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The SU(2) and SU(3) Lie algebras lend themselves naturally to studies of two- and three-well Bose–Einstein
condensates, with the group operators being expressed in terms of bosonic annihilation and creation opera-
tors at each site. The success of these representations has led to the purities associated with these algebras to
be promoted as a measure of entanglement in these systems. In this work, we show that these purities do not
provide an unambiguous measure of entanglement between wells, but instead give results which depend on
the quantum statistical states of the atomic ensembles in each well. Using the example of totally uncoupled
wells where the atoms in one have never interacted with the atoms in the other, we quantify these purities
for different states and show that completely separable states can give values which have been claimed to in-
dicate the presence of entanglement. We also consider claims that the generalised purities measure particle
rather than mode entanglement, with emphasis on the case of indistinguishable bosons, as found in these
systems.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The SU(2) and SU(3) group operators used in the treatment of an-
gular momentum and two- and three-well condensates originate
from Schwinger's oscillator model of angular momentum [1]. In the
case of a two-well condensate, and making the two-mode approxi-
mation, the relevance of Schwinger's model is apparent when we
use the bosonic annihilation operators for each mode, â1 and â2 to
construct three operators which obey SU(2) commutation relations
[2,3],

Jx ¼
1
2

â†
1â1−â†

2â2

� �
;

Jy ¼
i
2

â†
1â2−â†

2â1

� �
;

Jz ¼
1
2

â†
1â2 þ â†

2â1

� �
:

ð1Þ

We note here that we have used the operators as defined in Ref.
[3], in order to be consistent with the definition of the SU(2) purity
found in that article. The most natural set of states which exhibit
spontaneously broken symmmetry is then the coherent atomic states
introduced by Arecchi et al. [4], constructed from the Dicke states [5],
which are themselves eigenstates of Jz. These coherent atomic states
exhibit a generalised SU(2) purity of one, which is the maximum
value.
+61 7 33651242.
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In the case of a symmetric three-well condensate in the three-
mode approximation [6], it is natural to use operators based on the
SU(3) group generators,

Q1 ¼ 1
2

â†
1â1−â†

2â2

� �
; Q2 ¼ 1

3
â†
1â1 þ â†

2â2−2â†
3â3

� �
;

Jk ¼ i â†
kâj−â†

j âk

� �
; Pk ¼ â†

kâj þ â†
j âk;

ð2Þ

where k=1,2,3 and j=(k+1)mod3+1. Note that â3 is the bosonic
annihilation operator for the mode contained in the third well. As
with the two-mode system, atomic coherent states of the SU(3)
group may be defined [7], which are again the minimum uncertainty
states of the relevant phase space and will therefore have an SU(3)
purity of one.

Having defined the appropriate operators for each of these groups,
we turn our attention to statements made that a generalised purity of
less than one signifies entanglement in these bosonic systems. The Lie
algebra purities were introduced as a subsystem-independent gener-
alisation of entanglement [8]. The authors presented a notion of gen-
eralised entanglement (GE), which was claimed to incorporate
previously introduced entanglement settings in a unifying frame-
work. They wrote “This is achieved by realizing that entanglement
is an observer-dependent concept, whose properties are determined
by the expectations of a distinguished subspace of observables of the
system of interest, without reference to a preferred subsystem de-
composition. Distinguished observables may represent a limited
means of manipulating and measuring the system. Standard
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entanglement is recovered when these means are limited to local ob-
servables acting on subsystems”. The view of entanglement that we
will use here follows Schrödinger [9], who wrote “When two systems,
of which we know the states by their respective representatives,
enter into temporary physical interaction due to known forces be-
tween them, and when after a time of mutual influence the systems
separate again, then they can no longer be described in the same
way as before, viz. by endowing each of them with a representative
of its own. I would not call that one but rather the characteristic
trait of quantummechanics, the one that enforces its entire departure
from classical lines of thought. By the interaction the two representa-
tives [the quantum states] have become entangled”. It can easily be
seen that there are two main requirements here, these being (i) the
interaction, and (ii) the separation.

We will proceed by giving examples of particular quantum states
in two- and three-well systems which are separated but have not
interacted, and calculate the purities for these. Given that the
Schwinger model was originally introduced for uncoupled oscillators,
we are justified in defining initial quantum states in each well. We
will not address whether or not it is possible to manufacture such
states in the laboratory, but will use the fact that, according to Schrö-
dinger's definition, none of them can possibly be entangled, as they
have never interacted and are completely separable. We will thus
show that a generalised purity of less than unity is not a reliable sig-
nal of entanglement for indistinguishable particles.

2. Generalised purity for the two-well model

The generalised purity of the SU(2) algebra is defined as [3]

PSU 2ð Þðjψ〉Þ ¼
Jx

D E2 þ Jy
D E2 þ Jz

D E2

J2
D E ; ð3Þ

where J2= Jx
2+ Jy

2+ Jx
2 and the expectation values are those for the

state |ψ〉. It is a reasonably simple matter to evaluate this expression
for a number of different quantum states. We will consider three dif-
ferent states for a system where the atoms in each of the two wells
have never interacted with those in the other, the density matrix is
fully separable, and thus entanglement in the standard sense cannot
be present. These will be (i) an independent Glauber–Sudarshan co-
herent state in each well; (ii) an independent Fock state of fixed
atom number in each well; and (iii) an independent coherently dis-
placed squeezed state in each well [10].

2.1. Coherent states

Wewrite a state with a coherent state in each well as |ψ〉=|α1,α2〉,
so that we have â1â2 α1;α2〉 ¼ α1α2j jα1;α2〉. It is then a trivial matter
to find the expectation values,

Jx
D E

¼ 1
2

α1j j2− α2j j2
� �

;

Jy
D E

¼ i
2

α�
1α2−α�

2α1
� �

;

Jz
D E

¼ 1
2

α�
1α2 þ α�

2α1
� �

:

ð4Þ

We can also calculate

J2x
D E

¼ 1
4

α1j j4 þ α2j j4 þ α1j j2 þ α2j j2−2 α1j j2 α2j j2
� �

;

J2y
D E

¼ 1
4

2 α1j j2 α2j j2 þ α1j j2 þ α2j j2−α2
1α

�2
2 −α�2

1 α2
2

� �
;

J2z
D E

¼ 1
4

2 α1j j2 α2j j2 þ α1j j2 þ α2j j2 þ α�2
1 α2

2 þ α2
1α

�2
2

� �
;

ð5Þ
so that

J2
D E

¼ 1
4

α1j j4 þ α2j j4 þ 2 α1j j2 α2j j2 þ 3 α1j j2 þ 3 α2j j2
� �

; ð6Þ

which is easily seen to equal the NT
2

NT
2 þ 1

� �
given in Ref. [2], with NT

being the expectation value of the total number of atoms.
It is now a trivial matter to calculate

Jx
D E2 þ Jy

D E2 þ Jz
D E2 ¼ 1

4
α1j j2 þ α2j j2

� �2
; ð7Þ

so that the generalised purity for the Glauber–Sudarshan coherent
states is

PSU 2ð Þðjα1;α2〉Þ ¼
α1j j2 þ α2j j2

� �2

α1j j2 þ α2j j2� �2 þ 3 α1j j2 þ α2j j2� � : ð8Þ

This expression is obviously always less than unity, and has an
upper limit of unity in the limit of infinite coherent excitation.

2.2. Fock states

We now consider a systemwith an independent Fock state in each
well, so that |ψ〉=|n1,n2〉. It is immediately obvious that there is only
one possible non-zero expectation value 〈Jk〉, which is

Jx
D E

¼ 1
2

n1−n2ð Þ; ð9Þ

and we find the sum of the expectation values of the squares as

J2
D E

¼ 1
4

n1 þ n2ð Þ2 þ 2 n1 þ n2ð Þ
h i

: ð10Þ

This then gives the SU(2) purity as

PSU 2ð Þðjn1;n2〉Þ ¼
n1−n2ð Þ2

n1 þ n2ð Þ2 þ 2 n1 þ n2ð Þ ; ð11Þ

which can vary from zero when n1=n2 to a value which approaches
unity when one of the wells has a much higher occupation than the
other.

We can use this example of two independent Fock states as a
prime example of exactly why “generalised entanglement” is not a
good measure for these systems. Considering the simplest possible
case, with one atom in each well (labelled by L and R), in the notation
of first quantisation the state is defined as

j1;1 >¼ 1ffiffiffi
2

p ðjL > jR > þjR > jL >Þ; ð12Þ

where the symmetrisation is imposed by the fact that we are dealing
with bosons. Written in this form, the overall state appears entangled
but when we use the formalism of second quantisation, the situation
is quite different, as shown by Benatti et al. [11,12]. In fact, all situa-
tions with Fock states of indistinguishable particles in each well can
be shown to be separable with respect to the natural partition of
the overall state, which is in terms of the atoms in each well. Benatti
et al. [12] discuss how the tensor product structure which is natural
for addressing issues of separability in systems of distinguishable par-
ticles is not appropriate for indistinguishable particles. These should
instead be investigated within the formalism of second quantisation
through introduction of the canonical bosonic creation and annihila-
tion operators. In this context, entanglement corresponds to the exis-
tence of non-classical correlations among commuting observables
which are measured in non-overlapping spatial regions, labelled V1

and V2. In the two-well model we consider here, these regions are
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the two separate wells and the operators are â1 and â2, along with
their creation equivalents. They then define two-point functions of
the form ω(PV1

,PV2
), where the Ps are polynomials in the creation

and annihilation operators acting in the regions V1 and V2. An observ-
able is then separable in terms of ω if it can be decomposed into a
convex linear combination of a product of expectation values of two
commuting subalgebras (AB) of the entire algebra of the operators,

ω ABð Þ ¼ ∑
i
λiω

a
i Að Þωb

i Bð Þ; ð13Þ

with λi>0 and∑ iλi=1.Otherwise it is entangled with respect to the
algebras (AB). In the context of this article, it should be obvious that
we are dealing with separable states in terms of the algebras perti-
nent to the different wells.

2.3. Coherently displaced squeezed states

For notational convenience we will write our squeezed states as |
s1,s2〉, where sj=αj, rj, with αj the coherent displacement and rj the
squeezing parameter [10]. Note that, in the interests of simplicity,
we will consider rj and αj to be real. Using the fact that such a state
is produced by the action of first squeezing and then displacing the
vacuum,

s1; s2〉 ¼ D α1ð ÞS r1ð ÞD α2ð ÞS r2ð Þj j0;0〉; ð14Þ

we may calculate all the required expectation values. We find

Jx
D E

¼ 1
2

α2
1 þ sinh2r1−α2

2−sinh2r2
� �

;

Jy
D E

¼ 1
2

α1α2−α1α2ð Þ;

Jz
D E

¼ 1
2

α1α2 þ α1α2ð Þ;

ð15Þ

so that

Jx
D E2 þ Jy

D E2 þ Jz
D E2

¼ 1
4

α2
1 þ α2

2

� �2 þ 2 α2
1−α2

2

� �
sinh2r1−sinh2r2

� �
þ sinh2r1−sinh2r2
� �2

� �
;

ð16Þ

which we can see is the same expression as for a coherent state when
rj=0. We now turn to the terms in the demoninator, finding

J2x
D E

¼ 1
4

h
α2
1−α2

2

� �2 þ α2
1 coshr1− sinhr1ð Þ2 þ α2

2 coshr2− sinhr2ð Þ2

þ sinh2r1− sinh2r2
� �2þ2 sinh2r1 cosh

2r1þ sinh2r2 cosh
2r2

� �i
;

J2y
D E

¼ 1
4

h
α2
1 sinhr2 þ coshr2ð Þ2 þ α2

2 sinhr1 þ coshr1ð Þ2

þ sinhr1 coshr2− sinhr2 coshr1ð Þ2
i
;

J2z
D E

¼ 1
4

h
4α2

1α
2
2 þ α2

1 sinhr2− coshr2ð Þ2 þ α2
2 sinhr1− coshr1ð Þ2

þ sinhr1 coshr2 þ sinhr2 coshr1ð Þ2
i
;

ð17Þ
so that

J2
D E

¼ 1
4

(
α2
1 þ α2

2

� �2þ α2
1 coshr1− sinhr1ð Þ2þ2 sinh2r2 þ cosh2r2

� �h i

þ 2 sinh2r1 þ sinh2r2
� �

cosh2r1 þ cosh2r2
� �o

:

þ α2
2 coshr2− sinhr2ð Þ2 þ 2 sinh2r1 þ cosh2r1

� �h i

þ 2 sinh2r1 þ sinh2r2
� �

cosh2r1 þ cosh2r2
� �o

:

ð18Þ

The expression for PSU(2)|s1,s2〉 is therefore rather complicated and
large, but we can evaluate it readily for some special cases. Firstly,
when r1=r2=0, so that we have two independent Glauber–Sudar-
shan coherent states, we find the same result as that given above in
Eq. (8), as required. For two squeezed states with zero coherent exci-
tation, we find

PSU 2ð Þðjr1; r2〉Þ ¼
sinh2r1− sinh2r2

� �2

2 sinh2r1 þ sinh2r2
� �

cosh2r1 þ cosh2r2
� � ; ð19Þ

which is zero if r1=r2 and tends towards one half for r1≫r2.

3. Generalised purity for the three-well model

We will now consider the generalised purity associated with the
SU(3) algebra which is defined by Viscondi et al. [6] as

PSU 3ð Þðjψ〉Þ

¼ 9
N2
	 
 〈ψjQ1jψ〉2

3
þ 〈ψjQ2jψ〉2

4
þ
X3
j¼1

〈ψjPjjψ〉2
12

þ
X3
k¼1

〈ψj Jkjψ〉2
12

0
@

1
A;

ð20Þ

where Pi, Ji and Q1 are as defined in the Introduction, Eq. (2), and
N=∑ i=1

3 ai
†ai. It has been stated in various publications that states

with PSU 3ð Þðjψ〉Þ ¼ 1 are separable, with any decrease from this maxi-
mum value indicating entanglement among the particles [6,13,14].
We will now evaluate this purity for the three-mode analogues of
the separable states considered in Section 2.

3.1. Independent coherent states

We consider independent occupations of each well by Glauber–
Sudarshan coherent states, |ψ〉=|α1,α2,α3〉, and calculate

Q1h i2 ¼ 1
4

α1j j2− α2j j2
� �2

;

Q2h i2 ¼ 1
9

α1j j2 þ α2j j2−2 α3j j2
� �2

;

P1h i2 ¼ α�
1α3 þ α�

3α1ð Þ2;
P2h i2 ¼ α�

2α1 þ α�
1α2ð Þ2;

P3h i2 ¼ α�
3α2 þ α�

2α3ð Þ2;
J1h i2 ¼ − α�

1α3−α�
3α1ð Þ2;

J2h i2 ¼ − α�
2α1−α�

1α2ð Þ2;
J3h i2 ¼ − α�

3α2−α�
2α3ð Þ2;

ð21Þ

as well as

N2
D E

¼ α1j j2 þ α2j j2 þ α3j j2
� �2 þ α1j j2 þ α2j j2 þ α3j j2

¼ Nh i2 þ Nh i:
ð22Þ
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It is the a simple matter to combine these expressions as in
Eq. (20) to find

PSU 3ð Þð α1;α2;α3〉j Þ ¼
α1j j2 þ α2j j2 þ α3j j2

� �2

α1j j2 þ α2j j2 þ α3j j2� �þ α1j j2 þ α2j j2 þ α3j j2

¼ Nh i2
Nh i2 þ Nh i :

ð23Þ

It is readily seen that this value will always be smaller than one,
approaching one in the limit of extremely large N.

3.2. Independent Fock states

We now turn our attention to three independent Fock states, |n1,
n2,n3〉. We find

Q1 ¼ 1
2

n1−n2ð Þ;

Q2 ¼ 1
3

n1 þ n2−2n3ð Þ;

Jk ¼ Pk ¼ 0:

ð24Þ

After a little simple algebra, we find

PSU 3ð Þðjn1;n2;n3〉Þ ¼ 1−3 n1n2 þ n1n3 þ n2n3ð Þ
n1 þ n2 þ n3ð Þ2 : ð25Þ

It is readily seen that this will be equal to zero when n1=n2=n3
and can take on a range of values when one well is much more highly
occupied than the others.

3.3. Independent squeezed states

In the case of three independent coherently displaced squeezed
states, with αj the coherent displacements and rj the squeezing pa-
rameters, we find

Q1h i2 ¼ 1
4

α1j j2 þ sinh2r1− α2j j2−sinh2r2
� �2

; ð26Þ

and

Q2h i2 ¼ 1
9

α1j j2 þ sinh2r1 þ α2j j2 þ sinh2r2−2 α3j j2 þ sinh2r3
� �h i2

;

ð27Þ

with the Pk and Jk being the same as for coherent states, see Eq. (21).
This gives the numerator as

N ¼ α1j j2 þ sinh2r1 þ α2j j2 þ sinh2r2 þ α3j j2 þ sinh2r3
� �2

−3
h
α1j j2 sinh2r2 þ sinh2r3

� �
þ α2j j2 sinh2r1 þ sinh2r3

� �
þ α3j j2 sinh2r1 þ sinh2r2

� �i
:

ð28Þ

The denominator is found as

N2
D E

¼ α1j j2 þ sinh2r1 þ α2j j2 þ sinh2r2 þ α3j j2 þ sinh2r3
� �2

þ α1j j2 cosh2r1 þ α2j j2 cosh2r2 þ α3j j3 cosh2r3

þ2
X3
j¼1

sinh2rj cosh
2rj:

ð29Þ

Again we see that the full expression for PSU 3ð Þ is complicated, but
easy to evaluate in some special cases. For example, when rj=0, we
find the same value as for coherent states, given in Eq. (23). When
the αj are all set to zero, we find

PSU 3ð Þðjr1; r2; r3〉Þ ¼
N2

T

N2
T þ 2∑3

j¼1 sinh
2rj cosh

2rj
; ð30Þ

where NT=sinh2r1+ sinh2r2+sinh2r3. It is readily seen that, whatev-
er combination of α and r we choose, the purity will be less than one,
despite the fact that the states have been constructed so as to be
completely separable.

4. Discussion and conclusions

While we follow what we see as the spirit of Schrödinger's view of
entanglement and consider the standard definition of entanglement
as applied to bosonic systems, Ref. [13] introduces the concept of gen-
eralised entanglement, stating “it may also be that for some problems,
correlations between particles, rather than modes, are relevant, tak-
ing us beyond the distinguishable-subsystems framework of standard
entanglement theory”. The claim may therefore be made that the sys-
tems we examine in this work, which demonstrate Lie algebra pu-
rities of less than unity, exhibit “particle entanglement” rather than
mode entanglement. This seems to leave two options: either some
of the particles in one well are somehow entangled with some of
the particles in the other, or this generalised entanglement is a prop-
erty of the particles in one well. As the operators used to define the
purity operate on atoms in both wells, this leaves open the question
as to how an indistinguishable boson from one well can be entangled
with one in the other well with which it has never interacted. If we
confine ourselves to single wells, there also seems to be a contradic-
tion in that condensed bosons all share the same, non-separable,
wavefunction and density matrix, so what the purity measures can
therefore also not be measuring entanglement in any meaningful
physical sense.

We believe that the differences in the definitions of what can be
considered entangled come about because of the use of first quantisa-
tion, where, as seen above, two separable but indistinguishable bo-
sons are seen as being entangled. We believe that the formalism of
second quantisation is necessary to meaningfully discuss entangle-
ment when the constituent particles of the overall system are indis-
tinguishable, with the entanglement that seems to exist in first
quantisation merely being a formal consequence of symmetrisation
of the wavefunction. In fact, if we rely on the states as written in
first quantisation, and use the fact that any states of indistinguishable
bosons can be expanded in bases of number states, the necessary
symmetrisation would lead us to write almost every possible system
as being “particle entangled” with any other system of similar indis-
tinguishable particles, irrespective of any interactions which may
have taken place, and irrespective of whether second quantisation
showed them to be separable or not. For indistinguishable particles,
this can make the idea of generalised entanglement defined in this
way so broad as to become essentially meaningless.

In conclusion, we have shown that the generalised SU(2) and SU
(3) purities are not a useful entanglement measure for multi-mode
continuous variable bosonic systems by considering the cases of
two- and three-well Bose–Hubbard models and demonstrating that
fully separable states can be constructed which give a value of less
than one. This suggests strongly that great care should be used with
this measure if it is desired to use it as a signature of quantum entan-
glement for bosonic systems, and that by itself it is not sufficient.
What it does measure is the “distance” of a quantum state from one
of the SU(N) coherent states, which is not necessarily related to en-
tanglement, but may be useful when considering other properties of
a system, such as critical points and phase transitions. While it is ob-
viously a useful mathematical and abstract generalisation of standard
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entanglement measures, in the cases we have discussed in this article
it is very difficult to give any physical content to this generalisation.
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