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Abstract

We show that two evanescently coupled v(2) parametric oscillators provide a tunable bright source of quadrature squeezed light, Ein-
stein–Podolsky–Rosen correlations and quantum entanglement. Analysing the system in the above threshold regime, we demonstrate
that these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with
integrated optics, it provides a possible route to rugged and stable EPR sources.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In an earlier publication, Olsen and Drummond [1]
showed that two evanescently coupled parametric pro-
cesses operating below the oscillation threshold inside a
pumped Fabry–Perot cavity could be used as a source of
spatially separated continuous variable entangled and Ein-
stein–Podolsky–Rosen (EPR) states. Quantum entangle-
ment and the EPR paradox are central to quantum
mechanics, with the latter stemming from a famous paper
published in 1935 [2], which showed that local realism
was not consistent with quantum mechanical completeness.
In recent times, there has been increasing attention paid to
continuous variable entanglement, often using the optical
quadrature amplitudes which are mathematically equiva-
lent to the position and momentum originally considered
by EPR [3]. Continuous variable bipartite entanglement
can be demonstrated if a set of inequalities developed by
Duan et al. [4] are violated. In this work, we extend the
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analysis of Olsen and Drummond [1] to the above thresh-
old regime, showing how far above the oscillation thresh-
old these quantum properties are available. In contrast to
the below threshold regime where the outputs which exhi-
bit quantum correlations are essentially squeezed vacuum
modes, the output beams above threshold can be macro-
scopically intense.

The first experimental demonstration of the EPR para-
dox used nondegenerate optical parametric amplification
[5], and followed from theoretical work by Reid and Drum-
mond [6–9] which showed that the optical quadrature
phase amplitudes have the same mathematical properties
as the position and momentum originally used by EPR
and, when sufficiently entangled, would allow for an in-
ferred violation of the Heisenberg uncertainty principle.
This is completely equivalent to a demonstration of the
paradox. Recently, important progress was made toward
a demonstration of EPR with bright beams when Villar
et al. [10] demonstrated bright entangled outputs from a
nondegenerate optical parametric oscillator operating
above threshold, although they were not able to make an
unambiguous demonstration of the paradox due to losses.
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The scheme we analyse here may provide a more stable
route to a demonstration with spatially separated bright
beams.

Our system consists of two coupled nonlinear crystals
operating inside a pumped Fabry–Perot cavity and is re-
lated to a similar scheme using coupled second harmonic
generation, first analysed by Bache et al. [11]. The coupling
is realised by evanescent overlaps of the intracavity modes
inside the nonlinear medium, which can be either a single
nonlinear crystal pumped by two spatially separated lasers,
or two waveguides with a v(2) component. This type of cou-
pling has already been investigated theoretically and exper-
imentally [12–14]. Per̆ina et al. [15] introduced the term
nonlinear coupler to describe a system of two coupled
waveguides without an optical cavity, generically consisting
of two parallel optical waveguides coupled by an evanes-
cent overlap of the guided modes. The system without a
cavity has been theoretically investigated with both v(3)

[16,17], and v(2) nonlinearities. In the latter case, it has been
predicted that the light produced in one of the media can be
controlled by the light entering the other [18], and that the
output beams will show entanglement [19].

Our aim here is to combine and extend these previous
analyses and consider two coupled parametric oscillators
operating inside a Fabry–Perot cavity in the above thresh-
old regime. A possible advantage of this system is that it is
all-integrated, and thus has good robustness and stability,
making it a tunable source for bright entangled beams.
Moreover, the spatial separation of the output modes
means that they do not have to be separated by optical de-
vices before measurements can be made, thus avoiding the
losses which would result from this procedure. We note
here that this provides an alternative to the previously ana-
lysed spatial separation by diffraction within the cavity of
the nondegenerate OPO operating above threshold, consid-
ered by Lugiato and Castelli [20], Castelli and Lugiato [21],
and Zambrini and San Miguel [22]. As the above threshold
solutions of our system generally have no simple analytical
expressions, most of our results will be presented
numerically.

2. The system and equations of motion

Remembering the important difference that our scheme
operates in the downconversion regime, the overall details
are as given by Bache et al. [11]. The optical cavity encloses
either two waveguides or one crystal and supports two
optical modes at frequencies xa, xb, where 2xa ’ xb. We
will assume that only the cavity modes at these two fre-
quencies are important. The cavity is pumped at a fre-
quency 2xL ’ xb, with the two pump beams entering at
spatially separated locations. The two inputs may be from
separate lasers although it would possibly be better to cre-
ate them from one laser using beamsplitters. The optical
modes inside the nonlinear media are are evanescently cou-
pled and we will assume perfect phase matching and equal
effective nonlinearities for the two modes.
The effective Hamiltonian for this system can be written
as

Heff ¼ Hint þHcouple þHpump þHres; ð1Þ
where Hint describes the nonlinear interaction with the v(2)

media, Hcouple the coupling by evanescent waves, Hpump

the cavity pumping, and Hres the cavity damping into zero
temperature Markovian reservoirs. The interaction Hamil-
tonian is

Hint ¼ i�h
j
2
½ây21 b̂1 � â21b̂

y
1 þ ây22 b̂2 � â22b̂

y
2�; ð2Þ

where âk; b̂k are the bosonic annihilation operators for
quanta at the frequencies xa, xb within the crystal k

(=1,2) and j denotes the effective nonlinearity. The cou-
pling Hamiltonian is

Hcouple ¼ �hJa½â1ây2 þ ây1â2� þ �hJb½b̂1b̂
y
2 þ b̂

y
1b̂2�; ð3Þ

where the Jk are the coupling parameters at the two fre-
quencies, as described in [11]. The pumping Hamiltonian is

Hpump ¼ i�h½�1b̂
y
1 � ��1b̂1 þ �2b̂

y
2 � ��2b̂2�; ð4Þ

where the �k represent pump fields that will be described
classically. Finally, the damping Hamiltonian is

Hres ¼ �h
X2

i¼1

ðCk
aâ

y
k þ Ck

bb̂
y
kÞ þH.c., ð5Þ

where the Ck represent bath operators at the two
frequencies.

Following the usual methods [23,24], the system Hamil-
tonian is mapped onto a Fokker–Planck equation in the
positive-P representation [25–27] which has a positive-def-
inite diffusion matrix and thus may be mapped onto sto-
chastic differential equations. Making the correspondence
between the set of operators ðâj; âyj ; b̂j; b̂

y
jÞ (j = 1,2) and

the set of c-number variables ðaj; aþj ; bj; b
þ
j Þ, we find the fol-

lowing set of equations:

da1
dt

¼ �ðca þ iDaÞa1 þ jaþ1 b1 þ iJaa2 þ
ffiffiffiffiffiffiffiffi
jb1

p
g1ðtÞ;

daþ1
dt

¼ �ðca � iDaÞaþ1 þ ja1b
þ
1 � iJaa

þ
2 þ

ffiffiffiffiffiffiffiffi
jbþ

1

q
g2ðtÞ;

da2
dt

¼ �ðca þ iDaÞa2 þ jaþ2 b2 þ iJaa1 þ
ffiffiffiffiffiffiffiffi
jb2

p
g3ðtÞ;

daþ2
dt

¼ �ðca � iDaÞaþ2 þ ja2b
þ
2 � iJaa

þ
1 þ

ffiffiffiffiffiffiffiffi
jbþ

2

q
g4ðtÞ;

db1

dt
¼ �1 � ðcb þ iDbÞb1 �

j
2
a21 þ iJbb2;

dbþ
1

dt
¼ ��1 � ðcb � iDbÞbþ

1 � j
2
aþ2
1 � iJbb

þ
2 ;

db2

dt
¼ �2 � ðcb þ iDbÞb2 �

j
2
a22 þ iJbb1;

dbþ
2

dt
¼ ��2 � ðcb � iDbÞbþ

2 � j
2
aþ2
2 � iJbb

þ
1 ;

ð6Þ

where Da, b represents a cavity detuning from the two reso-
nances, so that for a pump laser at angular frequency 2xL,
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one has Da = xa�xL and Db = xb�2xL. The real Gaussian
noise terms have the correlations gjðtÞ ¼ 0 and gjðtÞgkðt0Þ ¼
djkdðt � t0Þ. Note that, due to the independence of the noise
sources, ak (bk) and aþk ðb

þ
k Þ are not complex conjugate

pairs, except in the mean over a large number of stochastic
integrations. However, these equations do allow us to cal-
culate the expectation values of any desired time-normally
ordered operator moments, exactly as required to calculate
spectral correlations.

3. Linearised analysis

Although Eq. (6) can be integrated numerically, we find
that, as long as we are not concerned with the operating re-
gime in the immediate vicinity of the oscillation threshold,
A0 ¼
ffiffiffi
2

p

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJa � DaÞðJb � DbÞ � cacb þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2�2 � ððJa � DaÞcb þ ðJb � DbÞcaÞ

2
qr

. ð11Þ
we may linearise the equations around their classical stea-
dy-state solutions. This allows for a simple way of calculat-
ing the spectral correlations [23,28], by treating the system
as a Ornstein–Uhlenbeck process [29]. The region close to
threshold would require a full numerical stochastic treat-
ment but is not usually considered experimentally due to
the high degree of stability which lasers would need to
operate there.

3.1. Steady-state equations

We begin by dividing the variables into a steady-state
mean value and a fluctuation part, e.g., ai ! assi þ dai. In
order to simplify our results, we will make the following
assumptions:

• The pumping terms for both crystals are real and equal
�1 = �2 = �.

• Given this assumption, and with the detunings, loss
rates and nonlinearities of the two subsystems equal,
we may proceed as with the below threshold results
[1], and set bss

1 ¼ bss
2 ¼ bss. In general this will not be

the case.

We then find a new set of equations for the steady-state
solutions:

ass1 ðca þ iDaÞ ¼ jass
�

1 bss þ iJaass2 ;

ass2 ðca þ iDaÞ ¼ jass
�

2 bss þ iJaass1 ;
j
2
ass

2

1 ¼ �� ðcb þ iDb � iJbÞbss;

j
2
ass

2

2 ¼ �� ðcb þ iDb � iJbÞbss.

8>>>><
>>>>:

ð7Þ

The last two of the equations above imply that

ðass1 Þ
2 ¼ ðass2 Þ

2 ¼ ðassÞ2; ð8Þ
suggesting that ass1 ¼ �ass2 . We find that the stable solution
is that with ass2 ¼ ass1 , which leads to

assðca þ iDa � iJaÞ ¼ jass
�
bss;

j
2
ass2 ¼ �� ðcb þ iDb � iJbÞbss.

(
ð9Þ

These equations may be solved to give

bss
i ¼ ca � iðJa � DaÞ

j

� e
2iArccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2þ

1
2j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2j2�ððJa�DaÞcbþðJb�DbÞcaÞ2

pp� �
;

assi ¼ �A0e
iArccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2j2�ððJa�DaÞcbþðJb�DbÞcaÞ2

p
2j�

q� �
;

ð10Þ

where
In the case where Da = Ja, Db = Jb, we find the same solu-
tions as for the uncoupled optical parametric oscillator
(OPO) above threshold,

bss ¼ ca
j ;

ass ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
j ð��

cacb
j Þ

q
.

8<
: ð12Þ
3.2. The drift matrix

We can now write the equation for the fluctuation
vector,

d~x ¼ ½da1; daþ1 ; da2; daþ2 ; db1; db
þ
1 ; db2; db

þ
2 �

T
; ð13Þ

to first-order in these fluctuations, as

dd~x ¼ Ad~xdt þ BdW ; ð14Þ

where

A ¼
Aaa Aab

�A�
ab Abb

� �
ð15Þ

and

B ¼
Baa 0

0 0

� �
; ð16Þ

with

Baa ¼

ffiffiffiffiffiffiffiffi
jbss

p
0 0 0

0
ffiffiffiffiffiffiffiffi
jb�

ss

p
0 0

0 0
ffiffiffiffiffiffiffiffi
jbss

p
0

0 0 0
ffiffiffiffiffiffiffiffi
jb�

ss

p

2
66664

3
77775 ð17Þ

and
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Aaa ¼

�ðca þ iJaÞ jbss iJa 0

jbss� �ðca� iJaÞ 0 �iJa

þiJa 0 �ðca þ iJaÞ jbss

0 �iJa jbss� �ðca� iJaÞ

2
6664

3
7775

ð18Þ
and

Aab ¼

jass
�

0 0 0

0 jass 0 0

0 0 jass
�

0

0 0 0 jass

2
6664

3
7775 ð19Þ

and

Abb ¼

�ðcb þ iJbÞ 0 iJb 0

0 �ðcb� iJbÞ 0 �iJb

iJb 0 �ðcb þ iJbÞ 0

0 �iJb 0 �ðcb� iJbÞ

2
6664

3
7775.

ð20Þ
In Eq. (14), dW is a vector of real Wiener increments. The
essential condition for this expansion to be valid is that the
fluctuations stay small. The area of validity is easily found
by examination of the eigenvalues of the fluctuation drift
matrix for the system. The fluctuations will not tend to
grow as long as none of the eigenvalues of the matrix A de-
velop a positive real part, at which point the linearised fluc-
tuation analysis is no longer valid, as the fluctuations can
then grow exponentially. As in the below-threshold analy-
sis of [1], we define �c the value of the pump at which the
threshold is reached,

�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½c2a þ ðJa � DaÞ2�½c2b þ ðJb � DbÞ2�

q
=j. ð21Þ

We found that the solutions we use are stable everywhere
but at threshold by numerical examination of the maxi-
mum values of the real parts of the eigenvalues of the A

matrix. For the parameter values Da = Ja and Db = Jb,
for which we find the best spectral results, the stability dia-
gram is the same as in the uncoupled case, with the stable
below threshold solutions being

assj ¼ 0; bss
j ¼ �=cb; ð22Þ

while the stable above threshold solutions are as given in
Eq. (12). In the general case, with different pump values
and detunings different from the couplings, it is only possi-
ble to calculate the stability numerically and the diagram
becomes more complicated as it depends on a larger num-
ber of parameters.

4. Spectral correlations

In order to calculate the phase-dependent spectral corre-
lations necessary to demonstrate entanglement and the
EPR paradox, we begin by defining the quadrature ampli-
tudes as
X̂
h

j ¼ âje�ih þ âyje
ih; ð23Þ

with

X̂
O

j ¼ X̂ j; X̂
p
2

j ¼ Ŷ j. ð24Þ

We may calculate any desired time normally ordered spec-
tral correlations inside the cavity using the simple formula
[29],

SðxÞ ¼ ðAþ ix1Þ�1BBTðAT � ix1Þ�1
; ð25Þ

with the variances of interest inside and outside the cavity
being related by [23]

SoutðxÞ ¼ 1þ 2caSðxÞ. ð26Þ
4.1. Entanglement and the EPR paradox

The entanglement criterion we will use has been out-
lined by Dechoum et al. [30], following from criteria
developed by Duan et al. [4] which are based on the
inseparability of the total density matrix and are neces-
sary and sufficient for Gaussian states. To demonstrate
entanglement between the modes, we will define the com-
bined quadratures

X̂
h

� ¼ X̂
h

1 � X̂
h

2;

Ŷ
h

� ¼ Ŷ
h

1 � Ŷ
h

2;
ð27Þ

where Ŷ
h ¼ X̂

hþp=2
. Following the treatment of [30], entan-

glement is guaranteed provided that

Sout
X h
�
þ Sout

Y h
�
< 4. ð28Þ

To examine the utility of the system for the production of
states which exhibit the EPR paradox, we follow the ap-
proach of Reid [7]. We assume that a measurement of the
X̂ 1 quadrature, for example, will allow us to infer, with
some error, the value of the X̂ 2 quadrature, and similarly
for the Ŷ j quadratures. This allows us to make linear esti-
mates of the quadrature variances, which are then mini-
mised to give the inferred output variances,

Sout
inf ðX̂ 1Þ ¼ Sout

X 1
� ½V ðX̂ 1; X̂ 2Þ�2

Sout
X 2

;

Sout
inf ðŶ 1Þ ¼ Sout

Y 1
� ½V ðŶ 1; Ŷ 2Þ�2

Sout
Y 2

;

ð29Þ

where V(A,B) = hABi � hAihBi should be considered as an
output spectral covariance. The inferred variances for the
X̂ 2 and Ŷ 2 quadratures are simply found by swapping the
indices 1 and 2. As the X̂ j and Ŷ j operators do not com-
mute, the products of the actual variances obey a Heisen-
berg uncertainty relation, which means we find a
demonstration of the EPR paradox whenever

Sout
inf ðX̂ jÞSout

inf ðŶ jÞ 6 1. ð30Þ
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5. Resonant cavity

With the cavity at resonance for all modes in the above
threshold regime, the expressions for the spectral variances
become extremely complicated. The evanescent coupling
means that the intracavity fields are now complex, so that
the optimum correlations will not be found in the Xj and
Yj quadratures as in the normal OPO, but at some other
phase angle, as found previously for second harmonic gener-
ation in detuned cavities [31]. Experimentally, this does not
present a problem as the local oscillator phase is normally
swept across all angles, which must include the optimum an-
gle.We find that changing Jbmainly serves to change the an-
gle of maximum squeezing. Changing Ja changes both the
frequency at which the maximum of squeezing is found,
and the maximum value. We find that this device is not as
efficient at producing squeezed single-mode outputs as the
normal OPO, but as we are interested in the quantum corre-
lations between the output modes, this is not a problem.

Numerical calculations of the entanglement criteria for
different values of Ja and optimised phase angles show that
when operating above threshold with both cavities reso-
nant, the degree of entanglement increases as Ja is in-
creased but the maximum value is found at an increasing
value of the frequency. On the other hand, changing Jb
has an influence on the maximum value when Ja is small,
but mainly changes the best angle for bigger values of Ja.
We find that a reasonable degree of entanglement is present
only at several cavity linewidths away from zero frequency,
where the light will not be of a high intensity. An investiga-
tion of the EPR correlations at resonance shows only small
inferred violations of the Heisenberg uncertainty principle,
also evident at several linewidths from zero frequency. As
with the entanglement criteria, changing Jb serves to
change the angle of the maximum violation, without
changing its degree of violation, while changing Ja changes
both the degree and the frequency of the maximum viola-
tion. As expected, these results are symmetric for both out-
puts of the device. As our objective is to propose and
analyse the device as a bright source of quantum entangle-
ment, we will not present resonant results here, but will
show in the next section how cavity detunings can be used
to optimise the performance.

6. Optimisation via detuning

Although optical systems usually exhibit their best per-
formance when the cavity is resonant for the different
modes involved in the interactions, we find here that detun-
ing the cavity by the appropriate amount for the two fre-
quencies improves the quantum correlations which we are
investigating and also allows for some simplification of
the theoretical analysis. With the detuning such that
Da = Ja and Db = Jb, the steady-state solutions for the indi-
vidual modes are as given in Eq. (12). By analogy with
many coupled two-mode systems, we define the sum and
difference modes, Ap = a1 + a2 and Am = a1 � a2, and sim-
ilarly for Bp and Bm. We have already found the mean-field
solutions for these as

Ass
p ¼ ass1 þ ass2 ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �� cacb

j

� �.
j

r
;

Ass
m ¼ ass1 � ass2 ¼ 0;

Bss
p ¼ bss

1 þ bss
2 ¼ 2bss ¼ 2ca=j;

Bss
m ¼ bss

1 � bss
2 ¼ 0;

ð31Þ

so that we may write the equations of motion for their lin-
earised fluctuations (dropping the ss superscripts for nota-
tional simplicity) as

d

dt
dAp¼�cadApþ

j
2

Aþ
p dBpþBpdA

þ
p

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jBp=2

q
ðg1þg3Þ;

d

dt
dAþ

p ¼�cadA
þ
p þ

j
2

ApdBþ
p þBþ

p dAp

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jBþ

p =2
q

ðg2þg4Þ;

d

dt
dAm¼�ðcaþ2iJaÞdAmþ

j
2

Aþ
mdBpþBpdA

þ
m

� 	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jBp=2

q
ðg1�g3Þ;

d

dt
dAþ

m ¼�ðca�2iJaÞdAþ
mþ

j
2

AmdBþ
p þBþ

p dAm

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jBþ

p =2
q

ðg2�g4Þ;
d

dt
dBp¼�cbdBp�

j
2
ApdAp;

d

dt
dBþ

p ¼�cbdB
þ
p �

j
2
Aþ
p dA

þ
p ;

d

dt
dBm¼�ðcbþ2iJbÞdBm�

j
2
ApdAm;

d

dt
dBþ

m ¼�ðcb�2iJbÞdBþ
m�

j
2
Aþ
p dA

þ
m . ð32Þ

The gj have the same properties as those used in Eq. (6).
With the detunings set equal to the evanescent couplings,
we now find that the interesting correlations are optimised
at the quadrature angles h = 0, p/2, so that we may define

Xp ¼ Ap þ Aþ
p ¼ X 1 þ X 2;

Xm ¼ Am þ Aþ
m ¼ X 1 � X 2;

Y p ¼ �iðAp � Aþ
p Þ ¼ Y 1 þ Y 2;

Y m ¼ �iðAm � Aþ
mÞ ¼ Y 1 � Y 2.

ð33Þ

We can now give simple analytical expressions for the out-
put spectra of these combined quadratures, finding

Sout
Xp
ðxÞ¼2þ

4c2a c2bþx2
� 	

c2bx2þ j2a2þx2ð Þ2
;

Sout
Xm
ðxÞ¼2þ

4c2a x2þ4 c2a�J 2
a

� 	
 �
4c2ax

2þ x2�4J 2
a

� 	2 ;
Sout
Y p
ðxÞ¼2�

4c2a c2bþx2
� 	

j2a2þx2ð Þ2þ4c2a c2bþx2ð Þ�4cacbj2a2
;

Sout
Y m
ðxÞ¼2þ

4c2a 4J 2
a�x2

� 	
4c2ax

2þ 4J 2
a�x2

� 	2 .

ð34Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�� �cÞ=j

p
.
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The results for Sout
Xm
ðxÞ, Sout

Y p
ðxÞ and Sout

Y m
ðxÞ are presented

graphically in Fig. 1, for different ratios �/�c. We can see
that the best squeezing quadrature is Yp which still exhibits
�50% squeezing well above the oscillation threshold. The
quadratures Xm and Ym show only a very small degree of
squeezing, while Xp is antisqueezed at all frequencies. We
note that the degree of squeezing we observe in Yp with this
detuning is more than was available without detuning.

The solutions given in Eq. (34) are sufficient for us to
investigate the degree of entanglement and the EPR corre-
lations, although the expressions obtained by combining
these in the appropriate manners are very complex. We
will, therefore, present the results graphically. In Fig. 2,
we show how the entanglement correlation for Yp and
Xm changes as the ratio �/�c increases. We can see that
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Fig. 1. Sout with ca = cb = Jb = Db = 1, Ja = Da = 10. The full lines are for
Xm, the dashed lines are for Ym and the dashed–dotted lines are for Yp.
Note that the vertical axes are not aligned and that a value below 2
represents squeezing.
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Fig. 2. Sout
Xm

þ Sout
Y p

with ca = cb = Jb = Db = 1, Ja = Da = 10, and different
pump values. A value of less than 4 represents bipartite entanglement.
the maximum violation becomes less as the pumping is in-
creased, and also moves away from zero frequency.
Increasing the pump both deteriorates the maximum value
and shifts it to higher frequencies. Unlike the cases where
Ji 5 Di, the pump amplitude does not depend on the cou-
plings or detunings, and is therefore lower for the same ra-
tio of critical pump amplitude than in these cases.

As shown in Fig. 3, increasing Ja gives better entangle-
ment, and also shifts the maximum values to just over
zero frequency. The maximum degree of entanglement
which we observe is once again better with the detuning.
In Fig. 4, we present the results for the EPR correlations,
with Jb held constant at a value of cb while Ja is increased.
Changing Ja changes both the amount and the frequency
of the maximum violation, with this bifurcating as Ja
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Fig. 3. Sout
Xm

þ Sout
Y p

with ca = cb = Jb = Db = 1, Ja = Da and � = 1.2�c. The
full line is for Ja = 1, the dashed line is for Ja = 5 and the dash–dotted line
is for Ja = 10.
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Fig. 4. Demonstration of the EPR correlation for Jb = ca = cb = Db = 1
and Ja = Da = 1 (solid line), 5 (dashed line), and 10 (dash–dotted line). The
pump amplitude is � = 1.1�c.
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increases. This correlation is much less sensitive to
changes in Jb, which only have a small influence. As ex-
pected, these results are the same for both outputs of
the device. Compared with the resonant case, the EPR
correlations of the detuned system show a much larger
maximum inferred violation of the Heisenberg inequality
and the spectra are less bifurcated.

6.1. Evolution of correlations as a function of pumping

In this section, we examine how the correlations evolve
as the pumping is increased from zero to above the thresh-
old value, with the caveat that our linearised results in the
immediate neighbourhood of the threshold are of limited
validity. In Fig. 5, we have plotted the maximum entangle-
ment found between the Yp and Xm quadratures as a func-
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Fig. 6. Maximum demonstration of the EPR paradox as a function of the
pumping, with ca = cb = Jb = Db = 1, and Ja = Da = 10.
tion of the pumping. Noting that the output beams become
more intense as the pumping increases, we see that a good
degree of bright entanglement should be available from this
system. From Fig. 6, where the minimum value of the
product of the inferred variances is plotted, we see that
the demonstration of the EPR paradox is not as robust
above threshold as the entanglement. In fact it has almost
disappeared at � = 1.5�c.

7. Conclusion

This system exhibits a wide range of behaviors and is
potentially an easily tunable source of entanglement and
states which exhibit the EPR paradox. In the above thresh-
old regime which we have analysed here, it can be used to
produce bright entangled beams. The entangled beams pro-
duced can be degenerate in both frequency and polarisa-
tion, unlike those of the nondegenerate OPO, and would
exit the cavity at spatially separated locations. The spatial
separation of the output modes means that they do not
have to be separated by optical devices before measure-
ments can be made, saving the unavoidable losses which
would result from this procedure. This may be a real oper-
ational advantage over the nondegenerate OPO, which is
also known to produce nonclassical states. The tunability
that exists because of the number of different parameters
which can be experimentally accessed, such as the coupling
strength, the pump intensities and the detunings, may make
it interesting for a range of potential applications which
would require the availability of states of the electromag-
netic field with varying degrees of nonclassicality. Since this
type of system is compatible with integrated optics tech-
niques, it may provide a more robust source of bright
entangled beams than interferometers that use discrete
optical components.
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