

11. Davis, M. J., Ballagh, R. J. & Burnett, K. Dynamics of thermal Bose fields in the
classical limit. J. Phys. B 34, 4487–4512 (2001).

12. Davis, M. J., Morgan, S. A. & Burnett, K. Simulations of Bose fields at finite
temperature. Phys. Rev. Lett. 87, 160402 (2001).

13. Gardiner, C. W., Anglin, J. R. & Fudge, T. I. A. The stochastic Gross–Pitaevskii
equation. J. Phys. B 35, 1555–1582 (2002).

14. Gardiner, C. W. & Davis, M. J. The stochastic Gross–Pitaevskii equation: II. J.
Phys. B 36, 4731–4753 (2003).

15. Blakie, P. B. & Davis, M. J. Projected Gross–Pitaevskii equation for harmonically
confined Bose gases at finite temperature. Phys. Rev. A 72, 063608 (2005).

16. Davis, M. J. & Blakie, P. B. Critical temperature of a trapped Bose gas: Comparison
of theory and experiment. Phys. Rev. Lett. 96, 060404 (2006).

17. Bradley, A. S., Gardiner, C. W. & Davis, M. J. Bose–Einstein condensation from a
rotating thermal cloud: Vortex nucleation and lattice formation. Phys. Rev. A 77,
033616 (2008).

18. Svistunov, B. V. Highly nonequilibrium Bose condensation in a weakly interacting
gas. J. Mosc. Phys. Soc. 1, 373–390 (1991).

19. Kagan, Y., Svistunov, B. V. & Shlyapnikov, G. V. The Bose-condensation kinetics in
an interacting Bose–gas. Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP 75, 387 (1992)] 101,
528–539 (1992).

20. Kagan, Y. & Svistunov, B. V. Kinetics of long-range order formation in Bose-
condensation in interacting gas. Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP 78, 187 (1994)]
105, 353–367 (1994).

21. Kagan, Y. & Svistunov, B. V. Evolution of correlation properties and appearance of
broken symmetry in the process of Bose–Einstein condensation. Phys. Rev. Lett.
79, 3331–3334 (1997).

22. Berloff, N. G. & Svistunov, B. V. Scenario of strongly nonequilibrated
Bose–Einstein condensation. Phys. Rev. A 66, 013603 (2002).

23. Scherer, D. R., Weiler, C. N., Neely, T. W. & Anderson, B. P. Vortex formation by
merging of multiple trapped Bose–Einstein condensates. Phys. Rev. Lett. 98,
110402 (2007).

24. Matthews, M. R. et al. Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83,
2498–2501 (1999).

25. Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a
stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000).

26. Davis, M. J. & Gardiner, C. W. Growth of a Bose–Einstein condensate: a detailed
comparison of theory and experiment. J. Phys. B 35, 733–742 (2002).

27. Pethick, C. & Smith, H. Bose–Einstein Condensation in Dilute Gases (Cambridge
Univ. Press, 2002).

28. Ryu, C. et al. Observation of persistent flow of a Bose–Einstein condensate in a
toroidal trap. Phys. Rev. Lett. 99, 260401 (2007).

29. Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattaore, M. & Stamper-Kurn, D. M.
Spontaneous symmetry breaking in a quenched ferromagnetic spinor
Bose–Einstein condensate. Nature 443, 312–315 (2006).

30. Petrich, W., Anderson, M., Ensher, J. & Cornell, E. Stable, tightly confining
magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 74,
3352–3355 (1995).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements We thank D. Roberts, B. Svistunov, E. Wright and W. Zurek for
discussions. The experimental work was financially supported by the US National
Science Foundation under grant no. 0354977, and by the Army Research Office.
The theoretical work was financially supported by the Australian Research Council
Centre of Excellence for Quantum-Atom Optics and the University of Queensland.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. Correspondence and requests for materials should be
addressed to B.P.A. (bpa@optics.arizona.edu).

NATURE | Vol 455 | 16 October 2008 LETTERS

951

 ©2008 Macmillan Publishers Limited. All rights reserved

www.nature.com/nature
www.nature.com/nature
www.nature.com/reprints
mailto:bpa@optics.arizona.edu


METHODS
Evaporative cooling. During the main evaporative cooling stages of our experi-

mental procedure, our time-averaged orbiting potential (TOP) magnetic trap is

created with a spherical quadrupole field that has a vertical magnetic field gra-

dient of Bz9 5 300 G cm21, and a magnetic bias field B0 that has a direction that

rotates in a horizontal plane at a frequency of either vrot 5 2p3 4 kHz or

vrot 5 2p3 2 kHz. Evaporative cooling proceeds over 72 s as B0 decreases from

41 G to ,5.2 G, leaving a trapped cloud of atoms just above the condensation

critical temperature Tc. The magnetic field gradient Bz9 is then adiabatically

reduced to ,54 G cm21 over 2 s, weakening the harmonic oscillator trapping
frequencies to a measured radial (horizontal) trapping frequency of

vr 5 2p3 7.8(60.1) Hz and an axial (vertical) trapping frequency of

vz 5 2p3 15.3(60.2) Hz. The centre-of-mass position of the atom cloud cor-

respondingly sags by about 0.6 mm vertically. In the final stage of our cooling

cycle for quench A, we use a continuous 6-s ramp of the radiofrequency field,

which evaporatively cools the atomic cloud from 70 nK to 20 nK, with

Tc < 42 nK, to create condensates of Nc < 5 3 105 atoms. For quench B, the

continuous radiofrequency evaporative cooling ramp is replaced with a sudden

jump to a final radiofrequency value, followed by a hold of the atomic sample in

the trap before release and imaging. In this situation we find Tc < 35 nK and the

final condensate number is Nc < 3 3 105 atoms.

TOP trap. To ensure that the rotating bias field of the TOP trap plays no signifi-

cant role in the spontaneous formation of vortices, we measured the z component

of the net orbital angular momentum Lz of our condensates using surface wave

spectroscopy. We excite a quadrupolar oscillation of the BEC in the horizontal

plane, and stroboscopically probe the BEC with a set of non-destructive in-trap

phase-contrast images27, obtained by probing along the z axis31,32. The quadru-

polar oscillations will then precess with a rate and direction proportional to Lz. In
our measurements, there was no significant biasing of surface mode precession in

a direction corresponding to the TOP trap rotation direction, an indication that

TOP trap temporal dynamics have little to no influence on spontaneous vortex

formation. This is discussed further in the Supplementary Information.

Toroidal trap. A potential-energy barrier was added to the centre of the mag-

netic trap using a focused blue-detuned laser beam with a wavelength of 660 nm,

,18 mW of power, and a ,6-mm Gaussian radius. The maximum beam intensity

corresponds to a potential energy of roughly kB 3 20 nK, where kB is Boltzmann’s

constant. This can be compared with a chemical potential of about kB 3 10 nK

for our fully formed BECs in the purely harmonic trap. The beam was adiabat-

ically ramped on before the final 6-s evaporation ramp, only slightly perturbing

the thermal cloud but providing enough additional potential energy to exclude

BEC atoms from the z axis of the trap.

Imaging. Our main imaging procedure involves the sudden removal of the

magnetic trap, and the subsequent ballistic expansion of the trapped cloud.

After 59 ms of expansion in the presence of an additional magnetic field to

support the atoms against gravity, the atomic cloud is illuminated with near-

resonant laser light, and the absorption profile of the atomic density distribution
is imaged onto a camera. In our greyscale images, lighter shades represent higher

optical depth, proportional to integrated column density along the line of sight

in the z direction. A clear vortex core aligned along the z axis appears as a dark

hole in the density distribution.

Stochastic Gross–Pitaevskii theory. We denote the condensate and low-energy

portion of the trapped gas with the field a(x, t), and define the Gross–Pitaevskii

operator

LGP~{
B2

2m
+2zV xð Þzg a x, tð Þj j2 ð1Þ

where m is the mass of an atom, V(x) is the trapping potential, g 5 4pB2a/m

characterizes the strength of atomic interactions, and a is the s-wave scattering

length. The equation of motion for the field is

da x, tð Þ~P {
i

B
LGPa x, tð Þdtz

G xð Þ
kBT

m{LGPð Þa x, tð ÞdtzdWG x, tð Þ
� �

ð2Þ

which has been derived from first principles using the Wigner phase-space

representation14. The first term on the right describes unitary evolution of the

classical field according to the Gross–Pitaevskii equation. The second term

represents growth processes, that is, collisions that transfer atoms from the

thermal bath to the classical field and vice versa, and the form of G(x) may be

determined from kinetic theory17. The third term is the complex-valued noise

associated with condensate growth. The noise has Gaussian statistics and is

defined by its only non-vanishing moment: dW �
G x, tð ÞdWG x0, t 0ð Þ

� �
~

2G xð Þdt d x{x0ð Þd t{t 0ð Þ; it is also consistent with the fluctuation-dissipation

theorem. The projection operator P restricts the dynamics to the low-energy

region12,15 defined by all harmonic oscillator modes with energy e , Ecut 5 40Bvr

for these calculations, which for our parameters gives about three particles per

mode at the cut-off. For typical experimental parameters this method is accurate

from slightly above the critical temperature to colder temperatures where there is

still a significant thermal fraction16.

The initial states used in our simulations are independent field configurations

generated by ergodic evolution of the SGPE at equilibrium with the thermal cloud

with mi 5 Bvr and Ti 5 45 (35) nK for quench A (B), representing the thermalized

Bose gas above the transition temperature16. These parameters are then suddenly

changed to final values chosen to match the final condensate number and tem-

perature observed in the experiment: mf 5 25 (22) Bvr and Tf 5 34 (25) nK for

quench A (B). We perform simulations for 300 (298) sets of initial conditions.

By averaging over the different realizations we can calculate any quantum mech-

anical observable as a function of time, and in particular we diagonalize the single-

particle density matrix to find the number of atoms in the condensate15.

Because vortex formation is expected to depend on the BEC growth rate,

which is difficult to calculate precisely, we adjust the coupling rate describing

Bose-enhanced collisions between the classical field and thermal cloud to obtain

a close match for the experimental BEC growth curves. We choose a spatially

constant rate for the dimensionless coupling c5 BG(x)/kBT, shown to be a good

approximation by Bradley et al.17. The noise at each time step then has the

explicit form dWG x, tð Þ~
P

wj xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckBTdt=B

p
gjzifj

� �
, where wj(x) are the

single-particle modes below the cut-off and the real Gaussian variables gj, fj are

independent and have zero mean and unit variance. In principle c is specified by

a quantum Boltzmann integral, but here we treat it as an experimental fitting

parameter for the condensate growth rate; it is never more than a factor of two

different from the result of Eq. (A11) in Bradley et al.17. The effect of these

parameter choices is discussed further in the Supplementary Information.
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